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Fatty acids are an abundant class of lipids that are characterised by wide structural variation including
isomeric diversity arising from the position and configuration of functional groups. Traditional
approaches to fatty acid characterisation have combined chromatography and mass spectrometry for
a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided
insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-
pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-
selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and
carbon—-carbon double bonds present highly sensitive probes for regiochemistry and configuration
through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained
from unsaturated fatty acids are shown to discriminate between isomers and enable the first

unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility
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Accepted 25th January 2023 of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now

gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is
DOI: 10.1039/d25c06487a sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid

rsc.li/chemical-science metabolism.

arises from wide variation in the molecular structures of fatty
acids (FA) that represent major building blocks of more
complex lipids and are subject to substantial modification

Introduction

The full extent of molecular diversity within the lipidome

remains an open question that presents significant challenges
to contemporary methods for lipid structure determination.’
Much of the potential for structural diversity in lipid biology
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through changes in supply and metabolism.”> Currently the
LIPID MAPS database lists over 8600 distinct lipids in the fatty
acyl category that includes over 3800 lipids classified as unsat-
urated fatty acids.® Much of this structural variation arises from
differences in the degree of unsaturation and the position and
configuration of the carbon-carbon bonds within the fatty acids
resulting, in many instances, in isomeric structures. Recent
investigations have revealed that changes in the position or
configuration of carbon-carbon double bonds in fatty acids can
be key markers for changes in diet or metabolism but are
difficult to visualize against a complex background of hundreds
(or even thousands) of other lipids that include double bond or
stereoisomers of the marker compound.*” The unambiguous
assignment of the molecular structure of individual fatty acids
with explicit assignment of double bond (DB) position(s) and
configuration (i.e., cis/trans or E/Z) is thus critical to a complete
understanding of the lipidome and for mapping the full
potential of lipid metabolism.

Identifying individual FAs within a complex mixture of
isomers is a significant challenge to even the most advanced

© 2023 The Author(s). Published by the Royal Society of Chemistry
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analytical methods. Gas chromatography-mass spectrometry
(GC-MS) of fatty acid methyl esters (FAMEs) has been the most
widely used method for FA analysis.® For monounsaturated FAs,
shifts in retention time can be indicative of DB position and
stereochemistry.’ Recent GC-MS investigations of FAs in cancer
have, however, identified poor resolution or even co-elution of
some isomers.*** The challenge of FA identification is further
confounded by the identical electron ionization mass spectra of
isomeric FAMEs.""** Utilization of 3-pyridylcarbinol esters'***
and other derivatization'**' or ion activation®»** strategies can
instead yield diagnostic mass spectral fragments for DB posi-
tion assignment in FAs. However, apart from rare
exceptions,*** these tandem MS approaches are agnostic to DB
geometry. Conversely, techniques such as nuclear magnetic
resonance (NMR)* or vibrational spectroscopy®**" are capable
of quantifying the relative amount of cis versus trans unsatura-
tion in a bulk lipid extract. These stereochemical assignments,
however, cannot typically be ascribed to DB position(s) or
indeed to individual fatty acids except where sufficient quanti-
ties of individual lipids can be purified from the bulk.>*-*

Rapid advances in the spectroscopy of gaseous ions present
an exciting possibility to establish a universal approach to fatty
acid structure elucidation that combines mass spectrometric
and spectroscopic insights on mass-selected populations of
ionized lipids.

a. Infrared spectra of 3-pyridylcarbinol esters
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Recently, we demonstrated that both the position and
geometry of DBs in 1-deoxysphingosine can be characterized
simultaneously using cryogenic gas-phase infrared (IR) spec-
troscopy.®* Here the shifts in the N-H vibrational frequencies
were found to be sensitive to the position and stereochemistry
of carbon-carbon double bonds within the lipid due to
a through-space charge-olefin interaction in the gas-phase [M +
H]" cations. While the power of combining mass spectrometry
and gas-phase IR spectroscopy was clearly demonstrated for
this system, the reliance on the N-H resonance meant that
direct spectroscopic analysis of other lipid classes would
require modification to establish a more universal experimental
approach. A promising example of such modifications are 3-
pyridylcarbinol ester derivatives of fatty acids. These esters have
been widely deployed for GC-MS analysis of isomers where
retention of charge at the pyridine-nitrogen facilitates radical-
driven dissociation or carbon-carbon bonds and promotes
isomer-selective mass spectra.*** "

Herein we demonstrate the potential of 3-pyridylcarbinol
esters as universal derivatives to enable gas-phase IR spectros-
copy of ionized fatty acids. This approach exploits the proton-
ation of the pyridine-nitrogen during electrospray ionization to
promote the favoured intramolecular charge-olefin interaction
within the gaseous lipid ions. Subjecting these mass-selected
ions populations to cryogenic gas-phase IR spectroscopy

b. Computed structures of 3-pyridylcarbinol esters
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Fig. 1 Gas-phase infrared spectra, collision cross sections and structures of FA 18:1 double bond isomers derivatized with 3-pyridylcarbinol. (a)
The double bond position and configuration influence the frequency of the carbonyl stretching vibration and the diagnostic fingerprint region
(1050-1250 cm™Y). (b) The carbonyl stretching frequencies correlate with the relative orientation of the carbonyl bond and the N—H bond, as
illustrated by two computed structures of the 97 isomer. Large angles (>80°) in the computed structures induce a blueshift of the predicted
carbonyl stretching frequency, which is indicated by blue filling of the respective symbol. Mixed-colour symbols show that a split C=O band is

predicted by computation.
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provides a rich fingerprint infrared spectrum that can be
deployed to assign DB-position and -stereochemistry within FAs
even in mixtures without the need for prior chromatographic
separation. Application of the developed workflow to two
human prostate cancer cell lines (PC-3 and LNCaP) identifies
the presence of four isomers of FA 18:1, including the unusual
FA 18:1 (A6) isomer where the DB is in position-6 with respect to
the carboxylate moiety. While this isomer has been identified in
prostate cell lines previously,® IR spectroscopy explicitly assigns
the cis-configuration to this unsaturated FA despite it repre-
senting <10 mol% of the isomer population.

Results and discussion

For this study, a set of FA 18:1 double bond regio and geometric
isomers (6Z, 6E, 8Z, 9Z, 9E, 11Z, 11E) along with a FA 18:0
reference sample were derivatized with 3-pyridylcarbinol. 3-
Pyridylcarbinol esters of FAs enhance the ionization in positive
ion mode via protonation of the pyridyl-nitrogen. In addition,
the protonated label serves as a sensitive double bond reporter
in gas-phase IR spectroscopy, similar to protonated amines re-
ported before.*” Herein, the protonated 3-pyridylcarbinol esters
of FA 18:1 isomers were investigated by cryogenic gas-phase IR
spectroscopy in superfluid helium droplets.*® Briefly, derivat-
ized FAs are ionized, mass-selected, and then captured in
helium droplets. The absorption of IR radiation is indirectly
measured by mass detection of lipid ions released from the
droplets. Previously, the technique was used to study ionic
complexes of FAs with ammonium derivatives;
differences in the IR spectra of DB isomers were subtle and
mostly indistinguishable.*® In contrast, covalently bound 3-
pyridylcarbinol enables a clear distinction between FA 18:1 DB
isomers in the 1000-1800 cm ™~ * range (Fig. 1a). In particular, the
fingerprint region (1050-1250 cm ') offers unique features for
each isomer. In addition, the carbonyl (C=O) stretching
frequency (1700-1800 cm ') is shifted depending on the DB
configuration and proximity to the ester. Analogous shifts of the
C=0 stretching frequency were observed for 3-picolylamides,
which were investigated as an alternative modification strategy
but not further considered because they were largely out-
performed by 3-pyridylcarbinol esters (Fig. S1-21). Computation
of gas-phase structures using density functional theory (DFT) at
the PBE0+D3/6-311+G(d,p) level of theory reveals charge-olefin
interactions between the protonated 3-pyridylcarbinol moiety
and the DB, as previously reported for sphingolipids.**** For
comparison, an IR spectrum of the 3-pyridylcarbinol ester of FA
18:0 was recorded, in which the absence of charge-olefin
interactions translates into a reduced signal intensity in the
N-H bending region between 1350-1500 cm ' (Fig. S11%).
According to the computed IR spectra, the N-H stretching
vibrations are also diagnostic for charge-olefin interactions
(Fig. S127).

Upon further investigation of the computed conformers
featuring charge-olefin interactions, a correlation was found
between the C=0 stretching frequency and the angle between
the N-H- and the C=O0 vectors (Fig. 1b and S3t). If the two
have cosine similarity (<60°), C=O stretching

however,

vectors

2520 | Chem. Sci, 2023, 14, 2518-2527

View Article Online

Edge Article

frequencies below 1760 cm " are predicted, whereas computed
structures with angles larger than 80° display a significant
blueshift of the carbonyl stretching vibration. The predicted
frequencies match exceptionally well with the experimental
spectra. The only exceptions are the 6E and 9E isomers, which
are predicted to feature a single blueshifted and a split C=0
band, respectively.

As charge-olefin interactions determine the conformation of
3-pyridylcarbinol esters, they also influence the ion mobility of
DB isomers. The collision cross sections (CCS) determined by
drift tube ion mobility-mass spectrometry (DTIM-MS) increase
with decreasing distance of the DB from the charge group and
are larger for E than for Z isomers, in agreement with previous
reports.®® The CCSs of the computed structures are consistently
underestimated but their trends are in general agreement with
the measured values (Fig. S197). The relative CCS differences
are, however, too small to allow for the analysis of isomeric
mixtures solely by DTIM-MS. On the contrary, IR spectroscopy
yields sufficiently diagnostic absorption bands for each regio-
and geometric isomer to enable mixture analysis.

In order to benchmark the ability to analyse isomeric
mixtures of FA 18:1 3-pyridylcarbinol esters by IR spectroscopy,

Synthetic 3-pyridylcarbinol esters: component spectra
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Fig. 2 Gas-phase infrared spectra of synthetic FA 18:1 (82), (92) and
(112) 3-pyridylcarbinol ester standards and synthetic binary and ternary
mixtures of known composition. Composite spectrum regression of
the infrared spectra obtained from synthetic mixtures in the fingerprint
and carbonyl stretching region vyields the expected isomer
contributions.
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synthetic binary and ternary mixtures of the 8Z, 9Z and 11Z
isomers were prepared. FA 18:1 (92) and (112) are the two most
abundant isomers in mammalian cells, whereas the 8Z isomer
has only recently been discovered to be elevated in cancer cells.*
IR spectra of isomeric mixtures were recorded in the fingerprint
region and C=O0 stretching region and were deconvolved by
composite spectrum regression implemented in OriginPro 2021
using the three reference spectra (Fig. 2). As all isomers are
modified with the same charge carrier, ionization efficiencies
are expected to be comparable, and the isomer distribution in
the gas phase should hence reflect the distribution in solution.
Previous reports from other compound classes have revealed
that relative isomer abundances of 3-5% can be determined in
isomeric mixtures,*”*® while the present work demonstrated
measured isomeric ratios to be within +8% of the known FA
isomer composition. The average relative error is £10% of the
isomer abundance obtained by spectral deconvolution. Overall,
the results demonstrate that the deconvolution of composite IR
spectra allows for the identification and accurate relative
quantification of DB isomers in mixtures. In the case of the
synthetic binary and ternary mixtures, a spectral range of only
300 cm ™' is sufficient for isomer assignment and relative
quantification.

After the successful validation of the spectral deconvolution
approach for synthetic mixtures of biologically relevant
isomers, the derivatization procedure was optimized for bio-
logical lipid extracts to eliminate isobaric impurities. The

3-Pyridylcarbinol ester derivatization of biological samples (C18:1)
a. Infrared spectra

b. Liquid chromatography—ozone-induced dissociation
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technique was tested on a commercially available reference
mixture (Restek 35077 Food Industry FAME mix), which
contains FA 18:1 (9Z) and (9E) isomers. The IR spectrum of the
FA 18:1 mixture after derivatization is shown in Fig. 3a. The
composite spectrum regression yielded a ratio of approximately
3:1 9Z:9E. As a control experiment, liquid chromatography-
ozone-induced dissociation (LC-OzID-MS)* tandem mass
spectrometry was used to confirm isomer assignment and
relative abundance by integration of the chromatogram
(Fig. 3b). Both techniques yield similar isomer ratios (Fig. 3c).

Subsequently, hydrolysed lipid extracts from two human
cancer cell lines, LNCaP (treated with TOFA, a dual SCD-1 and
ACC1 inhibitor) (1) and PC-3 (2), were derivatized with 3-pyr-
idylcarbinol and measured by IR spectroscopy and confirmed
using LC-OzID-MS. Linear combination of the component
spectra of FA 18:1 (62), (82), (92) and (11Z) using the isomer
ratios determined by composite spectrum regression (grey
trace) shows a reasonable fit of the predicted model to the
experimental spectrum. The reference spectra and mixture
spectra were measured with a delay of several months, and the
discrepancy in band intensities between the simulated and
experimental spectra in the region between 1350 and 1600 cm ™ *
can be explained by fluctuations of the laser pulse energy and
focus over time. Due to the multiple photon absorption process,
the relative band intensities are influenced by the photon flu-
ence. On the contrary, the band positions, i.e., the absorption

c. Confirmation
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Fig. 3 Gas-phase infrared spectra and chromatograms of FA 18:1 from a synthetic standard mix (37 Mix Restek) and two lipid extracts from
cancer cell lines (1 = LNCaP (TOFA), 2 = PC-3) derivatized with 3-pyridylcarbinol. (a) Infrared spectra were deconvolved by composite spectrum
regression using reference spectra. (b) Relative quantification of isomers by liquid chromatography-ozone-induced dissociation was performed
by summing the integrals of OzID product chromatograms (aldehyde and Criegee; colored and dotted lines) and the associated deconvolved
precursor chromatogram (shaded Gaussian peak area) for each isomer. Heptadeuterated oleic acid (92 d7) is derived from the SPLASH LipidoMix
analytical standard that was added to the cancer cell samples prior to lipid extraction. (c) Gas-phase infrared spectroscopy and LC-OzID-MS yield
similar isomeric ratios.

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2023, 14, 2518-2527 | 2521


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc06487a

Open Access Article. Published on 25 January 2023. Downloaded on 2/13/2026 6:09:45 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

frequencies, which are crucial for the structural assignment, are
reliable and not affected by the experimental conditions.

As is observed in Fig. 3c, the two cancer cell lines display
significant variation in their FA 18:1 isomer populations. Most
importantly, the presence of FA 18:1 (A6) DB - previously re-
ported with unknown geometry in PC-3 cells® - was confirmed
for the first time as being in the cis configuration by IR spec-
troscopy. In the IR spectrum of PC-3 (Fig. 3a, cell line 2), the
redshifted peak at 1550 cm " is diagnostic for position A6 (cf.
Fig. 1a), and the Z configuration was verified by composite
spectrum regression, yielding a contribution of 0% from the 6E
standard. Furthermore, a significant amount of the 8Z isomer
was found in the PC-3 lipid extract, in accordance with previous
findings."® The increased amount of FA 18:1 (8Z) in PC-3 cells
can be seen by the increased intensity of the blueshifted C=0
band. It should be noted that the A6 isomer observed in the LC
chromatograms of LNCaP (TOFA) at a lower ratio than in the PC-
3 cells (Fig. 3b, cell line 1) is below the detection limit of the
spectroscopic approach. The characteristic redshifted peak at
1550 ecm ™' is not captured by the spectral deconvolution
because its intensity is too low compared to the background
noise. However, it is difficult to define a universal detection
limit for the identification of individual FAs in the presence of
other isomers because it varies with the absorption intensity,
the probed wavenumber range and the similarity of the
component spectra in that particular range. All FA isomers that
have been detected in this work by IR spectroscopy have a rela-
tive abundance of at least 10% according to the LC-OzID-MS
reference method. While likely also below the limit of detec-
tion, the A5 isomer (observed in Fig. 3b) was not included as
a standard in the linear regression model for IR analysis as it
was not commercially available.

The isomer abundances determined by IR spectroscopy
deviate from the values determined by the LC-OzID-MS refer-
ence method up to +12%, which corresponds to a relative error
of +30% of the isomer abundance. The estimated relative error
of relative quantities of octadecenoic acids determined by LC-
OzID-MS is +20% (based on the triplicate measurement of
a pooled human plasma - NIST 1950 - standard reference
material, total hydrolysed fatty acid content, average coefficient
of variation of relative quantities of all detected octadecenoic
acids).®® A determined 10% relative quantity, for example,
should thus be read as 8-12%. Overall, the analysis of two
hydrolysed lipid extracts of biological origin showcases the
power of gas-phase IR spectroscopy for the analysis of isomeric
mixtures, even in complex matrices.

Conclusions

In conclusion, we here present an innovative approach to the
characterization of FA DB-position and -geometry by 3-pyr-
idylcarbinol ester derivatization and subsequent gas-phase IR
spectroscopy. The 3-pyridylcarbinol modification, commonly
used for FA analysis within GC-MS platforms,**'"** promotes
a charge-olefin interaction between the pyridyl group and the
FA DB. This interaction affects the molecular conformation and
thereby influences the C=O0 stretching and fingerprint region

2522 | Chem. Sci., 2023, 14, 2518-2527
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vibrations. The shifts of the C=0 stretching frequency are
predictable by computational chemistry as a function of the
proximity of the DB to the ester. Using spectral deconvolution,
individual FAs can be identified even in the presence of multiple
isomeric species. Given the sensitivity of the vibrational spectra
to the regio- and stereo-chemistry of carbon-carbon double
bonds in unsaturated lipids, it is reasonable to speculate that
the structures of other functionalized FAs, such as hydroxylated
and nitrated FAs, could also be determined using this approach.
Lastly, the technique was employed to detect and identify the
isomers of mass-selected FA 18:1 in cancer cell lines by decon-
volution of the mixture spectra. We were able to identify the
presence of four FA 18:1 isomers and establish the DB geometry
in FA 18:1 (A6) from PC-3 cancer cells as being cis despite it
representing less than 10 mol% of the isomer population. Gas-
phase IR spectroscopy enables explicit assignment of the posi-
tion and configuration of double bonds for individual unsatu-
rated FAs in the presence of multiple isomeric variants. Such
detailed structure elucidation of mass-selected lipids is
a powerful and complementary approach to LC-MS technolo-
gies, which thus empowers lipid discovery and reveals
otherwise-invisible changes in the lipidome.

Materials and methods
Synthesis of 3-pyridylcarbinol esters and 3-picolylamides

C18:1 fatty acid standards were purchased as follows: 11Z-
octadecenoic acid =97%, Sigma Aldrich; 11E-octadecenoic acid
99%, Matreya; 9Z-octadecenoic acid 99%, Sigma Aldrich; 9E-
octadecenoic acid =97%, TCI; 6Z-octadecenoic acid =98%, TCI;
6E-octadecenoic acid =99%, Nu-Chek Prep; 8Z-octadecenoic
acid =99%, Larodan; Food Industry FAME Mix of 37 fatty acid
methyl esters including 9E- and 9Z-octadecanoic acid, Restek.

Lipids were extracted from PC-3 and LNCaP (TOFA) cells
using methods similar to those described by Matyash et al.*® as
documented in detail in Young et al.®* with no amendments.
Approximately 350 000 cells from the lipid extract suspensions
were added to clean 2 mL glass vials and were dried under N,
gas. Fatty acids were hydrolysed from intact lipids using 200 pL
of MeOH (LC-MS grade, Fisher Scientific, Scorseby, Australia)
and 200 pL of aqueous KOH [1.75 M] added to each sample vial.
Vials were capped (PTFE cap insert) and lightly agitated for 30 s
without the contents touching the cap insert. Samples were
heated at 75 °C for 2 hours using a dry block heater (Ratek,
Saratoga, United States). Samples were removed from heat and
allowed to cool to RT. The reaction was quenched using 800 pL
H,O0 and acidified to pH 1.5 using 120 pL HCI [5 M]. 500 pL of n-
hexane was added and vials were vortexed for 30 s before
allowing the two phases to settle. The supernatant was collected
in a new 4 mL glass vial via pipette before the biphasic extrac-
tion process was repeated for an additional 500 uL of n-hexane.
Collection vials containing fatty acids in n-hexane were dried
under N, gas.

C18:1 fatty acids were derivatized with 3-pyridinemethanol
to yield 3-pyridylcarbinol esters. For lipid extract samples, 250
puL ACN, 50 pL 3-pyridinemethanol in ACN [110 mM], 50 pL
DIPEA in ACN [350 mM] and 50 uL of HBTU in ACN [110 mM]

© 2023 The Author(s). Published by the Royal Society of Chemistry
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were added to each vial before 30 s vortex. For fatty acid stan-
dard samples, 50 puL C18:1 in ACN [35 mM], 200 puL ACN, 50 uL
3-pyridinemethanol in ACN [110 mM], 50 uL DIPEA in ACN [350
mM] and 50 pL of HBTU in ACN [110 mM] were added to each
vial before 30 s vortex. Samples were heated at 50 °C for 17
hours using a dry heat block before being removed from heat
and allowed to cool to RT. 1 mL of H,O was added along with
200 uL saturated aqueous NaCl solution and 2 mL of MTBE.
Samples were vortexed for 30 s and the supernatant was
collected in a 2 mL glass vial via pipette. Samples in 2 mL glass
vials were dried under N, gas and washed with an additional
200 uL H,0, 200 pL saturated aqueous NaCl solution and 750 uL
MTBE. Samples were mixed by inversion before the supernatant
was transferred to a new 2 mL glass vial via pipette. Samples
were dried under N, gas and capped with N, gas in the head
space prior to inter-laboratory shipping.

18:1 fatty acids were derivatized with 3-picolylamine to yield
3-picolylamides. 133 uL of 3-picolylamine (2.67 umol, 3 equiv.)
in DMF (HPLC grade) [20 mM] was added to the C18:1 fatty acid
(0.889 umol, 1 equiv.) in a 4 mL vial before 30 s vortex. 26 uL
HATU (2.67 umol, 3 equiv.) in DMF [0.1 M] and 44 pL DIPEA
(4.44 pmol, 5 equiv.) in DMF [0.1 M] were added before 1 min
vortex. The resulting mixture was heated at 65 °C for 30 min
before cooling to RT. The mixture was diluted with 1.5 mL H,O
(optima grade) and 1.5 mL MTBE (HPLC grade). 100 puL of
saturated NH,CI solution was added before 30 s vortex. The
layers were separated, and the aqueous layer was again extrac-
ted with 1.5 mL MTBE. The organic layers were combined and
MTBE removed under N, gas.

3-Pyridylcarbinol ester and 3-picolylamide derivatives of fatty
acids were resuspended in MeOH to a concentration of 100 uM
for infrared spectroscopy.

Gas-phase infrared spectroscopy in superfluid helium
droplets

Gas-phase IR spectra of ionized lipids were recorded on
a custom-built instrument described previously.***' Ions are
generated by nano-electrospray ionization using Pd/Pt-coated
needles and applying a voltage of 0.7-1.0 kV. The ions of
interest are mj/z-selected in a quadrupole and bent by 90° by
a quadrupole bender into a hexapole ion trap. The ion trap is
filled with helium buffer gas, which is additionally cooled to 90
K by liquid nitrogen. Ions are thus decelerated and thermalized
by buffer gas cooling and trapped by DC and RF potentials.
Superfluid helium droplets are generated by expanding pres-
surized helium (60 bar) through the cooled nozzle (21 K) of
a pulsed Even-Lavie valve (10 Hz). After the buffer gas is pum-
ped out of the trap, the trapped ions can be picked up by the
helium droplets, which traverse the trap coaxially. Once inside
a droplet, the ion is cooled to the intrinsic droplet temperature
of 0.4 K.** The doped droplets travel towards the interaction
region, where the droplet beam overlaps in space and time with
the pulsed beam of the Fritz Haber Institute free-electron laser
(FHI FEL).** The macropulse repetition rate of the FHI FEL is
10 Hz, and each macropulse contains 10* micropulses, which
allow for the rapid sequential absorption of multiple photons by

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

the analyte ion inside the helium droplet. Upon the absorption
of one IR photon, the vibrational energy is dissipated by the
evaporation of helium atoms and the ion is cooled to the initial
droplet temperature of 0.4 K. The helium shell around the ion
can thus be regarded as an IR-transparent cryostat preventing
ion heating during photon absorption while not disturbing
vibrations of the analyte because superfluid helium lacks
viscosity. After the absorption of multiple photons, the bare ion
is released from the droplet and detected on a time-of-flight
mass analyser. IR spectra are generated by scanning the tune-
able FHI FEL in steps of 2 cm ™~ while monitoring the ion count
on the detector. Spectra are averaged from two individual scans.

Composite spectrum regression

IR spectra of synthetic and biological mixtures of FA 18:1 3-
pyridylcarbinol esters were deconvolved using reference spectra
of standard substances. Prior to the deconvolution, mixture
spectra and reference spectra were binned in 2 em ™" steps in
OriginPro 2021 using the 1D binning application. The binned
data are represented in Table S15 and S16.T The binned mixture
spectra were then deconvolved using the composite spectrum
regression application implemented in OriginPro 2021 to yield
the relative abundance of each isomer contained in the mixture.
The model minimizes the error between the measured
composite spectrum and the sum spectrum of the component
spectra by optimizing the weighting factors, i.e., the isomer
abundances. The experimental mixture spectra can be simu-
lated by linear combination of the reference spectra using the
weighting factors obtained from the composite spectrum
regression (Fig. S211 and 3). The R* values are >0.91 for the
synthetic mixtures in a reduced wavenumber range, and >0.83
for the biological samples in the full wavenumber range, as
indicated in the ESI (Table S15 and S16).1 All isomer abun-
dances reported in this work were determined based on IR
spectra averaged from two individual scans. The maximum
variation of isomer abundances obtained from individual
measurements of the same sample is £12%.

Computational details

Gas-phase structures and harmonic IR spectra of protonated FA
18:1 3-pyridylcarbinol esters and 3-picolylamides were
computed by an initial conformational sampling and subse-
quent optimization of selected structures by density functional
theory (DFT). The conformational sampling of each isomer was
performed using CREST** with the semiempirical method
GFN2-xTB* and default settings. Several conformers were
selected for further optimization at the PBE0+D3/6-311+G(d,p)
level of theory in Gaussian 16.*® Harmonic IR spectra of the
DFT-optimized conformers were computed at the same level of
theory and scaled by an empirical factor of 0.965, in accordance
with previous publications.®****” Free energies (AF) were
computed at the ion trap temperature of 90 K because the
conformational ensemble at 90 K is shock-frozen in the helium
droplets. The relative energy values refer to the lowest-energy
conformer. Collision cross sections (CCSs) of all computed
conformers were calculated with DFT-computed Merz-Singh-
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Kollman charges*® using the software HPCCS*® which is based
on the trajectory method.*® The CCSs were computed at 298.15
K (25 °C) in nitrogen, and the average CCS of all conformers
below a threshold of AF = 10 k] mol * was determined for each
isomer.

Ion mobility-mass spectrometry

For determination of PTCCSy, values, an Agilent 6560 IM-
QTOFMS (Agilent Technologies, Santa Clara, CA) equipped
with a Dual JetStream Electrospray ion source was used. Each
isomer was injected separately and eluted from a ZORBAX
Eclipse Plus C18 column (50 mm x 2.1 mm i.d. and 1.8 um dp)
using a linear gradient (solvent A: 0.1% formic acid; solvent B:
0.1% formic acid: 99.9% acetonitrile) and a flow rate of 200
uL min~'. The instrument was operated in the 1700 extended
dynamic range mode with positive polarity. The drying gas flow
was set to 13 L min~" (275 °C), sheath gas flow was 12 L min™*
(350 °C) with a nebuliser pressure of 30 psi. The trapping funnel
fill time was set to 1000 ps and the 78 cm drift tube was operated
using a field strength of 10.9 V. em ™! (entrance 1074 V, exit 224
V). The maximum drift time was set to 50 ms and the trap
release time to 150 ps. An acquisition rate of 1.1 frames per
second was realised by summing 14 IM transients per frame.

For secondary (single-field) "CCSy, calibration, an infusion
of ESI Tune Mix ESI-L (G1969-85000, Agilent Technologies)
prepared according to the manufacturer's instructions was used
to determine a linear calibration function using the method and
PTCCSy, values reported in Stow et al®® The calibration
parameters were subsequently applied to all measurement files
in a single sequence. All data processing for I)TCCSNZ determi-
nation was performed using Agilent MassHunter IM-MS
Browser (10.0, Build 10.0.100027.0).

Photoreactions

E/Z isomerization reactions were carried out in a custom-made
photoreactor consisting of a Styrofoam box containing an
aluminium lining on the inside, a UV lamp, emitting broad-
band 254 nm light and a quartz glass vial (crimped, airtight).
0.15 mL of a solution of 35 mM (5.3 mmol) FA 18:1 (11Z), 35 mM
(5.3 mmol) FA 18:1 (92), 35 mM (5.3 mmol) FA 18:1 (9E), 35 mM
(5.3 mmol) FA 18:1 (82), 35 mM (5.3 mmol) FA 18:1 (6Z), (in the
following referred to as 18:1 mix) in n-hexane was prepared,
transferred to a quartz glass vial, crimped airtight and deoxy-
genated by a stream of argon for 5 minutes. The vial was placed
inside the photoreactor at 3 cm from the lamp and irradiated
for 12 h. The temperature inside the photo reactor was moni-
tored and maintained between 20-35 °C throughout. The
photochemically isomerized fatty acid standards were
employed for the assignment of E/Z isomers, as described
further below.

Ultra-high performance liquid chromatography-ozone-
induced dissociation-mass spectrometry (UPLC-OzID-MS)

For LC-MS analysis, extracted lipids were derivatized with 1-(4-
(aminomethyl)phenyl)pyridinium (AMPP) as described previ-
ously in Young et al.®> 5 pL of the Restek 37 Mix of fatty acid
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methyl esters (FAME) and blanks were derivatized using the
same method. The lipids were stored in sealed vials at —20 °C.

Analysis was performed using a Waters Acquity (UPLC i-
Class; CSH, C18 reverse phase column, length 100 mm, inner
diameter 2.1 mm, particle size 1.7 pm) liquid chromatography
system coupled with a Waters SYNAPT G2-Si (Z-Spray, T-Wave
Ion Mobility; TOF) mass spectrometer previously modified to
allow introduction of ozone into the IMS cell.>* Samples were
prepared in 1.5 mL LC-MS vials with PTFE septum and kept in
the autosampler of the LC system at 10 °C prior to analysis. The
column was kept at 60 °C during analysis.

Liquid chromatography was performed with a linear
gradient at a flow rate of 0.4 mL min~'. Mobile phase A was
water with 0.1% formic acid; mobile phase B was acetonitrile
with 0.1% formic acid. The injection volume varied depending
on the sample from 1 pL to 10 pL. Initially the mobile phase
consisted of 10% B (90% A), and was increased to 20% B at
0.5 min, then linearly increased from 0.5 min to 18 min (100%
B). The mobile phase was then kept isocratic until 20 min at
100% B and was reduced to 10% B at 22 min to 25 min to
recondition the column for the next sample injection.

Using positive polarity, the mass spectrometer was operated
in “sensitivity mode” allowing for a mass resolution of ~15 000.
A capillary voltage of 3.0 kv was applied, with a sampling cone
of 40 V and source offset set to 80 V. The source temperature was
set to 120 °C and the desolvation temperature to 550 °C. Cone
gas was set to 100 L h™*, desolvation gas 900 L h~* and nebulizer
6.5 bar. IMS gas controls were set to: Trap 2.0 mL min ™, He-Cell
180 mL min~ ", IMS 10 mL min~". IMS travelling wave velocity
and height were 650 ms™" and 28 V, while the transfer travelling
wave velocity and height were 1000 ms™" and 2 V, respectively.

For OzID, the ion mobility cell is filled with a mixture of
nitrogen, ozone and oxygen, in place of just nitrogen in normal
operation. Ozone was produced from high purity oxygen using
a corona discharge based high-concentration ozone generator
(Ozone Solutions TG-40), producing a flow of 400 mL min ™"
with 200-250 g m > ozone in oxygen. Ozone in oxygen was
introduced to the IMS gas flow through a needle valve, that was
adjusted to yield an ultimate pressure of ~3 mbar in the IMS
cell. Ozone was catalytically destroyed using a manganese
dioxide-based catalyst before being exhausted from the
laboratory.

A solution of 200 pg mL™" Leucine Enkephalin (LeuEnk,
YGGFL, H-Tyr-Gly-Gly-Phe-Leu-OH, m/z 556.2771) in a mixture
of 50% acetonitrile and 50% water with 0.1% formic acid was
used as a Lockmass solution. Lockmass correction was per-
formed upon loading of the raw LC-MS dataset into Skyline.
Data was acquired from 100 to 750 m/z at a scan time of 0.1
seconds. Data analysis was performed with Skyline MS and
chromatograms and results were visualized with Origin 2018 64
bit and Excel.

Analysis of UPLC-OzID-MS data

The presence of characteristic fragments associated with
cleavage of double bonds during ozonolysis (leading to alde-
hyde and Criegee fragments) provides evidence of the position
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of the double bond. The associated extracted ion chromato-
grams (XICs) provide further evidence for correct identification
(coelution of associated aldehyde and Criegee fragments).
Relative quantification is performed by integration of the
extracted ion chromatograms of both precursor and associated
fragment chromatograms. The precursor XIC is deconvolved as
a sum of Gaussian expressions to determine the contribution of
each isomer. The retention time of the characteristic fragments
is used to inform the retention time position of the Gaussian
expressions used for deconvolution. Apart from the aldehyde
and Criegee fragmentation pathways, no other fragmentation
pathways are detectable. Thus, relative quantification of
isomers is performed as described. The E/Z configuration was
determined as described in the next section, employing LC-
OzID-MS data of photochemically isomerized fatty acid
standards.

Assignment of E/Z configuration based on relative retention
times and comparison with photochemically isomerized fatty
acid standards

Analysis of the mixture of fatty acids prior to irradiation reveals
that no FA 18:1 (11E) or FA 18:1 (6E) can be detected, refer to
Fig. S26 and S27.7 Note, that the apparent aldehyde neutral loss
from FA 18:1 (8Z) at 8.20 min is due to overoxidation of the FA
18:1 (9E) eluting at the same retention time. For this reason, the
confidence of the assignment of a relative retention time of FA
18:1 (8E) is low. After irradiation, small amounts of the
respective E fatty acids are detectable, revealing their relative
retention times, refer to Fig. S28 and S29.7 A retention time
comparison allows determination of the configuration of the
double bond in respective fatty acids as detected in prostate
cancer cell lines (PC-3 and LNCaP-TOFA), which were previously
subjected to the same derivatization and LC-OzID-MS analysis
procedure, refer to Fig. S32.7 The analysis reveals that for all
eight fatty acids investigated here, features are identified at the
expected relative retention time (PC-3 and LNCaP-TOFA).
Nevertheless, relative amounts of each E fatty acid are far
lower than the respective Z fatty acid.
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