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dynamics in the prediction of
ligand–protein binding enthalpy†

Süleyman Selim Çınaroğlu and Philip C. Biggin *

The enthalpic and entropic components of ligand–protein binding free energy reflect the interactions and

dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to

predict these individual components remains poor. In recent years, there has been substantial effort and

success in the prediction of relative and absolute binding free energies, but the prediction of the

enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not

even clear what kind of performance in terms of accuracy could currently be obtained for such systems.

It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the

performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten

inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry

data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 =

0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) =

2.49 kcal mol−1. Of the ten predictions, three were obvious outliers that were all over-predicted

compared to experiment. Analysis of various simulation factors, including parameterization, buffer

concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the

periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous

observations, the loop exists in two distinct conformational states and by considering one or the other or

both states, the prediction for the three outliers can be improved dramatically to the point where the R2

= 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol−1. However, performance across

force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the

correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as

a confounding problem. The results provide a benchmark standard for future study and comparison.
Introduction

In recent years, there has been signicant progress in predicting
the binding free energy of small ligands for protein receptors.1–3

In contrast there has been relatively little progress in the
accurate computation of the underlying thermodynamic
components, namely the enthalpy (DH) and entropy (TDS).
Accurate computation of enthalpy has historically been viewed
as particularly challenging4–7 due to the large uctuations in
potential energy that systems tend to undergo and thus any
estimates of the mean value would likely require vast amounts
of sampling. Nevertheless, having a reasonably reliable esti-
mation of the enthalpy, and more importantly the error esti-
mate, would be extremely useful in understanding the role of
the underlying contributions, especially in the context of drug-
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design.8,9 From a medicinal chemistry point of view, enthalpic
contributions are perhaps intuitively easier to understand and
conceptualize than the entropic components. During a frag-
ment or lead compound elaboration, where DG is oen being
optimized, it would be extremely valuable to know during those
steps that the changes made to the compound were indeed
giving the expected improvement to the DG via the designs that
the medicinal chemist has suggested. Oen, such designs are
focused around improving interactions between chemical
moieties with the expectation that there is a gain in favourable
enthalpy. The ability to compute and conrm this as part of the
optimization process would be extremely useful. Moreover,
being able to compute enthalpy reliably should provide quan-
titative insight into the phenomenon of entropy-enthalpy
compensation.10

The increase in computational power over the past decade
has meant that the accurate calculation of enthalpies of binding
might soon be realized and indeed work, in particular from the
Gilson group on small host–guest and other systems11–14 has
showed strong potential. However, despite the promising
results obtained for small model systems, the calculation of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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enthalpy contributions for larger proteins has remained chal-
lenging and it is not even known what level of performance
could be obtained even for well-characterized protein–ligand
systems, such as bromodomains.15,16

Thus, in order to evaluate the performance of enthalpy
calculations for protein–ligand binding, we assembled a data
set based on bromodomains, in a similar vein to that which we
had previously done for absolute binding free energy (ABFE)
calculations.15 Bromodomains (BRDs) are protein–protein
interaction modules that selectively recognize acetylated lysine
(Kac) residues as a key event in the epigenetic reading process. A
total of 61 human BRDs has been identied in 46 different
proteins, which consist of eight protein families.17 Despite these
many different families, all BRDs have a conserved structure
that contains a le-handed bundle of four a helices (aZ, aA, aB,
aC), linked by loop regions (ZA and BC loops), which surround
the Kac binding site (Fig. 1a). Among eight families present in
human proteome, the bromodomain and extraterminal (BET)
family is characterized by two tandem N-terminal BRDs and an
extraterminal (ET) domain, and is composed of BRD2, BRD3,
BRD4, and BRDT.18 BRD4 is thus a representative member of
the BET family and has roles in the activation of critical genes
involved in cell growth and cell cycle progression.19

Given the strong in cell-cycle, it is perhaps not surprising
that BRD4 has also been implicated in inammation and cancer
progression resulting in many inhibitor and probe molecules
being developed17 and indeed this is an ongoing activity. Given
the wealth of biophysical and structural data that already exists
and the desire to develop yet more probes with improved
selectivity, bromodomains represent an ideal test system for
computational studies.15,20–30 In the vast majority of complexes,
the binding pocket does not show major differences in
conformation, and this probably contributed to the success of
rigorous free energy methods. However, it has recently been
suggested the bromodomain fold is quite dynamic, including
the relatively recent suggestion of cryptic pockets.24,29,31

The rst bromodomain of BRD4, BRD4-1 has extensive
biophysical and structural data associated with it (Table S1†),
Fig. 1 (a) Cartoon of BRD4-1 with ligand complex (PDB:5DW2). (b)
Chemical structures of compounds with their three-letter identifiers
and corresponding PDB IDs for the complexes.

© 2023 The Author(s). Published by the Royal Society of Chemistry
and we reasoned this would provide an ideal test case for
investigating our current ability to predict enthalpy and what
additional insight into binding thermodynamics we might also
gain. Here, we perform binding enthalpy calculations using the
direct method for a non-redundant set of BRD4-1 and ligand
complexes (Fig. 1b).6,11,14 Our results show that in the very best
case scenario the absolute enthalpy can be calculated for such
systems to an error of about 1 kcal mol−1. Obtaining results
consistent across force-elds remains difficult. However, in
some cases, we were able to identify the source of errors in
initial outliers and that these can give insight into the well-
known problem of enthalpy-entropy compensation (Fig. S1†).
In particular, the role of a key loop (the ZA loop) near the
binding site is discussed.
Methods
Building the benchmark

Initially, all ITC data was collected from the literature, and ITC
entries with PDB structures were ltered for the further steps
(Table S1†). Ligands in the PDB structures were clustered using
binning clustering with default 0.4 similarity cut-off in the
ChemMine Tools server (https://chemminetools.ucr.edu/).32,33

Representative PDB structures with the best resolution were
selected from each cluster for the nal benchmark. We use
the PDB codes as representing names for all ligands
throughout the manuscript for brevity and ease of referral to
structures.
System setup

The initial conformations were taken from crystal structures
(3MXF, 3U5L, 4LZR, 4QB3, 4XY9, 5D0C, 5D3S, 5DW2, 5FBX,
5IGK, 2OSS). Missing atoms in the crystals were modeled with
the DockPrep tool in UCSF Chimera34 and all heteroatoms were
removed from the system except the ligand of interest and all
crystallographic waters. The N-terminal tail was deleted up to
residue Asn54 to reduce computational cost and complexity of
the simulations. Terminal residues were patched with acety-
lated N-terminus and amidated C-terminus using PDB Reader
of CHARMM-GUI.35,36 Ligand molecules were parameterized
with the general AMBER General Force Field for organic mole-
cules (Version 2.11, May 2016)37 and AM1-BCC38,39 charges using
AmberTools19. We used the Amber ff14SB force eld for the
protein and the TIP3P water model for water molecules.40,41 A
periodic cubic water box was used for all systems with 20 000
water molecules for the complex and receptor only simulations
while 2000 water molecules for used for ligand and solvent-only
simulations. The exact same setup was used for the comparison
of AMBER to the CHARMM and OPLS Force Fields. Protein
topologies were created using the CHARMM36 (ref. 42) and
OPLS-AA/M43 force elds, while ligands topologies and param-
eters were generated using the CHARMM General Force Field
(CGenFF)44–46 and the OPLS/CM1A Parameter Generator for
Organic Ligands (LigParGen).47,48
Chem. Sci., 2023, 14, 6792–6805 | 6793
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Quantum-optimized parameters

We optimized GAFF2 parameters for 08K(3U5L), 30M(4QB3),
BMF(5IGK) and three different ionization states of HEPES using
the Psi4 ab initio quantum engine at the HF/6-31G* level of
theory.49 Atomic charges were tted to reproduce the electro-
static potential (ESP). All steps for getting optimized parameters
and charges were performed using the parameterize parame-
terization tool (https://soware.acellera.com/docs/latest/
parameterize), which attempts to improve the quality of
parameters.50 Parameter le are available at doi: https://
doi.org/10.5281/zenodo.7534582.

Absolute binding enthalpy calculations

The binding enthalpy (DH) is calculated by computing the terms
in eqn (1), where hEicomplex, hEisolvent, hEireceptor, and hEiligand are
the averaged potential energies of the system as computed via
four separate simulations (Fig. 2). In this method, the number
of atoms between the bound and unbound state of the complex
should exactly balance. To achieve this, we rst solvate the
simulation system and then delete the excess water molecules
to balance the bound and unbound states. Note that the pres-
sure–volume contribution for the binding enthalpy is
negligible.11

DH = hEicomplex + hEisolvent − hEireceptor − hEiligand (1)

All simulations were performed using the GROMACS v2020.3
soware package.51–54 A 3-step steepest descent energy mini-
mization with a maximum force of 10 kJ mol−1 nm−2 was
applied to all systems. In the rst step, position restraints with
an harmonic potential with a force constant of 1000 kJ (mol−1

nm−2) were applied for all heavy atoms, then there remove for
solute heavy atoms, and the nal step removed all restraints.
NVT and NPT ensemble simulations for 1 ns were performed to
equilibrate all systems with position restraints with the
harmonic potential at a force constant of 1000 kJ (mol−1 nm−2)
on heavy atoms of protein and ligand. Additionally, another
NPT ensemble simulations for 1 ns was performed without
restraints before the production run for data collection. The V-
rescale and Parrinello–Rahman algorithms equilibrated the
temperature at 300 K and the pressure at 1.0 bar, respectively.
Fig. 2 Summary cartoon of the four simulations required to compute
the enthalpy of binding for each ligand. Two simulations correspond to
the unbound state (where hEireceptor and hEiligand are computed) and
two simulations to the bound state (where hEicomplex and hEisolvent are
computed). The overall enthalpy can then be computed via eqn (1).

6794 | Chem. Sci., 2023, 14, 6792–6805
The leap-frog algorithm was used to run 20 independent 100 ns
MD simulations with 2 fs time step. All input les for all
simulations using AMBER, CHARMM and OPLS FF are available
at doi: https://doi.org/10.5281/zenodo.7534582.

The average of the potential energy and the estimate of the
standard error were calculated by performing re-blocking
analysis using the pyblock tool (https://
pyblock.readthedocs.io)55 for all individual calculations. In all
cases blocks were used that led to the maximum standard
error of the mean (SEM).
Absolute binding free energy calculations

Absolute binding free energy calculations were performed using
conformations obtained from the binding enthalpy simula-
tions. For six complexes (3U5L, 4LZR, 4QB3, 4XY9, 5DW2 and
5IGK), we performed two sets of simulations reecting the
different conformations of the ZA loop. MDRestraintsGener-
ator, which is a framework for generating restraints for MD
simulations was used to provide the optimal Boresch restraints
(1 distance, 2 angles and 3 dihedral harmonic restraints)
(https://github.com/IAlibay/MDRestraintsGenerator). The
ligand nonbounded interactions were decoupled using
a linear alchemical pathway for the van der Waals and the
coulombic transformations with Dl = 0.05 and 0.1,
respectively. The ligand restraints transformation had 12 non-
equally distributed l values (0.0, 0.01, 0.025, 0.05, 0.075, 0.1,
0.15, 0.2, 0.35, 0.5, 0.75, 1.0). Each calculation for absolute
binding free energy comprised a total of 44 windows for the
complex simulations and 32 windows for the ligand simula-
tions. Each window was completed with 5 step runs. Firstly,
energy minimization was carried out using the steepest descent
algorithm with 10 000 steps. Then, 10 ps NVT ensemble was
performed using leap-frog stochastic dynamics integrator with
harmonic position restraints on the solute heavy atoms with
a force constant of 1000 kJ mol−1 nm−2. Aer that, 100 ps
isotropic ensemble using the Berendsen coupling algorithm
was run with the same position restraints. Moreover, another
NPT ensemble with the Parrinello–Rahman coupling algorithm
was performed for 100 ps without position restraints. Finally, 10
ns production runs were performed for data collection.
Constructing the unit cell

A crystal unit cell for 2OSS was built to investigate the effect of
crystal packing on the ZA-loop conformation. The Cell Unit tool
in UCSF Chimera was used for constructing the unit cell for
2OSS with the P212121 space group. Missing atoms in the crys-
tals were modeled with the DockPrep tool in UCSF Chimera and
1,2-ethanediol molecules were removed from the system while
crystallographic waters were kept. The cell unit contains 4
chains with lengths 37.418, 44.139, 78.413 on the xyz dimen-
sions. We used three different force eld including Amber
FF14SB,40 CHARMM36,56 and OPLS-AA/M57 force eld. Simula-
tions were performed with 3 replicates for the crystal lattice and
12 replicates for the single chains.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Preparing gures

All plots were prepared by using ggplot2 which is an open-
source data visualization package for the R programming
language.58 Visualization and analysis of molecular structures
were made with UCSF Chimera.34
Results
Collating a non-redundant BRD4-1 benchmark data set

For this study, we rst collected all binding data with thermo-
dynamic components derived from ITC for BRD4-1 from the
literature. Then only data sets that could be linked to high-
resolution (better than 2.0 Å) were retained. Given the interest
in generating probes and drug-molecules against BRD4-1, many
studies report lead-optimization attempts59,60 and this leads to
many similar ligand molecules within the data set and
a signicant issue of redundancy. To obtain a non-redundant
dataset, ligand molecules were clustered using binning with
a 0.4 similarity cut-offwith the ChemMine Tools server.32,33 Aer
clustering, we had 14 different clusters with cluster sizes
ranging from 1 to 11 (Table S1†). Four clusters, each with
a single protein (4OGI, 4OGJ, 5EGU, 5BT4), were ltered out
since interactions between two protein chains in the crystal
lattice were bridged by the ligand and this was deemed articial.
Then, representative PDB structures with the best resolution
were selected from each remaining clusters for the nal
benchmark (Table 1 and Fig. 1b).
Absolute binding enthalpy calculations

Relative binding enthalpies have been reported for protein–
ligand systems using the direct method.6,14 Absolute calculation
of binding enthalpy using the direct method requires a set of
four simulations including bound and unbound states of the
system (see Methods). In assessing binding enthalpies,
sampling all conformational space is the key factor to achieve
sufficient convergence of the potential energy. In previous
studies, Roy et al. performed 40 independent 10 ns simulations
to get sufficient sampling,6 moreover, Li and Gilson reached
over 250 ms simulations by seeding every 200 ns block with
a new random number for the relative binding enthalpy calcu-
lation of a protein–ligand system.14 Here, we performed 20
Table 1 Non-redundant BRD4(1) benchmark. All values are in kcal mol−

PDB ID
Resolution
(Å) Space group Ligand ID

3MXF 1.60 P212121 JQ1
3U5L 1.39 P212121 08K
4LZR 1.85 P212121 LOC
4QB3 0.94 P212121 30M
4XY9 1.83 P212121 43U
5D0C 1.49 P212121 E0B
5D3S 1.75 P212121 579
5DW2 1.12 P212121 5GD
5FBX 1.85 P212121 5W4
5IGK 1.70 P212121 BMF

© 2023 The Author(s). Published by the Royal Society of Chemistry
completely independent repeats of 100 ns simulations for each
system. To assess convergence, we employed the blocking
method55 where the enthalpy is averaged over successively
larger blocks and for each block size the standard error of the
mean is computed. As discussed by Henriksen et al.,13 in an
ideal case the SEM will display a plateau, but this is not always
the case and it is not easy to automate detection of such
a plateau either. Therefore, again following the work of Hen-
riksen et al.13 we took the maximum SEM value (Fig. S2 and
Table S2†) to err on the side of caution. For most complexes the
maximum SEM is ∼0.6 kcal mol−1 but even the maximum (for
5FBX) is ∼1.1 kcal mol−1. As expected, the ligand and solvent
only proles converge earlier than the complex.

From these initial simulations with AMBER, the correlation
with experiment was moderately good with an R2 = 0.60, and an
average of Kendall's s = 0.42. The accuracy of the calculation is
perhaps surprisingly good with an average of root-mean-square
error (RMSE) = 2.49 kcal mol−1. Most of the binding enthalpies
are within 2 kcal mol−1 absolute difference of experimental
values (Fig. 3 & Table S2†). The best binding enthalpy predic-
tions were obtained for 5D3S with the XD44 (4-acetyl-3-ethyl-N-
[4-uoro-3-(morpholin-4-ylsulfonyl)phenyl]-5-methyl-1H-
pyrrole-2-carboxamide) ligand (579) and 4LZR bound to
colchicine (LOC).

Conversely, 3U5L in complex with a benzo-triazepine ligand
(08K), 4QB3 with olinone (30M) and 5IGK with bromosporine
(BMF) provided the worst binding enthalpy predictions as
outliers (Fig. 3 & Table S2†).

Although some of the computed enthalpy values are in
excellent agreement with the experimental data, there are some
clear outliers (08K, 30M and BMF), all of which are over-
estimates. We thus then sought to investigate these further.

We rst considered improved parameterization. We opti-
mized ligand charges for the outliers using the Psi4 ab initio
quantum engine with the HF/6-31G* level of theory. Aer
optimization, there was good agreement of the energy prole of
GAFF2 parameters with the reference quantummechanics (QM)
calculations (Fig. S3†). Then, all simulations with 20 replicates,
with a total of 120 simulations, were rerun using the optimized
parameters for 3UL5, 4BQ3, and 5IGK. The binding enthalpy
calculation for 4QB3 was improved at −5.13 ± 0.72 kcal mol−1,
which is closer to the experimental value and within
1

DH TDS DG Reference

−8.42 1.22 −9.64 Filippakopoulos et al.61

−6.16 2.00 −8.16 Filippakopoulos et al.17

−9.00 −2.60 −6.40 Lucas et al.62

−6.62 0.93 −7.55 Gacias et al.63

−6.09 0.94 −7.03 Picaud et al.64

−10.20 −2.52 −7.68 Xue et al.65

−9.77 −1.73 −8.04 Hügle et al.66

−10.10 2.10 −8.00 Raux et al.67

−15.57 −4.66 −10.90 Montenegro et al.68

−11.09 −1.36 −9.73 Picaud et al.69

Chem. Sci., 2023, 14, 6792–6805 | 6795
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Fig. 3 Comparison of calculated binding enthalpies from experi-
mental values. Error bars show SEM of the mean. The line of equiva-
lence is shown in red and the black dashed lines indicate the
2 kcal mol−1 error limit. Three letter codes are the ligand codes as in
Table 1 and Fig. 1.

Fig. 4 (a) RMSD violin plots for backbone atoms of 2OSS apo-
receptor and complex simulations, white circle represents overall
mean value of all 20 repeats. (b) RMSD violin plots for ZA-loop (76–106
residues – see Fig. 1) backbone atoms of 2OSS apo-receptor and
complex simulations after fitting whole protein backbone. (c) RMSF for
backbone atoms of 2OSS apo-receptor. The inset figure shows
regional fluctuations on the BRD4-1. (d) RMSF for backbone atoms of
5IGK complex simulations. Black line gives average RMSF of 20 repeats
while grey shade represents standard deviation.
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2 kcal mol−1. However, both 3UL5 and 5IGK still remained as
outliers. The predicted binding enthalpy for 5IGK with bromo-
sporine was slightly improved, but for 3UL5 the values actually
got worse and increased the absolute difference to
7.69 kcal mol−1 from the experimental value (Table S3†). Thus,
re-parameterization could not account for all of the poor
performance.

We next considered the role of the buffer. Thus far, we have
performed all simulations with pure water to reduce complexity,
whereas the ITC experiments were mostly performed in 50 mM
HEPES and 150 mM NaCl solution (Table S1†). However,
binding thermodynamics may be sensitive to the solvent
composition for both experimental70,71 and computational12,16

studies. To investigate the role of the buffer and in particular to
what extent replicating the conditions of the experiments
inuenced the calculations, we set up simulations having three
different ionization states of HEPES (Fig. S4†) and NaCl for the
apo-receptor (2OSS) and the 3U5L and 5IGK complexes. Force
eld parameters of HEPES were obtained using Psi4 with the
HF/6-31G* level of theory while Na+ and Cl− parameters were
used as provided in the Amber ff14SB force eld. We then
performed further simulations with 20 replicates with a total of
60 simulations of the apo-receptor (2OSS), 3U5L and 5IGK in
50 mM HEPES and 150 mM NaCl solution. Although we ob-
tained sufficient convergence of potential energy for these
simulations (data not shown), the uncertainty goes up, as ex-
pected, because HEPES and NaCl make the system more
complex, and this requires longer simulations or more replicas.
However, the accuracy of enthalpy prediction itself remained
poor. The enthalpy for 3U5L was slightly improved but 5IGK
gave a worse result than previous calculations (Table S3†). Thus,
we concluded that explicit treatment of buffer in the
6796 | Chem. Sci., 2023, 14, 6792–6805
calculations was not the main reason for large deviations from
experimental data.
The ZA-loop adopts an alternative conformation that strongly
affects binding enthalpy

Simple observation of trajectories revealed a signicant struc-
tural deviation in the ZA loop of some simulations, especially
the apo structure, 2OSS (Fig. 4a–c and 1a). Whilst some ligands
appear to stabilize the ZA-loop in the crystal-like conformation
(5IGK, 5FBX, 5D3S, 5D0C, and 3U5L simulations), it is clear that
the others afford the ZA loop a greater level of dynamics as
evidenced by simple root-mean squared uctuations (RMSF –

Fig. 4b). Closer inspection revealed that in fact the ZA-loop can
move to a distinct and alternative conformation, which in the
case of the apo (2OSS) state, exists for approximately 75% of the
2 ms simulation time (Fig. 4c). In this alternative conformation,
the ZA-loopmoves outwards away from the acetyl-lysine binding
pocket and induces a short helix (residue 88–91) within the ZA-
loop. This outward movement makes the binding pocket open
and more accessible. To investigate the role of this loop
behaviour on the enthalpy we extended the number of repeats
of the apo state to 100, to ensure that we obtained sufficient
sampling of the crystal-like conformation of the ZA-loop. For
the remainder of the discussion, we refer to the crystal-like
conformation of the ZA-loop as ZA1 while the alternative ZA-
loop conformation as ZA2.

Aer completing 100 replicates of the apo-receptor (a total of
10 ms of simulation), we checked the difference in potential
energy between the ZA1 and ZA2 conformational states, which
was 0.84 ± 0.2 kcal mol−1. Previous work has reported the
barrier between these states as being of the order of
∼2 kcal mol−1.26 In addition to the apo-receptor (2OSS) dis-
playing this alternative ZA2 loop conformation, so did some
© 2023 The Author(s). Published by the Royal Society of Chemistry
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ligand-bound simulations including 4LZR, 4QB3, 4XY9, and
5DW2 (Fig. 4b and S5†). We then also checked the difference of
the potential energy between ZA1 and ZA2 (Table S4†) for these
complexes. The 4LZR complex gave the biggest difference of the
potential energy with 5.77 ± 1.5 kcal mol−1 while 4XY9, at 1.83
± 1.93 kcal mol−1, had the lowest difference amongst these four
complexes. Of these four complexes, only 5DW2 exhibited lower
potential energy for the ZA2 conformation.

The existence of these signicant differences of potential
energy thus raised the question of how these two conformations
affect binding enthalpy calculations. To explore this, we
Fig. 5 Comparison of calculated binding enthalpies to experimental
values. (a) Values obtained by considering only ZA1 (triangles) or ZA2
(diamonds) or all (circles) ZA loop conformations for outliers and
complexes observed to adopt alternative conformations of the ZA
loop. (b) The best calculated binding enthalpy values that can be ob-
tained for the whole dataset. Note that for 4X9Y the “All” data point
does not sit between the ZA1 and ZA2 points as might be intuitively
expected – this is due to the nature of the blocking analysis where we
use blocks that give the largest SEM. Error bars show the maximum
standard error the mean estimate.

© 2023 The Author(s). Published by the Royal Society of Chemistry
calculated binding enthalpies using ZA1 or ZA2 conformations
exclusively for the 4LZR, 4QB3, 4XY9, and 5DW2 complexes
(Fig. 5 & Tables S4 and S5† – note strictly speaking the apo states
of ZA1 and ZA2 should be considered but in practice the
0.84 kcal mol−1 difference in DH between these two confor-
mations in the apo state was within error). Using exclusively ZA1
or ZA2 conformations for 4LZR and 4XY9 gave less accurate
predictions compared to use of both conformations (Fig. 5).
4QB3 gives a more accurate enthalpy prediction with ZA1 than
with ZA2 alone or use of all simulation data combined. This also
explains why the simulations with QM-rened charges (Table S3
and Fig. S3†) and gave more precise results than the initial runs,
since occupation of the ZA1 conformation in the second simu-
lation set was more than the rst one (Table S5†). Conversely,
5DW2 interestingly gave more accurate binding enthalpy esti-
mates when only the ZA2 conformation was used.

As the remaining outliers, 5IGK and 3U5L, were comprised
solely of ZA1 conformations in all 60 replicates and given the
above indication of the importance of the ZA loop behaviour, we
decided to initiate replicates for these two complexes starting
from the ZA2 conformation. For this purpose, we extracted
a snapshot having the ZA2 conformation from a random apo-
receptor simulation, then we manually docked BzT-7 (08K) of
3U5L and bromosporine (BMF) of 5IGK to the receptor via
superimposition and performed 20 repeats of 100 ns. The ZA-loop
stayed as the ZA2 conformation in all simulations for 3U5L
(Fig. S9†) and almost all simulations for 5IGK (there was a tran-
sition from ZA2 to ZA1 in the last 20 ns of only one simulation).
We obtained sufficient convergence of potential energy for these
simulations, then binding enthalpies were calculated. Surpris-
ingly, 3U5L gave a highly accurate prediction with −6.52 ±

0.64 kcal mol−1, which is 0.36 kcal mol−1 away from the experi-
mental value (−6.16). However, we did not obtain an improve-
ment in accuracy of enthalpy for 5IGK with ZA2, indeed the
experimental value is nearly in the middle of the predicted
binding enthalpies for ZA1 and ZA2, suggesting that both
conformational states contribute to the enthalpy. To conrm this,
we combined simulation data for both ZA1 and ZA2 from 40
simulations in total and recomputed the binding enthalpy. The
combined simulation data gave a prediction of −11.29 ±

3.07 kcal mol−1, which is 0.20 kcal mol−1 away from the experi-
mental value (−11.09 kcal mol−1) (Fig. 5a). Taken together these
computations reveal a hidden complexity of binding thermody-
namics in what might be considered a relatively simple system.
When the best predictions are all combined (Fig. 5b), an R2 of 0.95
and an RMSE of 0.90 kcal mol−1 can be obtained, and although
this was arrived at retrospectively and in dependent on known
observations, it does at least illustrate that “chemical accuracy”
(∼1 kcal mol−1) of these calculations is within reach.
The relationship to the absolute binding free energy

Given the inuence of the ZA loop conformation on the
enthalpy predictions, we were interested to see to what extent
the ZA loop conformation also affected the absolute binding
free energy, DG. Thus, for the four complexes that displayed
alternative ZA loop conformations (see Fig. 5a); 4LZR, 4QB3,
Chem. Sci., 2023, 14, 6792–6805 | 6797
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4XY9 and 5DW2, along with the two outliers 5IGK and 3U5L
(where loop stability is greater for ZA1 Fig. S7†), we computed
the binding free energies (Table 2). For four of the complexes
(4LZR, 4QB3, 4ZY9 and 5DW2) the loop conformation that
favours the lower DG is mirrored by the enthalpy results (Table
S4†). The 3U5L complex however, is a more complicated result.
Whereas the enthalpy calculations suggest that the ZA2
conformation leads to better agreement with experiment
(Fig. 5a), the free energy calculations give a lower binding free
energy for the ZA1 conformation (albeit heavily overestimated
compared with experiment). Similar trends for 3U5L have been
reported by Heinzelmann et al.26 using a different approach, the
Attach-Pull-Release method, which produced an over-estimated
result (−10.61 kcal mol−1) for ZA1 but a closer-to-experiment
result (−8.07 kcal mol−1) for ZA2. Furthermore, an almost
similar result (−9.9 ± 0.8) for ZA1 has been observed by Aldeghi
et al.15 and also by Bertin72 (−9.1 ± 0.3) (https://thesis.unipd.it/
handle/20.500.12608/21280) using the alchemical decoupling
free energy method. Together, these results suggest that the
08K ligand in 3U5L tends to give an overestimated binding
affinity when the crystallographic conformation (ZA1) is used.
Compared with other ligands that bind BRD4(1), the ligand
has modest enthalpic contributions to the binding free
energy, but one of the most favourable entropic contributions
(Table 1). Analysis of the energetic components of the
enthalpy (Table S6†) shows that there is a large coulombic
contribution in the ZA1 conformation that is almost
completely absent in ZA2. In the case of 5IGK (bromosporine
complex) the DG values is higher than experiment for the ZA1
loop conformation but lower for the ZA2 conformation. The
value obtained for the ZA1 conformation in this work is
completely consistent with the value we obtained in previous
work21 (and was initiated from a dock to the apo state, thus
using the ZA1 conformation). Calculated DG and DH values
for both ZA loop conformations are nearly equidistant to the
experimental values for 5IGK.

The dynamics of the ZA loop

Given the clear role of the ZA-loop conformations in enthalpy
prediction accuracy, we analysed the 100 apo-receptor simula-
tions in terms of the transition between ZA1 and ZA2. The
transition from ZA1 to ZA2 occurs in all simulations with
a mean transition time of 22.59 ± 1.84 ns. Interestingly, the
transition was in most cases irreversible and the reverse
Table 2 ABFE results for ZA loop conformationsa

PDB ID DGExp DGZA1 DGZA2

3U5L −8.16 −11.36 � 0.28 −6.85 � 0.28
4LZR −6.40 −6.52 � 0.53 −2.50 � 0.21
4QB3 −7.55 −7.55 � 0.37 −4.94 � 0.64
4XY9 −7.03 −4.88 � 0.48 −2.87 � 0.95
5DW2 −8.00 −7.69 � 0.69 −8.10 � 0.32
5IGK −9.73 −11.79 � 0.37 −4.84 � 0.40

a DG values were obtained via running 3 independent ABFE calculation
using different starting structures.

6798 | Chem. Sci., 2023, 14, 6792–6805
transition from ZA2 to ZA1 happened in only two simulations.
Moreover, the ZA-loop quickly transitioned back again to ZA2
whenever a reverse transition happened. Heinzelmann et al.
reported ZA2 to be more favourable than the ZA1 by
−2.54 kcal mol−1.26 Fig. 6a shows an example of the reverse
transition from ZA2 to ZA1 around 80–90 ns. A pairwise RMSD
analysis also conrmed the reverse transition from ZA2 to ZA1
in the simulation (Fig. S6†) and is clearly obvious by simple
observation (Movie M1†).

During the transition, the hydrogen bond proles of key
backbone residues change dramatically (Fig. 6b and c) as well as
sidechains. The transition of ZA1 to ZA2 is associated with the
backbone torsion angles of j (N-CA-C-N) Asp88 and 4 (C-N-CA-
C) Asp96 (Fig. 7). These two dihedrals behave like a hinge
allowing the ZA-loop to transit from ZA1 and ZA2. The j Asp88
shuttles from 50 to −40° while the 4 Asp96 moves from −150 to
−60°. The distributions of the other backbone torsions in the
ZA-loop do not show such clear-cut modal distributions, except
u (CA-C-N-CA) of Gln84 but is possibly not related to the tran-
sition from ZA1 and ZA2 (Fig. S8†). Potentially, u GLN84 is
related to a recently explained hidden transient state of the ZA-
loop, where the event includes the breaking of two backbone
hydrogen bonds between the ZA-loop and the aA helix.29
Crystal-packing of apo-BRD4-1 explains ZA-loop
conformations

Given the ubiquity of the ZA2 conformation in our simulation
data, but lack of observation in crystallographic data we next
investigated the role of crystal lattice packing. We built a crystal
unit cell for the apo BRD4-1 receptor (2OSS) with the P212121
space group (Fig. 8a). The cell unit contains 4 chains with
lengths 37.418, 44.139, 78.413 Å on the x, y and z dimensions.
We performed 3 replicates (100 ns) for the crystal unit and 12
replicates (100 ns) for simulations with a single chain
(monomer).
Fig. 6 (a) RMSD plot for ZA-loop (76–106 residues) backbone atoms
from a representative case for the transition between ZA1 and ZA2
from one apo-receptor simulation of 100 replicates. (b) Hydrogen
bond distance profile of some important backbone hydrogen bonds in
the ZA-loop from the representative simulation. (c) Density plots of
distance distribution for key hydrogen bonds across 100 replicates of
apo-receptor simulations. The red dashed line shows the average
distance of starting minimized structures from ZA1 conformations.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) The angle change of the j (N-CA-C-N) Asp88 from the
simulation in Fig. 5a. (b) The angle change of the 4 (C-N-CA-C) Asp96
from the simulation in Fig. 5a. (c) The angle distribution of the j (N-CA-
C-N) Asp88 across 100 apo-receptor simulations. (d) The angle
distribution of the 4 (C-N-CA-C) Asp96 across 100 apo-receptor
simulations. (e and f) Main chain representation of ZA1 and ZA2
conformations. Green ball & stick regions show 4 and j dihedral
angles.

Fig. 8 (a) 2OSS crystal cell unit containing 4 identical chains. (b) RMSD
violin plots for ZA-loop (76–106 residues) backbone atoms. Blue violin
shows ZA-loop RMSD from 12 independent single-chain simulations
while purple violins show for the unit cell simulations.
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We also explored potential force-eld inuence, by exam-
ining two additional force elds: CHARMM36 and OPLS-AA/M.
As a result, in total, we performed a total of 9 simulations for
a complete unit cell and 36 simulations for a single chain. We
were rst interested in investigating the dynamics of ZA-loop in
both simulation setups. As expected, all chains retained their
crystal-like conformation in the unit cell simulations (Fig. 8b).
In contrast, in all single-chain simulations in all three different
force-elds, the ZA-loop exhibited much higher exibility
(Fig. 8b), thus supporting the notion that crystal-packing arte-
facts likely constrain the ZA conformation in the apo state.
Crystal-packing effects are likely to be present in the complexes
as well – simulations of similar unit-cell simulations of the
complexes (Fig. S9†) reveal the ZA-loop does not move away
from its lattice conformation. Almost all complex PDBs except
5D0C share same space group with the apo BRD4-1 receptor
(2OSS) (see Table 1). Interestingly, simulations of the 5D0C
lattice appear to allow more exibility of the ZA-loop.
Role of force elds in general

In the previous section, we investigated the potential inuence
of force elds on the exible nature of the ZA-loop and showed
the force-elds behaved similarly. We thus decided to extend
© 2023 The Author(s). Published by the Royal Society of Chemistry
this approach further and evaluated the performance of
different force-elds for computing the absolute binding
enthalpies. Our calculations revealed that OPLS and AMBER
showed comparable accuracy, whilst the RMSE of the CHARMM
calculations was 8.07 kcal mol−1 (Fig. 9a). However, it is worth
noting that while AMBER produced overestimated values (more
negative), it had a higher correlation with experimental values
than OPLS and CHARMM. We did not consider the QM opti-
mization and the ZA loop effect in AMBER simulations to
ensure a fair comparison in Fig. 9. Among the PDBs evaluated,
only 4XY9 showed good agreement with experimental values for
all force eld (Fig. 9b and Table S7†).

The large error associated with the CHARMM calculations
can be attributed to various things. For example, our results
indicate that 3MXF and 5D0C with AMBER and OPLS simula-
tions with stable ZA loops in the crystal-like conformation (ZA1)
provided more accurate binding enthalpy (Fig. S11 and Table
S7†). In contrast, within the CHARMM simulations, the ZA loop
exhibited greater exibility resulting in inaccurate binding
enthalpy for 3MXF and 5D0C. We identied 10 and 9 simula-
tions for 3MXF and 5D0C respectively, where the ligand
completely le the binding pocket in these simulations, sug-
gesting that default ligand parameterization within the
CHARMM system may require additional optimization. Indeed,
all but one ligand likely require some addition parameterization
as suggested by the CGENFF server (Table S8†).
Chem. Sci., 2023, 14, 6792–6805 | 6799
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Fig. 9 (a) Comparison of AMBER (orange points) to CHARMM (blue
dots) and OPLS (green dots). Labels are only shown on the AMBER data
points. Error bars show the maximum standard error the mean esti-
mate. (b) Convergence pattern of the calculated DH for 4XY9 with the
three force fields (AMBER, orange; CHARMM, blue and OPLS, green).
The red dashed-line is the experimental DH and the dotted-lines
indicate the 2 kcal mol−1 error limit.
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3U5L with AMBER provided an accurate enthalpy estimate
with only the ZA2 conformation, while 5IGK required a combi-
nation of ZA1 and ZA2 to obtain a good prediction of enthalpy in
AMBER simulations (Fig. 5a). To validate these results with
CHARMM and OPLS, we also ran simulations using starting
structures with both ZA1 and ZA2 for 3U5L and 5IGK (Fig. S12
and S13†). The ZA loop remained very stable when simulations
were started from ZA2 in all cases (Fig. S12†). We observed that
the ZA loop of 3U5L remained stable in the ZA1 conformation
with AMBER and CHARMM, while it also interestingly transi-
tioned to the ZA2 conformation with OPLS, yielding an accurate
result for the binding enthalpy (Fig. S12 and Table S9†).

As CHARMM gavemany outliers, we restricted further outlier
analysis to OPLS. The OPLS simulations had three distinct
outliers (4LZR, 5D3S, and 5FBX) that were not only different
6800 | Chem. Sci., 2023, 14, 6792–6805
from AMBER but also all underpredictions. Whereas for the
AMBER outliers there appeared to be a link between the ZA loop
conformation and the quality of the prediction, for the OPLS
outliers we could not nd such a correspondence.

Firstly, 4LZR yielded accurate results with the AMBER
forceeld, and the simulations displayed a transition to the ZA2
conformation. In the AMBER simulations, the ZA2 conforma-
tion had an occupancy of 26.94%, while in OPLS, it was only
4.41%. Given our previous observations, we suspected that the
lower occupancy of ZA2 in OPLS simulations might be respon-
sible for the inaccurate binding enthalpy predictions. We thus
conducted six additional simulations explicitly starting with the
ZA2 conformation. However, these additional simulations did
not result in any improvement in the outcome. We did,
however, observe that the ligand in the OPLS simulations
appeared to have more exibility and indeed tended to move
away from the binding pocket. Thus, in this case some rene-
ment of the OPLS ligand parameters might well be necessary.

For 5D3S, both AMBER and OPLS displayed a similar occu-
pancy prole for the ZA2 conformation. However, OPLS intro-
duced greater exibility to the ZA loop compared to AMBER. To
investigate the relationship between the ZA loop dynamics and
the binding enthalpy, we calculated the binding enthalpies
individually for each complex simulation. Surprisingly, seven
simulations provided accurate results within a 2 kcal mol−1

error limit. These seven simulations exhibited a much more
stable ZA loop compared to the remaining simulations and
yielded binding enthalpy results similar to those obtained with
AMBER (Fig. S14†). Thus, although it is difficult to address why
the ZA loop exhibits greater dynamics with OPLS, it does at least
support the overall theme that the ZA loop behaviour is
important in enthalpy predictions.

Finally, for 5FBX, although the ZA loop exhibited similar
behaviour in OPLS as in AMBER, the loop was highly exible in
all simulations. We explored this by additional simulations with
dihedral restraints on the j (N-CA-C-N) of Asp88 and 4 (C-N-CA-
C) of Asp96 to maintain stability in the ZA loop. However, this
approach did not yield any improvement in enthalpy prediction
and thus other factors must be at play here.

Discussion

Although much work has been done on model systems12,73,74 the
increase in the number of degrees of freedom associated with
protein–ligand systems that are the size of typical drug-targets
has led to an apparent reticence to explore enthalpy predic-
tions and their potential utility. Given the growth in available
computational power, we reasoned it would be useful to inves-
tigate the level of accuracy (and precision) one might obtain for
a well-characterized protein–ligand system. To that end we
focussed on bromodomains, a system for which we have
previously shown that accurate DG predictions could be ob-
tained via absolute binding free energies both for different
compounds15 at the same protein and for the same compound
at different proteins.21

We focussed on the BRD4-1 system as it is well characterized
both in terms of structure and biophysical characterizations.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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We rst asked the question of how accurate the calculation of
enthalpy for this system would be assuming standard proce-
dures reported in the literature, similar to our previous
approach for DG predictions.15 For the AMBER forceeld, the
results were surprisingly accurate and precise (Fig. 3) with only
three obvious outliers from a 2 kcal mol−1 error boundary, thus
suggesting that it is indeed possible to make reasonably accu-
rate predictions of enthalpy. Such performance is remarkably
encouraging. Outliers provide an opportunity to gain more
insight into what factors are important in the prediction of
enthalpy. Parameterization is certainly one aspect that can offer
improvement as indeed was found for some systems here when
charges were optimized. This aspect is also highlighted by the
direct comparison between force-elds (Fig. 9a), where it is
notable that AMBER tends to overpredict and both OPLS and
CHARMM tend to underpredict DH. It is also the case the
outliers predicted for AMBER are not the same as those for
OPLS and CHARMM.

Comparison of the force-elds suggests that OPLS and
AMBER were of comparable (similar RMSE), while CHARMM
tended to give worse predictions, likely as a consequence of
ligand parameters in CGenFF requiring further optimization.
This is consistent with our previous observations on cucurbit[7]
uril–guest systems where CGenFF performed worse compared
to other force elds.75 The observations here reinforce the need
for caution and care to be taken when using new parameters.

However, in some instances force-eld was clearly not the
major inuence, and this led us ultimately to the identication
of the inuence of the ZA loop on the enthalpy prediction.

The dynamics and exibility of the ZA loop has been reported
across many different bromodomains, including for example
ATAD2,76,77 BRD2-2,78 BRD4-1,79,80 BRPF1,81 BAZ2B,82,83 BRD9,84

BRG1 (ref. 85) and CBP.81 Thus, it has been proposed that the
dynamic nature of the ZA-loop plays an important role in
selectivity due to its exibility and sequence variation between
bromodomains.17,82,86 However, experimental 3D structures in
the PDB databank mostly show no signicant changes in the
secondary structure despite the apparent plasticity. A recent
work reported an investigation of 297 crystal structures of
BRD4-1 and concluded that there is a high level of similarity in
the binding pocket region, regardless of the bound ligand.87

Nevertheless, there are many studies highlighting exibility.
Eron et al., using hydrogen–deuterium exchange mass spec-
trometry (HDX-MS), reported signicant deuterium uptake on
the ZA-loop of the apo state, but in contrast, the solvent
shielding data pointed out a high degree of stabilization of the
ZA-loop with the CFT-1297 degrader ligand.88 Yu et al. reported
signicant chemical shi around the ZA-loop for BRD4-1 upon
ligand binding even though they showed that there were no
signicant differences between the solution structure of BRD4-1
and its crystal structure in the backbone resonance assignment
data.89 Furthermore, ATAD2 displays “open” or “closed”
conformational states of the ZA-loop.76,90–92 Further examples
from BRG1,85 BRD7 (ref. 93) and BRD2-2,78 show large structural
deviations in the ZA-loop when compared to the other regions
according to NMR experiments.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Moreover, computational studies have provided detailed
analysis of the dynamic nature of the ZA-loop.26,31,94–96 Tumdam,
R., et al. showed that the ZA-loop in the apo-BRD4-1 can adopt
a similar conformation to that which we observe here.96 The
nature of the transitions of the ZA loop we observe appear very
similar to that reported by Heinzelmann et al.26 who also
computed that the free energy difference was 2.54 kcal mol−1

(with TIP3P) more favourable for their “open state” (equivalent
to our ZA2 state here). Additionally, Cheng et al. showed an “in/
out” transition of the ZA-loop in BRD4-1 using QM/MM,
explaining the differential binding of RVX-208 & 297.97 More
recently, a hidden state across all bromodomain families was
proposed via used MD simulations and Markov state modelling
in which important backbone hydrogen bonds are broken and
the ZA-loop displaces away from the aA helix.29

Seven of the ten complexes here gave excellent predictions of
enthalpy of binding. For six of those complexes, most of the
simulation time is spent in the ZA1 (close to crystal) confor-
mation. The 5DW2 complex gives an excellent prediction of
enthalpy, but rather interesting, readily transitions to the ZA2
loop conformation and indeed using only these conformations
gives much more accurate predictions. Analysis of the 5DW2
simulations with the ZA2 conformations reveals that the ligand
makes more close contacts (<0.4 A) with Asp88 and Tyr139 in
ZA2 than ZA1 (Fig. S10†).

Of the three initial outliers with AMBER, simulations of the
olinone (30M) complex (4QB3) gave some improvement when
charges were rened with QM calculations. However, in these
simulations, the complex occupied more time in the ZA1
conformation and it appears this conformation gives a more
accurate estimate of free energy (with AMBER). Interestingly,
olinone appears to make interactions with the BC loop in both
conformations.

Accurate enthalpy predictions for bromosporine (BMF) in
complex with BRD4-1 (5IGK) were only possible when
combining predictions from both ZA1 and ZA2 conformations.
Whilst simulations of the BzT-7 (08K) complex (3U5L) demon-
strate that more accurate predictions can be obtained with just
the ZA2 conformation, even though this conformation was
never transitioned to in the initial set of 20 simulations. It may
be the BzT-7 creates an energy barrier for the loop transition,
though this is likely an indirect effect as BzT-7 is one of the
smaller ligands and does not interact directly with the ZA loop.
Further work would be necessary to explore this in more detail.

Of course, enthalpy is only one component of the binding
free energy, DG. The results above demonstrate that the inter-
action and behaviour of a small, but crucial loop, near the
binding site plays a key role in shaping that component. The
calculations performed here were all retrospective, but such
calculations in the future will only be useful if they can be useful
prospectively (i.e. where we do not know/have the ITC
measurements). What do these results mean in that context?
Firstly, the trends in the initial data are reasonably good.
Secondly, if one has condence in the parameters, then
sampling of key conformation states is a key issue (as would be
expected). If one has knowledge of important (for ligand-
binding) dynamics up-front, then strategies can be
Chem. Sci., 2023, 14, 6792–6805 | 6801
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incorporated to mitigate this. Thirdly, if one has ITC data and
DG calculations are in agreement but DH are not, that could be
indicative of hidden states/cryptic sites and thus open up new
avenues for design against existing targets. The DG would hide
the presence of these states through entropy-enthalpy
compensation. At the very least this would enable one to
approach the predicted values with the necessary caution for
sensible interpretations. Thus, in a prospective scenario, if one
observes conformational transitions (in for example loops as
here) and obtains enthalpy values that differ by
several kcal mol−1, that should at least suggest that great care
should be taken over any future interpretation of the
thermodynamics.

Conclusions

We have demonstrated that absolute ligand-binding enthalpy
calculations for a well-characterized drug-target, BRD4-1, can
give reasonably accurate results. Our results clearly show
a strong dependence on the behaviour of the ZA loop to the
predicted enthalpy for AMBER but this is less apparent in the
OPLS simulations. We have also demonstrated that this alter-
native loop conformation is likely readily accessible, if not
dominant, in the apo state in solution and that crystal lattice
packing likely constrains the conformation. Indeed, it may well
be the case that the ZA1 conformation of the loop is particularly
amenable to lattice formation and thus the reason why many
complexes exhibit this conformation. This observation high-
lights the need to take particular care when using apo state for
docking studies and in the subsequent processes of rational
drug design, like FEP calculations.

A key question that remains very open at this stage is just
how generalizable is this approach in giving accurate predic-
tions of DH. Can we expect this approach to become prospec-
tive? Prediction of DHmay well be useful in the context of trying
to optimize enthalpic contributions during a drug-discovery
campaign. However, to do that with condence in a prospec-
tive fashion will be dependent on more studies showing the
approach can deliver across a variety of different systems. The
work here should be taken as evidence and encouragement that
it is feasible, at least for some systems. Studies on additional
systems would also allow us to begin to understand how strong
entropic contributions (by inference) might be linked to
particular moieties or water molecules.

An alternative way to use this approach however, might be to
draw researchers attention to hidden conformational states that
from the initial structural biology work may not be immediately
apparent. Outliers could be a way to identify such behaviour.
The predicted contribution of different states to the enthalpic
signature may provide a useful metric with which to gauge the
importance of different states and how valuable they might be
in terms of targeting. The ability to make accurate enthalpy
predictions alongside accurate DG free energy predictions
moves us considerably closer to being able to design ligands
with desired thermodynamic properties, something that has
long been sought aer.98 Indeed, for some systems like
membrane proteins these approaches will be very important as
6802 | Chem. Sci., 2023, 14, 6792–6805
experimentally they are oen more difficult to work with. This
will be signicantly easier if one has a good understanding of
the dynamics of the protein before commencing such studies.
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