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erpretation of the stability of
organic molecular crystals†

Rose K. Cersonsky, *a Maria Pakhnova, a Edgar A. Engel b

and Michele Ceriotti a

Due to the subtle balance of intermolecular interactions that govern structure–property relations,

predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial

scientific problem. A particularly active and fruitful approach involves classifying the different

combinations of interacting chemical moieties, as understanding the relative energetics of different

interactions enables the design of molecular crystals and fine-tuning of their stabilities. While this is

usually performed based on the empirical observation of the most commonly encountered motifs in

known crystal structures, we propose to apply a combination of supervised and unsupervised machine-

learning techniques to automate the construction of an extensive library of molecular building blocks.

We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it

to a curated dataset of organic crystals, exploiting its atom-centered nature to obtain a data-driven

assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then

interpret this library using a low-dimensional representation of the structure–energy landscape and

discuss selected examples of the insights into crystal engineering that can be extracted from this

analysis, providing a complete database to guide the design of molecular materials.
1 Introduction

Understanding molecular crystallization is critical to many
elds of chemical sciences – from anticipating pharmaceutical
stability and solubility,1–5 to preventing6 or fostering7 aggrega-
tion in organic electronics, to understanding complex forma-
tion in biological macromolecules.8,9

Yet, molecular crystallization is a complex process that
involves multiple cooperative and competing forces. Initial
nucleation is typically motivated by strong interactions between
functional groups.10,11 The structural patterns associated with
these guiding interactions (deemed “supramolecular syn-
thons”) and their hierarchies are oen the focus of experi-
mental and computational studies in crystal structure
prediction.12,13 Nevertheless, once molecules have moved within
closer range, many factors, including weaker interactions, the
expulsion of solvent molecules, and geometric packing, will
then determine the short- and potentially long-range order,
leading to many potentially-stable polymorphs for a given
stoichiometry. In the past decades, there has been a growing
push to develop a “holistic” view of molecular
Modeling (COSMO), École Polytechnique

d. E-mail: Rose.Cersonsky@wisc.edu

iversity, Cambridge, UK

tion (ESI) available. See DOI:

5

crystallization,14,15 not only taking into account the nearest-
neighbor contacts but also the interplay of these interactions
with other components of the molecular assembly.

While it is simpler to rationalize single-site interactions, the
interplay of many competing interactions necessitates diverse,
high-throughput studies.14 Thus, molecular crystallization has
emerged as a hotbed for computational inquiry. This focus has
led to considerable theoretical and soware developments for
qualitative and quantitative analyses, including those tailored
to crystal structure prediction (CSP)16–19 and the representation
of electrostatic surfaces and molecular geometry.20,21 Even more
recently, machine learning has been used to understand the
individual congurational and energy landscapes of
molecules;22–28 however, such techniques have yet to be applied
in the general, holistic vein required to extract the qualitative
insights that can be used to support crystal design efforts.

To study molecular crystallization in this broad lens, we have
curated a dataset of roughly 3260 C + H + N + O + S-containing
molecular crystals from those reported in Cordova et al.29 In
Cordova et al.,29 these crystals were initially selected by querying
the Cambridge Structural Database (CSD) to identify a diverse
set of synthesizable molecular assemblies, including some that
had been experimentally stabilized at extreme conditions. The
experimental properties of the full dataset are summarized in
ESI Appendix A3.†

The stability of molecular crystals is traditionally studied
through the binding (lattice) energy, which is computationally
© 2023 The Author(s). Published by the Royal Society of Chemistry
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determined by evaluating the ground-state energies for both the
crystal and its molecular components in the dilute gas limit,
here computed using DFT-PBE-D2 calculations of each crystal
and its relaxed molecular components at ambient conditions.

From here, we build an atom-centered regression model for
this lattice energy, demonstrating the improvements in accu-
racy and reduction in model complexity from using a physics-
informed approach. This atom-centered approach, wherein we
represent each molecular crystal using the average ML
descriptor for each of its atomic constituents, facilitates esti-
mating the contribution of each atom, or group of atoms, to the
binding energy. Then, employing a combination of supervised
and unsupervised machine learning models, we can determine
and interpret each molecular moiety's intermolecular interac-
tions. Using these approaches, we show how physically-
motivated machine learning models can not only “rediscover”
the known maxims of crystal engineering, but provide insight
and guidance for crystal design. We have made our datasets,
and analyses openly-available through the Materials Cloud,31

with interactive components aimed to guide future molecular
design and narrower or targeted studies.

2 Notation

In this study, we employ atom-centered descriptors32 to identify
the contributions of specic collections of atoms to the binding
of a crystal. Given the many atomic and energetic entities
(atoms, molecules, crystals, total energy versus lattice energy),
we rely on many numerical representations and equations;
hence we start by establishing a consistent notation we will use
throughout the text.

2.1 Descriptors

To reect the physics of atomic interactions, we use symmetry-
adapted descriptors to encode/describe the geometric arrange-
ment of atoms in their atomistic congurations, specically the
3-body SOAP descriptors outlined in ESI Appendix B1.† Each of
these input descriptors is written as x(i)s , where the subscript s
signies the collection of atoms being described, including the
entire crystal (c), a molecule (m), or an atom (a). ns is the
number of atoms in the given collection. Thus it follows that nc
is the number of atoms in a given crystal, and nm is the number
of atoms in a given molecule. Because we discuss analogous
atoms or molecules in both the solid and gas phases, we use the
superscript (i) to denote the phase (crystalline solid (s) or dilute
gas (g)).

The descriptor for a given collection should be assumed as
the average of the descriptors for the constituent atoms:

xðiÞ
s ¼ 1

ns

X

a˛s
xðiÞ
a (1)

For example, the descriptor for the atoms in a molecule in

a dilute gas is xðgÞm ¼ 1
nm

X

a˛m
xðgÞa . If we were to look at the same

molecule in the crystalline solid we would get xðsÞm ¼ 1
nm

X

a˛m
xðsÞa .
© 2023 The Author(s). Published by the Royal Society of Chemistry
A schematic of these concepts is shown in Fig. 1, using the co-
crystal 5-aminotetrazole monohydrate (CSD ref. AMTETZ30) as
an example.

2.2 Energies and regressions

We use Es to denote the total energy of a collection of atoms. In
this study, the total energies of the crystals Ec are taken from
those reported in Cordova et al.29 and the total energies of the
molecules Em are determined by DFT-PBE-D2 calculations, as
described in ESI Appendix A2.† We use es h Es/ns to indicate
the per-atom energy. Note that we express all energies
in kJ mol−1, where es is to be interpreted as having the units of
kJ per mol of atoms. Constructing a linear regression amounts
to the ansatz.

es = xsws + 3s (2)

where ws is the regression weights and 3s the residual errors.
The lattice energy (also referred to as the binding or cohesive
energy in literature) of a molecular crystal is given by Dc, where

Dc ¼ Ec �
X

m˛c
Em (3)

With the average lattice energy per atom given by,

dchDc=nc ¼ ec �
X

m˛c

nm

nc
em (4)

Later, we will use our regression model to determine the
atomic contributions to the lattice energy, which we will denote

da, where dc ¼ 1
nc

X

a˛c
da. We will also consider the contributions

for different collection of atoms, and will denote the average

lattice energy contribution as ds ¼ 1
ns

X

a˛s
da. When we regu-

larize these contributions using a Gaussian lter (discussed in

Section 3.2 and Appendix B2†), we will use a tilde to give ~d.

3 Results and discussion

In the following, we consider crystals and gas-phase molecules,
both of which have been geometry-optimized by minimizing
their congurational energies with respect to the atomic posi-
tions, as described in Appendix A.† Unless stated otherwise, we
use as our featurization the 3-body SOAP vectors (as described
in Appendix B1†) and build a regularized ridge regression
models using scikit-learn.33 All models were trained on the same
training set of 2707 crystals (or the corresponding 3242 mole-
cules). We report errors on a mutually-exclusive set of 551
crystals (or the corresponding 628 molecules). When inter-
preting the results, it is important to consider that the test set
has been selected at random, and is therefore representative of
the makeup of the CSD, while the training structures were
selected with farthest point sampling34,35 to maximize the
diversity, and therefore contain a large fraction of unstable,
“extreme” cases (Table S1†).
Chem. Sci., 2023, 14, 1272–1285 | 1273
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Fig. 1 Visualization of descriptor notation, as described in Section 2.1, visualized for 5-aminotetrazole monohydrate (CSD ref. AMTETZ30). Each
descriptor contains the information of an atom and its neighborhood (shown in yellow shading).

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 1

0:
29

:4
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3.1 Building a model for the lattice energy

One can estimate the atomic contributions to a target property
(and thereby assess the contributions of specic molecular
motifs) by building a robust machine learning model on an
atom-centered descriptor.36 Suppose we have a descriptor

xs ¼ 1

ns

X

a˛s
xa (5)

and train a regression model on some target y such that y = xsw
+ 3, where w is the regression weight and 3 is the residual error
from the regression. We can then estimate the approximate
contribution of each atom by computing ya = xaw.

3.1.1 Combining models of ec and em. Given eqn (4), it is
possible to build a model for the lattice energy from two sepa-
rate models for crystal and molecular energy, replacing each
energy e with its approximation via linear regression (eqn (2))

dc ¼ xðsÞ
c wc þ 3c �

X

m˛c

nm

nc

�
xðgÞ
m wm þ 3m

�
: (6)

Eqn (6) may then be rewritten as:

dc = x(s)c wc − x(g)c wm + 3 (7)

where we have dened 3h3c �
P
m˛c

nm
nc

3m. In this scheme, the

regression of the lattice energy is implicitly limited by the errors
of the independent regressions; therefore, if we obtained a good
t for ec and em, this should be a fairly robust way to predict the
lattice energy.

When we predict the crystal and molecular atomic energies
ec and em, we obtain RMSEs of 1.15 kJ mol−1 and 0.727 kJ mol−1,
respectively, which are acceptably small compared to the
intrinsic variance of the baselined‡ target energies of the test
set, which have standard deviations of 4.402 kJ mol−1 and
4.251 kJ mol−1, respectively. However, the intrinsic variance of
the lattice energies is smaller (1.965 kJ mol−1); therefore, the
1274 | Chem. Sci., 2023, 14, 1272–1285
resulting RMSE of 0.916 kJ mol−1 from eqn (6) is unsatisfactory
and suggests that the errors in the independent regressions
generally overlap with the lattice energy contributions.

3.1.2 Building a model directly on dc. With the reduced
variance of the target (lattice energy), it thus makes sense to
construct the regression model directly on our target. Building
a regression on the gas-phase descriptors x(g)c , while conceptu-
ally nonsensical (the gas-phase descriptors of the molecules
contain no information on the intermolecular interactions),
yields an RMSE of 1.101 kJ mol−1. Regressing on the solid-phase
descriptors x(s)c improves the regression substantially, achieving
an RMSE of 0.778 kJ mol−1.

Yet, conceptually, neither of these two representations
(x(s)c and x(g)c ) contain the full set of relevant information – the
molecular descriptor x(g)c is missing information on intermo-
lecular interactions, and the crystal descriptor x(s)c is unaware of
the conformational changes that the molecules undergo upon
crystallization. The necessity of this missing information is
conrmed when we regress on concatenated descriptors
{x(s)c , x(g)c } and our RMSE drops to 0.671 kJ mol−1.

Furthermore, eqn (7) provides another way to similarly (and
more explicitly) encode the nature of the problem into our
choice of representation. Given a descriptor that appropriately
distinguishes between periodic crystals and molecules,
a regression model can predict their energies using the same
regression weights, w = wc = wm. Substituting this into eqn (7),

dc = x(s)c w − x(g)c w + 3 (8)

dc = x(s−g)
c w + 3 (9)

where we dene x(s−g)
c h (x(s)c − x(g)c ) as the so-called “remnant”

descriptor and 3 again denotes the residual errors. Explicitly
adapting our representation x(s−g)

c to the nature of the lattice
energy results in a yet better result to learning on
{x(s)c , x(g)c }: 0.571 kJ mol−1, despite being in a smaller feature
space. Conceptually, this descriptor still encodes the 3-body
correlation between an environment and its neighbors but
© 2023 The Author(s). Published by the Royal Society of Chemistry
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explicitly incorporates the change in molecular geometry upon
crystallization and reduces the weights of atomic triplets whose
interactions are primarily intramolecular and/or the same in
gas and solid phase.

3.1.3 Extension to non-linear models. This result is
mirrored in non-linear regression models, where again, a supe-
rior result is obtained by either constructing a kernel on x(s−g)

c or
taking the difference of non-linear feature vectors (see ESI
Appendix C2†). An optimized RBF kernel on the remnant
descriptors yields a similar RMSE to the linear model, likely due
to the restricted dataset size and its diversity. We get some
improvement (by ∼0.06 kJ mol−1 compared to the best linear
model) by taking the difference of the non-linear features
dened by the kernels of the crystalline and molecular
descriptors. This result further emphasizes the rationale behind
the remnant approach, and suggests that one can, more
generally, improve accuracy by combining non-linear feature
constructions to mimic the mathematical formulation of target
properties. Kernel hyperparameter optimization has little
impact on this conclusion, as we demonstrate with corrobo-
rating results using a parameter-free kernel, also in ESI
Appendix C2.†

When themolecular geometry is known a priori, these results
suggest that linear (summarized in Table 1) and non-linear
regressions (ESI Appendix C2†) for the lattice energy should
be built on descriptors conceptually akin to x(s−g)

c , rather than
x(s)c , as has been common practice in the literature.23,25,27,28 Thus,
in the remainder of the text, we will employ ML ngerprints and
models based on the remnant descriptor.
3.2 Estimating the contributions of molecular motifs

3.2.1 Regularizing the atomic contributions. With our
target-adapted regression model, we can assign effective
contributions to each atomic environment, where we take the
remnant descriptor of each atomic environment and compute

da = x(s−g)
a w (10)

Despite the mathematical logic behind this step, the lack of
physical underpinnings for this decomposition may result in
Table 1 Results of linear regression exercises. In each linear regres-
sion, an independent, 5-fold cross-validated model was build on 2707
crystals (or the 3242 coinciding molecules)a

Regression equation Eqn RMSE MAE

ec = x(s)c wc (2) 1.15 0.863
em = x(g)mwm (2) 0.727 0.563

dc ¼ x
ðsÞ
c wc �

P
m˛c

nm

nc
ðxðgÞm wmÞ (6) 0.916 0.652

dc = x(s)c w 0.778 0.552
dc = x(g)c w 1.101 0.723
dc = x(s–g)c w (9) 0.571 0.404
dc = {x(s)c , x(g)c }w 0.671 0.461

a Here we report the errors (in kJ mol−1) on a separate set of 551 crystals
(or the coinciding 628 molecules). In each regression equation w is
unique to that regression.

© 2023 The Author(s). Published by the Royal Society of Chemistry
energy being arbitrarily partitioned between neighboring
atoms. This leads to disproportionately large contributions of
opposite size being assigned, not dissimilar to how a regression
may overt by assigning large regression weights. To ease this
effect, we can apply a Gaussian lter to each da. For the i

th atom,
this results in

~di ¼
X

j

dj
f ði; jÞ
f ðj; kÞ (11)

where
P
j
runs over all neighbors of i and

P
k
runs over all neigh-

bors of j (dened by a cutoff of 2 Å). For neighbors a and b and
interatomic distance dab, f(a, b) = exp[dab

2/222]. This procedure,
introduced for the electronic density of states in Ben Mahmoud
et al.,37 has the effect of regularizing the decomposition without

changing the regression results, i.e., dc ¼ 1
nc

X

a˛c
da ¼ 1

nc

X

a˛c

~da. We

show this effect of the lter on the distribution of atomic contri-
butions in ESI Appendix B2.† It is worthwhile to conceptually
compare our data-driven decomposition with one based on an
empiricalmodel of interactions, or with one of themany atoms-in-
molecules decompositions of the energy computed by quantum-
chemical calculations. On one hand, our approach makes it
harder to explicitly interpret the stabilizing power of a motif in
terms of physical terms (electrostatics, dispersion.). On the
other, in many cases force elds and energy decompositions have
a high degree of arbitrariness, and the accurate prediction of the
total binding energy comes from a cancellation of errors in the
individual components. The atomic contributions eqn (11) are
obtained with the only requirement of being smooth, and (since
they are built using a remnant descriptor) to correlate with the
structural features associated with the crystal-forming process. As
we shall see, their nature allows one to recognize the role played by
collective effects – such as steric hindrance, or molecular distor-
tions – contributing to our goal of a holistic view of lattice stability.

3.2.2 Visualizing the contributions of different motifs.
Taking the 3242 molecules from our training set, we use
SMARTS descriptors38 and RDKit Substructure Matching39 to
identify the atoms belonging to common molecular motifs,
nding 46 010 motifs. Details of this procedure and our table of
SMARTS strings are given in ESI Appendix B3 and Table S3,†
respectively. For each motif, we determine the effective cohesive
interaction ~ds as§

~ds ¼ 1

ns

X

a˛s

~da (12)

We plot the span of lattice energy contributions for motifs
with greater than 200 instances in the dataset in Fig. 2. The
functional groups are arranged in order of increasing average
cohesive interactions. Nearly all functional groups, on average,
are stabilizing, although we see a clear trend in the nature of the
functional groups from le to right. On the le (the motifs
leading to the strongest intermolecular interactions), there are
groups typically associated with hydrogen bonding (e.g.,
carboxyls and waters). As we move to the right, the molecular
motifs are, on average, weakly binding, with the largest range of
Chem. Sci., 2023, 14, 1272–1285 | 1275
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Fig. 2 Distribution of energetic contributions for different functional groups. For each functional group, we have taken the averaged remnant
descriptor x(s−g)

s and computed the estimated contribution to the binding energy ~ds using the regressions detailed in eqn (10) and the filtering
procedure in eqn (11). We have arranged the functional groups in order of average contribution, with a representative example is shown above or
below the violin plot with the functional group highlighted.We have limited this figure to those functional groups withmore than 200 instances in
the dataset (see Fig. S4† for all groups). The lines on each plot denote each group's extreme andmean contributions. The plots are colored by the
number of examples within the dataset, ranging from 4 (pentazole) to 5313 (methyl groups). Wider sections of the violin plot represent a higher
probability that members of the population will take on the given value; the skinnier sections represent a lower probability.

Fig. 3 Principal Covariates Regression (PCovR) map of the interac-
tions of molecular motifs. A structure–property map of molecular
motifs, denoting major classes of motifs and outlining the regions
where the 90th percentile of these motifs occur. (Inset) the same map
colored by the cohesive interactions, ranging from blue (strongly
attractive) to white (neutral) to red (strongly resistant). Histograms on
the upper and right borders show the distribution of motifs along the
covariates.
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interactions coming from the most broadly-dened groups,
including the alkanes, alkenes, and benzene-like rings.

This trend is further demonstrated by plotting the structure–
property map of all motifs using Principal Covariates Regres-
sion (PCovR), a hybrid supervised-unsupervised dimensionality
reduction technique rst introduced in De Jong and Kiers40 and
adapted to chemical systems in Helfrecht et al.41 This technique
produces a latent-space mapping that arranges different motif
classes based on their structural similarity and correlation to
a set of target properties. In Fig. 3, we show a map using the
average remnant descriptor for each motif and their average
energy contribution, using contour lines to show where 90% of
such motifs fall on the PCovR map. One sees that, in this case,
the rst axis of this plot (PCov1) correlates strongly with the
(learnable) cohesive interactions. The second axis (PCov2)
allows us to resolve structural differences between motifs with
similar energetic contributions. In this mapping, we can learn
from the spread of each group. For example, the 868 water
molecules (light blue in Fig. 3) span the greater portion of the
le-hand side of the gure, highlighting the chemical diversity
of intermolecular water interactions. Juxtapose this with the
2627 nitro and nitroso groups (pink in Fig. 3) that span
a smaller region in PCovR space, implying a narrower range of
intermolecular interactions. Here we have combined several
groups for visual simplicity; however, we have included plots
highlighting each functional group in Fig. S6–S9,† including the
sample sizes and range of contributions.

The PCovR framework also provides a blueprint for
analyzing the interactions of different structural motifs – given
a single motif type, what characteristics of a molecular
1276 | Chem. Sci., 2023, 14, 1272–1285
environment lead to a more stabilizing interaction? In the
following sections, we will take a look at the stabilizing envi-
ronments for a few classes of functional groups, starting with
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the well-known stabilizing interactions of water and carboxylic
groups, then moving onto two groups with a wide range of
intermolecular interactions, 6-membered aromatic carbon
rings and nitro groups. With each functional group, we generate
a new PCovR using only the averaged remnant descriptors and
effective interactions for the instances of that group, such that
the structural diversity embedded in the map reects the
diversity of interactions, rather than the diversity of the mole-
cules. We have included similar maps for all other molecular
motifs in an online data repository.31,48

3.2.3 Waters.We begin with a ubiquitous molecular crystal
stabilizer: water. The estimated contributions of the 868 water
molecules in this dataset span a range of −42.92 to
4.16 kJ mol−1 (average e of atoms, multiply by 3 to obtain the
contribution per water molecule), with the majority of interac-
tion strengths occurring at around −24.65 ± 9.06 kJ mol−1. We
generate a new PCovR shown in the le panel of Fig. 4. On the
bottom of Fig. 4, we show the crystalline conformation and the
molecules recolored by ~da.

First, we look at a common parameter for measuring the
stabilizing effect of water: hydrogen bonding (H-bonding).
Fig. 4 The interactions of water molecules. (Left) Principal Covariates
estimated cohesive interaction of that motif and a marker on the color
recolored by the number of hydrogen bonds (H-bonds), separating those
atoms (bottom). The insets on the bottom visualize several extremal or
assignments: CSD ref. (a) SOWTIH,42 (b) GIXDIA,43 (c) LEBJUX,44 (d) LAC
row shows the total lattice energy of the crystal (in kJ mol−1) and the co
estimated lattice energy contribution (on the same scale as on the PCov

© 2023 The Author(s). Published by the Royal Society of Chemistry
Here, we have calculated H-bonds based on when the O/H
or H/X distance is less than 2.5 Å and the dihedral angle of
O/H–X or OH/X is greater than 150°. From the right side of
Fig. 4, we see that the number of H-bonds donated to the water
molecule (O/H) does not correlate with the cohesive interac-
tion of the water molecules. There is some qualitative
correlation/anti-correlation between the nature of these
donated H-bonds and the second principal covariate (Pearson
Correlation Coefficient, or PCC,= 0.49,−0.59 for the number of
O/H–N and O/H–O, respectively). There is a mild anti-
correlation between the number of H-bonds the water itself
donates (OH/X) and the rst covariate, with a PCC of −0.33.
The second principal covariate is strongly correlated and anti-
correlated with the number of OH/N and OH/O interac-
tions, achieving a PCC of 0.69 and −0.73, respectively. Waters
with primarily OH/N-type hydrogen bonds are at the top of the
map (e.g., Fig. 4(e), CSD ref. VOHBUR46), with OH/O-type at the
bottom of the map (e.g., Fig. 4(c) and (d), CSD ref. LEBJUX44 and
LACTOS12 45).

This analysis emphasizes that the number of hydrogen
bonds does not fully capture all of the nuances of water
Regression (PCovR) map, where the color of each point denotes the
bar denotes the average value for all waters. (Right) The PCovR map
donated to the oxygen atom (top) from those donated by the hydrogen
interesting environments. Select crystalline configurations and energy
TOS12,45 (e) VOHBUR,46 and (f) COFHOW.47 In each panel, the bottom
rresponding molecules where the atoms have been recolored by their
R map).
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stabilization – the majority of water molecules participate in 2–3
such interactions, and the energy of these bonds can span
a wide range. In O/H–X interactions, there is little energetic
difference based on whether the acceptor is a nitrogen or oxygen
atom – both types of hydrogen bonds span the full range of
energies. The nature of the acceptor is encoded in the covariate
orthogonal to the chemical features most correlated with
interaction strength (i.e., the nature of the acceptor is primarily
correlated with the second covariate).

We see that the strongest water interactions in 1,6-dia-
minohexane monohydrate (CSD ref. SOWTIH,42 Fig. 4(a)) and
1,3-diaminopropane trihydrate (CSD ref. GIXDIA,43 Fig. 4(b)),
where the water molecules associate with other water molecules
and the amine group of their co-crystalline molecule. Our
weakest contribution, by far, occurs in 4,5,6,7-tetranitro-1,3-
dihydro-2H-benzimidazol-2-one hemihydrate (CSD ref. COF-
HOW,47 Fig. 4(f)), where the water molecules sit interstitial to
the imidazole molecules, prohibited from forming hydrogen
bonds and potentially interfering with the stabilization of the
imidazole clusters.

3.2.4 Carboxylic acid groups. As a strong electron donor,
carboxylic acids are considered a key motif in molecular crys-
tallization,21,54,55 which is supported by their strong negative
lattice energy contribution, here ranging from −26.72 kJ mol−1

to −1.11 kJ mol−1, with the majority of interaction strengths
occurring in the −17.17 ± 3.82 kJ mol−1 range. Taking the 1023
Fig. 5 The interactions of carboxylic acid groups. (Left) Principal Covariat
estimated cohesive interaction of that motif, and a marker on the color b
visualize several extremal or interesting motifs. (Right) Select crystalline c
IJETOG02,50 (d) SEPNUX,51 (e) NAPDCX,52 and (f) CARCAZ.53 In each pan
crystal (in kJ mol−1) and the corresponding molecules where the atoms

1278 | Chem. Sci., 2023, 14, 1272–1285
carboxylic acid groups, we generate a new PCovR shown in the
le panel of Fig. 5. On the right and bottom of Fig. 5, we have
included panels showing, for select motifs, the crystalline
conformation and molecules recolored by ~da.

The strongest contributions are found in 1,2-di(2-pyridyl)
ethylene (CSD ref. FIBHOP49) in a succinic acid molecule
(Fig. 5(a)) that forms two sets of supramolecular synthons: one
homosynthon with the other succinic acid (Fig. 5(b)), and one
heterosynthon with the pyridine group (consistent with the
literature on the strength of carboxylic–pyridine
interactions56–58). Interestingly, this crystal also contains one of
the most weakly interacting groups (Fig. 5(b)), in the second
succinic acid molecule that only participates in the single
homosynthon.

Carboxylic acids form the strongest cohesive interactions
when participating in multiple synthons, particularly hetero-
synthons (typied by Fig. 5(a) and (c), and noted in earlier
literature64). Moving to the right, we see the contribution
decrease commensurate to the number of interactions. For
example, in 3,5-pyrazoledicarboxylic acid (CSD ref. SEPNUX,51

Fig. 5(d)), there are two carboxylic acid groups that have dras-
tically different energy contributions – one that forms a doublet
homosynthon and the other is without close contacts. In an
extreme case (CSD ref. CARCAZ,53 Fig. 5(f)), the carboxylic acid
group is prevented from interacting due to the bulkiness of the
overall molecule, leading to a neutral contribution.
es Regression (PCovR) map, where the color of each point denotes the
ar denotes the average value for all carboxylic acid groups. The insets
onfigurations and energy assignments: CSD ref. (a and b) FIBHOP,49 (c)
el on the right, the bottom row shows the total lattice energy of the
have been recolored by their estimated lattice energy contribution.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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An interesting success of this energy assignment is the
ability to identify stabilizing motifs in otherwise unstable or
metastable crystals. This is the case for CSD ref. NAPDCX52

(Fig. 5(e)), an unstable 1,4-naphthalene-dicarboxylic acid that
has an overall positive lattice energy at ambient pressure and
temperature.{ Despite this instability, we can clearly identify
a binding interaction between carboxylic acid groups.

3.2.5 6-Membered unsaturated carbon rings. 6-Member
unsaturated carbon rings (consistent with benzene molecules
but more broadly-dened to include branched rings) show weak
intermolecular interactions ranging from −11.27 kJ mol−1 to
18.75 kJ mol−1, with the majority of interactions occurring in
the −2.19 ± 3.0 kJ mol−1 range. Similar to Section 3.2.4, we
generate a new PCovR map using the averaged remnant
descriptors and effective interactions using the 3280 benzene-
like motifs, as shown in the le panel of Fig. 6. Again, we
have included a panel on the right showing the crystalline
conformation and molecules colored by ~da for select
congurations.

The most strongly-binding benzene-like motifs occur in
molecules where (1) the ring is functionalized by strongly
interacting groups, (2) the interactions of these groups facilitate
planar molecular geometry, and (3) stacking occurs between the
benzene-like rings with these auxiliary groups. We see this in
2,4,6-trinitrobenzene-1,3,5-triamine (CSD ref. TATNBZ03,59

Fig. 6(b)), where the aromatic carbon ring stacks above the
primarily intramolecular nitro–amine interaction and in
Fig. 6(a) (CSD ref. BENZAC19 60), where they stack above the
carboxylic acid homosynthon.
Fig. 6 The interactions of benzene-like rings. (Left) Principal Covariates
estimated cohesive interaction of that motif and a marker on the color b
several extremal or interesting motifs. (Right) Select crystalline configu
ZAC19,60 (c) PHENAN14,61 and (d) NOTVAT01.62 We also highlight the b
bottom row shows the total lattice energy of the crystal (in kJ mol−1) and
their estimated lattice energy contribution (on the same scale as on the

© 2023 The Author(s). Published by the Royal Society of Chemistry
There are various reasons for weakly-binding benzene-like
motifs, including weak stacking and steric hindrance. As is
evident from Fig. 6(c) and (d), rings will resist crystallization
when the interactions of the end groups lead to deformation of
the ring geometry. Take for example phenanthrene (CSD ref.
PHENAN14,61 Fig. 6(c)), a high-pressure polymorph that is
unstable at ambient conditions (therefore has an overall posi-
tive lattice energy for the DFT reference used). Interestingly, we
can pinpoint the localization of this deformation by looking at
the atoms with the strongest positive contribution. While the
keen reader may infer that this is solely due to the remnant
descriptor reecting the difference in strained and relaxed
molecular geometry, we will note that a large difference in these
representations can also coincide with a wealth of stabilizing
intermolecular interactions, demonstrating that this simple
linear model can differentiate molecular deformation from the
introduction of new interactions.

This is further supported by comparing the motifs of this
polymorph with its ambient-pressure, stable counterpart (CSD
ref. PHENAN08 63) to see how the nature of the same molecule
changes based upon the interactions in the crystal. Both poly-
morphs adopt a similar herringbone crystal structure; however,
the decreased molecular distortion and increased interactions
between the auxiliary hydrogens and neighboring aromatic
rings in PHENAN08 63 result in a signicantly lower lattice
energy of dc = −4.58. In Fig. 7, we project the motifs of
PHENAN08 63 and PHENAN14 61 onto our PCovR map from
Fig. 6, we see this reected by a le-shi of the motifs on the
map, where the center ring moves from strongly resisting
crystallization (Fig. 7(c)) to weakly interacting (Fig. 7(f)) and the
Regression (PCovR) map, where the color of each point denotes the
ar denotes the average value of benzene-like rings. The insets visualize
rations and energy assignments: CSD ref. (a) TATNBZ03,59 (b) BEN-
enzene-like motif from Fig. 5(f) in (e). In each panel on the right, the
the correspondingmolecules where the atoms have been recolored by
left panel).
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Fig. 7 Comparing the motifs in polymorphs of phenanthrene. Here
we project two distinct polymorphs of phenanthrene onto the PCovR
map shown in Fig. 6. At ambient conditions, one polymorph is stable
(PHENAN08 63), while the other is unstable (PHENAN14,61 also shown
in Fig. 6(c)). Looking at the same motifs in the unstable and stable
phases, we see a shift leftwards as the motifs go from resisting crys-
tallization to weakly binding. In the lower insets, we have recolored the
atoms of the phenanthrene molecule based upon their contribution to
the lattice energy in the different polymorphs. Note that the bicyclic
carbon atoms, while no longer distorted, weakly resist crystallization,
as they prevent the auxiliary hydrogens from more closely interacting
with neighboring p bonds by distorting the molecule.
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periphery rings move from weakly resisting crystallization
(Fig. 7(a) and (b)) to weakly binding (Fig. 7(e) and (f)). It is worth
noting that PHENAN08 63 is an out-of-sample data point (3 =

0.2 kJ mol−1), demonstrating that the analysis in Fig. 6 is
applicable beyond the initial reference set. We have included
images of the PHENAN08 63 crystal conguration in Fig. S5.†

3.2.6 Nitro groups. Nitro groups, dened as a nitrogen
atom bonded to two terminal oxygen atoms, range in cohesive
contributions from −29.9 kJ mol−1 to 1.56 kJ mol−1, with most
interaction strengths being −12.76 ± 5.66 kJ mol−1. Similar to
our previous examples, we generate a new PCovR using the
averaged remnant descriptors and effective interactions of the
2129 nitro groups, as shown in the le panel of Fig. 8. Again, we
have included a panel on the right showing the crystalline
conformation and constituent molecules colored by ~da. Unlike
carboxyl and benzene-like groups, the chemical diversity of
nitro interactions is limited – this is either due to the chemical
nature of nitro interactions or the availability of nitro-
containing crystals in CSD.

The resonant or partial charge of the oxygen atoms leads to
strong binding in hydrogen-rich environments, supported by
the results in Fig. 8. This is best typied by trans-N,N-dimethyl-
2-nitrovinylamine (CSD ref. MNETAM01 70), a molecule where
the nitro group is strongly interacting with the CH3 end groups
with some potential p-hole stacking71 between the nitrogen
moieties, as shown in Fig. 8(a). The strength of these binding
1280 | Chem. Sci., 2023, 14, 1272–1285
interactions lessens with the strength of the electron donors,
with smaller contributions in crystals where the primary O/H
interaction is with amine donors (e.g., Fig. 8(c) and (d), CSD ref.
CUPYUJ,67 KEDJUB68). In some of these cases, the binding is
likely weakened by intramolecular interactions, similar to the
contributions of the nitro groups in 2,4,6-trinitrobenzene-1,3,5-
triamine (CSD ref. TATNBZ03,59 Fig. 8(f), seen earlier in
Fig. 6(b)). Finally, to the right of the map, we see the strongest
repulsive interactions from nitro groups in proximity to other
nitro or aromatic nitrogen groups, such as the nitro–oxidiazole
interaction in 3-(3,5-dinitro-1H-pyrazol-4-yl)-4-nitro-1,2,5-
oxadiazole (CSD ref. LAYSOV,69 Fig. 8(f)).
3.3 A case study: ethenzamide co-crystals

We conclude by demonstrating how these models and methods
can be used in the more practical context of crystal design.
Ethenzamide is a common analgesic that has been the subject
of numerous co-crystallization studies72–81 due to the poor
solubility of its homocrystalline form.82 On the Cambridge
Structure Database, there are currently 47 reported co-crystals of
ethenzamide, of which there are 29 crystals that t within the
scope of this study and contain complete crystallographic
information. The co-forming molecules in these co-crystals are
primarily hydrobenzoic acids, nitrobenzoic acids, and dicar-
boxylic acids, as well as a 3-toluic acid co-crystal77 and two
saccharin co-crystals.81 A list of these crystals with their exper-
imental and computed properties is given in ESI Appendix A4.†

We rst compute the relaxed energies of the co-crystals and
their molecular components, following the procedures outlined
in ESI Appendix A† to obtain the reference geometries and
binding energies of each crystal. For reference, our previous
model built using eqn (9) achieves an RMSE of 0.45 kJ mol−1

and anMAE of 0.35 kJ mol−1 more than sufficient to distinguish
between the different categories of co-forming molecules, yet
unable to provide any guidance in isomeric contexts (we have
included a labeled parity plot in Fig. S10†). Following the
procedure outlined in ESI Appendix B,† we identify the func-
tional groups within the ethenzamide and estimate the contri-
bution of their interactions to the molecular binding.

As shown in Fig. 9, unsurprisingly, most of the binding
interactions occur due to the acetamide group in the ethenza-
mide, with a 3.5 kJ mol−1 difference between the weakest
contributing acetamide motif and the most strongly contrib-
uting ethyl group, which is beyond the error in the overall
model. From Fig. 9, we can also see that, while the ethyl and
benzene-like rings behave similarly to other similar motifs
across the entire dataset, the acetamide and ether groups are
generally more and less stabilizing, respectively, than their
counterparts at large. With the ether groups, this is reasonable –
the geometry of the ether prevents much intermolecular inter-
action. With the acetamide group, this demonstrates that there
is a large range of engineering that can happen to affect crys-
talline stability, which might be benecial when considering
molecular solubility.

From here, we use the PCovR of acetamide groups to identify
other acetamide motifs that behave similarly or dissimilarly to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Distribution of energetic contributions for the functional
groups of ethenzamide. Following the procedure outlined in 3.2, we
have computed the estimated contribution to the binding energy ~ds.
Similar to Fig. 2, we have arranged the functional groups in order of
average contribution, and the lines on each plot denote each group's
extreme and mean contributions. Wider sections of the violin plot
represent a higher probability that members of the population will take
on the given value; the skinnier sections represent a lower probability.
Here, darker sections refer to the distribution in the functional groups
of the ethenzamide molecules, with lighter sections showing the
distribution for the same functional group across the entire training
set.

Fig. 8 The interactions of nitro groups. (Left) Principal Covariates Regression (PCovR) map, where the color of each point denotes the estimated
cohesive interaction of that motif. (Right) Select crystalline configurations and energy assignments: CSD ref. (a) TIJKEC,65 (b) KATZEN,66 (c)
CUPYUJ,67 (d) KEDJUB,68 and (e) LAYSOV.69 We also highlight the nitro group of TATNBZ03 59 from Fig. 6(b) in (f). In each panel on the right, the
bottom row shows the total lattice energy of the crystal (in kJ mol−1) and the correspondingmolecules where the atoms have been recolored by
their estimated lattice energy contribution (on the same scale as on the left panel).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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those we see in the known ethenzamide co-crystals, as high-
lighted in Fig. 10. We rst train our PCovR model on the acet-
amide groups in the training set, and project those from the
ethenzamide dataset into the corresponding latent space.
Because the interactions across the training set are much more
diverse than within the ethenzamide set, we plot along the rst
and third covariate to show the best distinction between the two
datasets.k We dene chemical similarity based upon the
Euclidean distance in PCovR space – that is, we identify acet-
amide groups that appear at a similar place to those in ethen-
zamide co-crystals on the map in Fig. 10. Note that because we
compute the distance using all covariates, some points that
seem extremal in Fig. 10 are not, as they are closer or further
from the ethenzamide acetamide groups in other dimensions.

We highlight the molecules that form the most similar
acetamide networks to those in the ethenzamide dataset in
Fig. 10 using an (o) marker and showing the molecule below.
Those closest in PCovR space are molecules that form single
acetamide homosynthons (e.g., Fig. 10(b) and (c), CSD ref.
MEGDOS84 and LORMOV85) or heterosynthons with a carboxylic
acid group (e.g., Fig. 10(a), CSD ref. HXBNZM83).

Perhaps more interesting are the acetamide groups that
form different interactions, highlighted in the bottom panel in
Fig. 10. These groups give insight into the other supramolecular
synthons that form with ethenzamide across a range of stabi-
lizing and destabilizing contributions. We see strong
Chem. Sci., 2023, 14, 1272–1285 | 1281
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Fig. 10 The interactions of acetamide groups. (Top) Principal Cova-
riates Regression (PCovR) map, where the color of each point denotes
the estimated cohesive interaction of that motif. Here we have plotted
along the first and third covariates to best distinguish the acetamide
groups of the known ethenzamide co-crystals from other groups. The
markers correspond to: (x) known ethenzamide co-crystals, (o) crys-
tals with similar acetamide interactions, and (*) crystals with dissimilar
acetamide interactions. (middle) Crystals and molecules with similar
acetamide interactions as those in the known ethenzamide co-crys-
tals, including CSD ref. (a) HXBNZM,83 (b) MEGDOS,84 and (c) LOR-
MOV.85 (bottom) Crystals dissimilar acetamide interactions to the
known ethenzamide co-crystals: CSD ref. (d) AJEREM,86 (e)
CAHOAM,87 (f) XAVZUP,88 (g) LIFNOE,89 (h) KEPDIU90 and (i) ATZCBX.91

Insets have been ordered from highest to lowest similarity to the
interactions in the known ethenzamide co-crystals.
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interactions in triazole-5-carboxaldehyde (Fig. 10(i), CSD ref.
ATZCBX91), where the acetamide group forms a heterosynthon
with the triazole group, and in O-carbamoylhydroxylamine
1282 | Chem. Sci., 2023, 14, 1272–1285
(Fig. 10(e), CSD ref. CAHOAM87), where the small size of the
molecule facilitates both multiple homosynthons between
acetamide groups, as well as heterosynthons with the oxygen of
the hydroxylamine groups. In 2-oxopyrrolidineacetamide dihy-
drate (Fig. 10(g), CSD ref. LIFNOE89), a network of hydrogen
bonds is formed between acetamide groups and water mole-
cules. In azidoacetamide (Fig. 10(f), CSD ref. XAVZUP88), we see
an acetamide homosynthon formed at an offset so that the
azide group can stack directly above the NH/O interaction. We
see weaker interactions in tetrazole-5-carboxamide (Fig. 10(h),
CSD ref. KEPDIU90), where the acetamide group is interacting
with the azole group, which, when compared with triazole-5-
carboxaldehyde (Fig. 10(i)), demonstrates a large range for
acetamide-azole synthon binding. Finally, in 1-
methoxyaziridine-2,2-dicarboxamide (Fig. 10(d), CSD ref.
AJEREM86), despite multiple acetamide interactions, there is
a weaker acetamide network, likely due to the geometry of the
molecule itself.

We do not suggest that these molecules could be used
directly as co-formers; the training set was obtained with
diversity as the primary goal, with no regard for availability,
toxicity, ease of synthesis, or stability. Instead, each of these
related and unrelated crystals gives insight into the types of
interactions that may beget new ethenzamide co-crystals. The
molecules shown in Fig. 10 can be used as inspiration to
identify co-former candidates from libraries of biocompatible
compounds and to guide future crystallization studies.

4 Conclusions

Molecular crystallization is a complex, multi-faceted process,
that poses tremendous challenges to both quantitative
modeling, and to the derivation of qualitative design principles.
In this work, we propose a data-driven strategy to build a data-
base of the interaction motifs that are found in a diverse set of
molecular crystals, to determine semi-quantitatively their
contribution to the lattice energy, and to generate a library of
molecular motifs that can be used to interpret the stability of
known crystals and to assist the design of new ones.

In doing so, we have to strike a balance between several
conicting goals. By selecting structures from the CSD with
maximal structural diversity, we ensure that we cover a broad
range of chemical and packing motifs, while remaining focused
on structures that are known to be experimentally realizable. By
using a general-purpose, atom-centered structural representa-
tion that is capable of describing arbitrary structural correla-
tions, we ensure that our data analysis is exible and that it does
not incorporate pre-conceived notions about molecular
bonding. At the same time, we ensure that the model focuses on
the features that are most relevant to determine crystal stability
by building a remnant descriptor that mimics the denition of
the lattice energy as a difference between the total energies of
the crystal and its constituents.

The resulting models achieve a respectable mean absolute
error of about 0.4 kJ mol−1 in predicting the atomic contribu-
tions to crystal stability using these descriptors that gives us
a semi-quantitative estimate of the contribution of each atomic
© 2023 The Author(s). Published by the Royal Society of Chemistry
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environment to the lattice energy and to compare between
different co-crystals or between polymorphs that are stable at
very different conditions. In order to translate these atomic
contributions in a language that can be useful to crystal
chemistry, we then assemble them to estimate the stabilizing
power of traditional chemical groups (carboxylic acids, amines,
.) and build data-driven maps that facilitate the comparison of
different chemical environments by expressing simultaneously
the structural variability and correlation with the lattice energy
contribution. For each chemical moiety we provide an interac-
tive map (on Materials Cloud48) that allows to juxtapose
different types of crystal environments, to identify structural
patterns that are either stabilizing or destabilizing, and to
contrast them with conventional motifs (e.g. hydrogen-
bonding), demonstrated here for a few selected cases. As we
demonstrate for phenanthrene, it is also possible to use these
maps to compare polymorphs of the same molecule, and to
analyze molecular motifs for a structure that is not part of our
original reference set. With these tools, we aim to guide those
designing molecular co-crystals in identifying suitable co-
formers, as demonstrated for the analgesic ethenzamide.

We hope that this library of molecular motifs will prove
useful to applications to specic crystal-design problems. More
broadly, we believe that the general ML protocol that we follow,
combining regression of the ultimate target property with
unsupervised analysis of molecular motifs, can inspire similar
applications to the study of other classes of materials, ranging
from metal and covalent organic frameworks to self-assembled
monolayers and biological systems.

Data availability

Data for this paper, including interactive visualizations and
labelled molecular motifs, are available at MaterialsCloud at
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