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Three-component reductive conjugate addition/
aldol tandem reaction enabled by nickel/
photoredox dual catalysisT
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A three-component reductive cross-coupling of aryl halides, aldehydes, and alkenes by nickel/photoredox

dual catalysis is disclosed. The key to success for this tandem transformation is to identify a-silylamine as

a unique organic reductant, which releases silylium ions instead of protons to prevent unwanted
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protonation processes, and meanwhile serves as Lewis acid to activate aldehydes in situ. This dual

catalytic protocol completes a traditional conjugate addition/aldol sequence that eliminates the

DOI: 10.1039/d2s5c06303d

rsc.li/chemical-science

Introduction

Transition-metal-catalysed  intermolecular  three-component
dicarbofunctionalization (DCF) of alkenes represents a powerful
strategy to synthesize complex structures via simultaneously
forging two vicinal carbon-carbon bonds in a single step opera-
tion." Compared to the traditional redox-neutral processes that
generally involve the performance of organometallic reagents as
nucleophilic coupling partners,* nickel-catalysed reductive olefin
DCF by harnessing two electrophiles across C=C bonds has
attracted increasing attention as such an alternative strategy
bypasses the use of sensitive organometallics and features mild
conditions and broad functional group compatibility.* However,
most of the reductive olefin DCFs rely on the coupling of two
organohalide electrophiles, and thus, endeavouring to explore the
reliability of other distinct and abundant electrophiles in olefin
reductive DCF to broaden the structural and functional diversity of
target molecules is highly desirable.

Aldehydes, in particular, are abundant and versatile building
blocks in organic synthesis, while their application in catalytic
reductive olefin DCF has been much less explored. An early
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requirement of organometallic reagents and metal-based reductants, thus providing a mild synthetic
route to highly valuable B-hydroxyl carbonyl compounds with contiguous 1,2-stereocenters.

example is from the Montgomery group who reported Ni(cod),-
catalyzed three-component reaction of acrylates, aryl iodides and
aldehydes under net reductive conditions with a stoichiometric
amount of ZnMe, as the reductant (Scheme 1a).* Later on, Gall and
co-workers reported a similar transformation on using CoBr, as
the catalyst and Zn dust as the reductant.” These reductive
processes provide a complementary approach to a classical
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Scheme 1 Nickel-catalysed alkene dicarbofunctionalization with
aldehydes as electrophiles.
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conjugate addition/aldol tandem sequence® that requires sensitive
arylmetallic reagents. However, the requirement of stoichiometric
amounts of metal-based reductants inevitably produces a lot of
metal salt waste and results in a certain degree of difficulty for
synthetic scalability and practicability.

Taking advantage of the ability of the photoredox-assisted
single-electron transfer (SET) process, researchers have recently
applied Ni/photoredox dual catalysis’ to the area of cross-
electrophile coupling reactions,® enabling the coupling of orga-
nohalides in the absence of a stoichiometric metal reductant.
However, most reported photo-redox-assisted reductive cross-
couplings are limited to the two-component version® with few
exceptions have been extended to the intermolecular three-
component reaction of aryl and alkyl halides across alkenes."
Giving our longstanding interest in metallaphotoredox cata-
lysis,’»"* we reported here a Ni/photoredox-catalysed three-
component conjunctive cross-electrophile coupling of aryl
halides with aldehydes and alkenes (Scheme 1b). We envisioned
that the key to success of this tandem transformation is to identify
a suitable organic reductant as any organic reductants release
protons might be problematic because they can protonate each
tentative C-Ni bond species, thus producing unwanted outcomes
such as a dehalogenation product and reductive Heck product. As
such, the most commonly used organic reductants in literature
including tertiary amines and Hantzsch esters (HEs) would be
inferior to the reaction because they can release protons when
using as reductant. To address this issue, we envisioned that o-
silylamines might be a sort of valid organic reductant to furnish
this tandem process as they release silylium ions instead of
protons during the single electron oxidation stage. Moreover, the
in situ generated silylium ion could act as a Lewis acid to activate
aldehydes to promote the subsequent aldol reaction. a-Silylamines
have been widely used as a-amino radical precursors in photo-
catalytic radical transformations,”” while their potential as mild
organic reductants in reductive cross-couplings has not yet been
explored. Here, we disclose the unique functions of a-silylamine in
reductive conjugate addition/aldol tandem transformation.

Results and discussion

Our initial studies began with an investigation of various organic
reductants. The three-component reductive conjugate addition/
aldol tandem reaction with 4-iodo-1,1-biphenyl (1a), methyl acry-
late (2a), and benzaldehyde (3a) was performed in the presence of
1 mol% of Ir[dF(CF;)ppy].(dtbbpy)PFs, 10 mol% of NiBr,-DME,
and 10 mol% of 6,6"-di(Me)bpy in DMAc (0.1 M) at room temper-
ature under 1.5 W blue LED irradiation for 24 h. Various organic
reductants including Hantzsch ester (HE), Et;N, iPr,NEt, and
N,N,N'\N'-tetramethylethylenediamine (TMEDA) were examined
with or without an extra base. Regrettably, all attempts failed to
deliver any desired product. Instead, a huge amount of dehaloge-
nation product 7 and/or reductive Heck product 5 was detected,
suggesting that these proton-releasing organic reductants are not
suitable for the transformation. Based on our previous work on
nickel/photoredox-catalysed alkene dicarbofunctionalization,"“ we
tried to use an a-silyl substituted tertiary amine such as 1-((tri-
methylsilyl)methyl)piperidine as the organic reductant due to its
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easy preparation, low oxidation potential, and above all, because
there are no protons released in the process. To our delight, the
desired B-hydroxyl ester product 4 could be detected in 23% GC
yield after the reaction with TBAF to remove the silyl group. Under
this condition, only a trace amount of the dehalogenation product
was detected. However, the reductive Heck product 5 and reductive
carbonyl Heck product 6 were detected in 21% and 12% yield,
respectively. After the initial result was obtained, we further
examined other reaction parameters (Table 1). The screening of
photocatalysts showed that Ir(ppy); is the most efficient photo-
catalyst (entries 1-4). Ortho-substituted bipyridines are prevailing
ligands and 6,6-di(OMe)bpy is proven to be the best (entries 5-9).
NiBr, and Ni(cod), could also promote the reaction and give

Table 1 Condition optimization

NNy OMe
H reductant (2.0 equiv.)

3a DMAC (0.1 M), rt, 24 h Ph HO” “Ph
1.5 W Blue LED 4
then TBAF (2.0 equiv.) in THF

EtO,C COEt |
N
38 Glle QRO TN

4 0% 0% 0% 0% 23%

/©/ \)LOMe #* Ph

1. 5 equiv. 01 mmol 1.5 equiv.

™S

52 24% 1% 0% 0% 21%

62 0% 0% 0% 0% 12%

h /@/}H)Lom
Neae
QH

72 84% 23% 28% 34% trace

GC yield®

Entry? Photocatalyst  [Ni] Ligand Solvent 4 5 6

1 Ir(ppy)s NiBr,-DME L1 DMAc 34 23 21
2 Ir(ppy).bpyPFs NiBr,-DME L1 DMAc 21 11 43
3 Ru(bpy);(PFe), NiBr,DME L1 DMAc 32 16 5
4 4-CzIPN NiBr,-DME L1 DMAc 15 0 62
5 Tr(ppy)s NiBr,-DME L2 DMAc 62 20 5
6 1r(ppy)s NiBr,-DME L3 DMAc 44 22 1
7 Ir(ppy)s NiBr,-DME L4 DMAc 19 9 3
8 Ir(ppy)s NiBr,-DME L5 DMAc 21 8 4
9 Ir(ppy)s NiBr,-DME L6 DMAc 24 16 51
10 Ir(ppy)s NiBr, L2 DMAc 45 13 2
11 Ir(ppy)s Ni(cod), L2 DMAc 55 4 10
12 1r(ppy)s NiBr,-DME L2 DMF 3 0 4
13 Tr(ppy)s NiBr,-DME L2 MeCN 24 43 2
14 1r(ppy)s NiBr,-DME L2 THF 0 3 0
15° 1r(ppy)s NiBr, DME L2 DMAc 78 43 0
16 — NiBr,'DME L2 DMAc 0 0 0
174 Tr(ppy)s NiBr,-DME L2 DMAc 0 0 0
18 Ir(ppy)s — L2 DMAc 0 0 O
19 1r(ppy)s NiBr,-DME — DMAc 44 13 0
20° Ir(ppy)s NiBr,-DME L2 DMAc zz 4 50
21/ Ir(ppy)s NiBr2~DME L DMAc 6 8

¢ Ir[dF(CF;)ppyl,(dtbbpy)PF, (1 mol%), NiBr,-DME (10 mol%), and 6,6
di(Me)bpy (10 mol%). Y1elds are determined by GC with n-tridecane as
the internal standard. ” Reaction conditions: photocatalyst (1 mol%), Ni
catalyst (10 mol%), and ligand (10 mol%). © The molar ratio of 1a: 2a: 3a
=2:2:1. 9 No light irradiation. ¢ 4-Bromo-1,1"-biphenyl instead of 1a.
S [1,1"-biphenyl]-4-yl trifluoromethanesulfonate instead of 1a.

7 N\ \_ L1 (R=Me)
—N N—4{ L2(R=OMe)
& R L3 (R=CO,Me)
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Table 2 Substrate scope for nickel/photoredox dual-catalysed reductive conjugate addition/aldol tandem reaction®
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A N-R R H - R
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1 2 3 1.5 W Blue LED N\/TMS
2.0 equiv. 2.0 equiv. 0.30 mmol  then TBAF (2.0 equiv.) in THF 48483 reductant
Aryl halides
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Ph HO” “Ph } R Wor ey 10REMe, 45%, dretild e e HO” “Ph
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dr=1:14 cCDC: 2217184

X-ray for trans-isomer

o Me o
Cl HO Ph HO Ph

14, 43%, dr=1:1.6 15, 65%, dr=1:1
Alkenes

13, 50%, dr=1:1.6

o]

3

Ph HO
17,67%, dr=1:1.4

o

Ph HO

22,45%, dr=1:1.5

hy
=

OBn
Ph Ph

O

16, 38%, dr=1:1.1

o o o
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HO” “Ph Ph HO Ph Ph HO” “Ph

18, 64%, dr=1:1.3 19, 40%, dr=1:1.6 20, 81%, dr=1:1
(o] (o]

0
N/\ N ,Ph N,Bn
X Ph Bn
Ph HO” “Ph Ph HO” >Ph Ph HO” >Ph

23,X=0,51%, dr=1:1.2 25,48%, dr=1:1.3 26, 51%, dr=1:1.4
24, X = NBoc, 64%, dr=1:1.3

37,60%, dr=1:1.2

~y-Ph

(]

Ph HO

42, 48%, dr=1:1.2

Il

o
Janas
Ph HO” “Ph

21, 59%, dr=1:1.6

o
Ph HO”™ “Ph

27, 37%, dr=1:1.1

Aldehydes
28, R = OMe, 45%, dr=1:1.5 31, R = OMe, 58%, dr=1:1.2
o 29,R=Cl, 58%,dr=1:1.3 ~n-P 32, R=CF,, 74%, dr=1:1.1 Ph ~n-Ph
30, R = CF, 52%, dr=1:1. 33,R=F, 56%, dr=1:1.8 K-
O OMe 0 34,R=Cl, 77%, dr=1:15 o
Ph HO Ph O
O - Ph HO O
R R ” cl cl
35, 55%, dr=1:1.4 36, 59%, dr=1:1.4
_Ph
SN ~p-Ph ~n-Ph ~...Ph N
o
® : : : :
Ph HO Ph HO O pn HO 2
| ) | ) Ph HO Ph  Ph HO

40, 45%, dr=1:1

CCDC: 2217195
X-ray for trans-isomer

CCDC: 2217198
X-ray for syns-isomer

41, 30%, dr=1:1.6

\N_Ph
o
Ph HO

43, 33%, dr=1:1.2

“ All reactions were carried out on a 0.3 mmol scale under the optimized conditions (Table 1, entry 15). All yields are isolated yields. The
diastereoselectivities were determined by crude 'H NMR analysis. 1 mmol scale. ¢ 3 mmol scale.

a slightly lower yield (entries 10 and 11). The solvent has
a dramatic influence on the reactivity (entries 12-14): DMF could
only afford a trace amount of the product. Other less polar solvents

© 2023 The Author(s). Published by the Royal Society of Chemistry
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@
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5, 76% yield

Nestw

4: 0% yield

Ph
0% yield

(4)
: e e
)L (20 equiv.)
DMAc (0.1 M),40°C, 24 h

NiBroDME +6.6-dimethoxybpy

the reductant, 1a, 2a and 3a

[NIBrDME + 6,6'

(6)

Intensity (a.0.)

Wavelength (nm)

The effect of each component on the emission intensity of the photocatalyst

Scheme 2 Control experiments and spectroscopic investigations.

and the highest yield of 78% could be obtained when using
benzaldehyde as the limiting reagent (entry 15). Under the opti-
mized conditions, reductive carbonyl Heck product 6 and deha-
logenation product 7 were successfully inhibited. Not surprisingly,
the yield of reductive Heck product 5 was increased due to the
addition of an excess amount of 1a and 2a. The control experi-
ments revealed that the photocatalyst, nickel and visible light are
indispensable (entries 16-18). Interestingly, omitting a ligand
could still afford 44% yield of the desired product (entry 19).
Replacing aryl iodide with aryl bromide or aryl triflate gives
a largely decreased yield for the desired outcome (entries 20 and
21).

With the optimized reaction conditions in hand, we started to
evaluate the scope generality of the three-component reaction
(Table 2). First, a series of aryl iodides were examined. Aryl iodides
with electron-donating and electron-withdrawing groups including
phenyl (4), OMe (9), ester (11), ketone (12), SMe (13), and Cl (14)

1488 | Chem. Sci, 2023, 14, 1485-1490
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were well tolerated, delivering the corresponding products in
moderate to good yields. A sterically hindered substrate such as
ortho-methyl substituted iodobenzene (15) also reacted with a good
yield. Heteroaryl iodide was tolerated as well (16). The structure of
the trans-configuration of product 4 was determined by X-ray
diffraction analysis. Regarding the scope of alkenes, except for
different substituted acrylates (4, 17, and 18), various N-substituted
acrylamides were investigated. Acyclic acrylamides (19, 20, 25, and
26) and cyclic acrylamides (21-24) all reacted smoothly and affor-
ded a series of structurally abundant B-hydroxyl amide products.
Particularly, a-methyl substituted methyl acrylate was also toler-
ated, enabling a product with an all-carbon quaternary stereo-
center (27). Finally, the scope generality of aldehydes was
evaluated. Again, not only electron-donating groups, but electron-
withdrawing groups were also compatible (28-34). Sterically ortho-
substituted benzaldehydes have no impact on the reactivity (35,
36). Of note, more reactive naphthaldehyde (37), furfural (38) and
2-thenaldehyde (39) successfully underwent conjugative coupling.
Pleasingly, aliphatic aldehydes irrespective of containing an a-
primary, or secondary, or tertiary alkyl substituent were smoothly
incorporated (40-43). Both structures of trans- and syn-configura-
tion of product 42 were determined by X-ray diffraction analysis.
Regrettably, the reaction could only give a poor stereocontrol with
diastereoisomeric ratios ranging from 1:1 to 2 : 1. The low level of
diastereoselectivity might have contributed to the poor selectivity
of the formed Z- vs. E-enolate in the conjugate addition step or the
absence of a Zimmerman-Traxler-type transition state in the
second aldol reaction step.”* We also added some metal-based
Lewis acids such as ZnCl, and MgCl, to improve diaster-
eoselection, but no further improvement was obtained. Anyway,
both diastereoisomers can be separated by column chromatog-
raphy on silica gel. The reaction could be scaled-up to 1 mmol
(60%) and 3 mmol (48%) with an acceptable yield obtained.

In order to gain insight into the reaction mechanism, some
control experiments were conducted. The reaction was
completely inhibited by adding radical scavenger TEMPO
[(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] (Scheme 2(1)). Besides,
all reactions failed to deliver any desired product when various
different fluoride sources added (Scheme 2(2)). We speculated
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o
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Scheme 3 Proposed mechanism.
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that the in situ generated silylium ion species (see the mecha-
nistic discussion) was trapped by a fluoride source to form the
useless TMSF. These interesting results indicate the significant
importance of silyl groups for this reaction. We deduced that
the TMS group plays at least two roles: (1) may serve as a Lewis
acid to activate a carbonyl group for aldol reaction; (2) re-
generate the active nickel catalyst via transmetallation of the
O-Ni bond to the stronger O-Si bond. A control experiment
without aldehyde was performed where no three-component
conjunctive addition product was detected, and only a large
amount of reductive Heck product 5 was afforded (Scheme 2(3)),
suggesting that an a-amino radical might not be generated"'*
under this condition. The intermediate 5 may possibly react
with aldehyde in the presence of a base under thermal condi-
tions to get the final product. However, the reaction cannot
produce 4, thus excluding this possibility (Scheme 2(4)). To
better understand the behavior of the photoexcited step, Stern—
Volmer fluorescence quenching experiments** were performed
(see the ESIT for details). The results revealed that the oxidative
quenching of the excited state of the photocatalyst by the
nickel(u) catalyst is much more efficient over other components
(Scheme 2(5)), suggesting that a single-electron-transfer (SET)
event occurred between the nickel(n) catalyst and *Ir(ppy)s that
initiates the photocatalytic process. To exclude the possibility of
the nickel complex affecting the emission intensity of the
photocatalyst, the absorption spectra of each component were
recorded and the results showed that all components have no
absorption in this region (Scheme 2(6)).

Based on the above mechanistic studies and our previous
reports, a plausible mechanism was proposed for this reductive
conjugate addition/aldol tandem sequence (Scheme 3). First,
successive SET process between the photoexcited *Ir™ (EY, ™ =
—1.73 V vs. SCE)* and Ni" [E;;,(Ni"/Ni®) = —1.2 V vs. SCEJ*®
generates Ni’ and Ir". Ir"Y possessing a strong reductive potential
(EVi™ = +0.77 V vs. SCE)* can oxidize a-silylamine (ES%, = +0.71 V
vs. SCE)® to get iminium ion by successive SET. Meanwhile, Ir""
is reduced back to the ground state of Ir'". On the other hand, Ni°
species undergoes oxidative addition with ArX to afford ArNi"X,
followed by migration insertion into C=C bond to get a-carbonyl-
Ni" intermediate (IV). An equilibration between nickel O-enolate
(V) and C-enolate (IV) tautomer is possible,’ which could be
further transformed into a more stable silyl ketene acetal (VI) via
a Ni/Si transmetallation. Final aldol reaction promoted by Lewis
acidic silylium ion delivers products and regenerate Ni" catalyst.

Conclusions

In summary, we report here a nickel/photoredox dual catalytic
platform for enabling a reductive conjugate addition/aldol reaction
with aryl halides, electron-deficient alkenes, and aldehydes. o-
Silylamine is identified as an efficient organic reductant due to its
unique properties. Our strategy provides a complementary route to
previous procedures that bypassing the use of organometallic
reagents or metal reductants for this three-component trans-
formation. Further studies on designing asymmetric reaction and
gaining a deep insight into the mechanism are currently ongoing
in the laboratory.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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