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ybrid DFT with numerical atomic
orbitals predicts molecular crystal lattice energies
with unprecedented accuracy†

Alastair J. A. Price, a Alberto Otero-de-la-Roza *b and Erin R. Johnson *a

Molecular crystals are important for many applications, including energetic materials, organic

semiconductors, and the development and commercialization of pharmaceuticals. The exchange-hole

dipole moment (XDM) dispersion model has shown good performance in the calculation of relative and

absolute lattice energies of molecular crystals, although it has traditionally been applied in combination

with plane-wave/pseudopotential approaches. This has limited XDM to use with semilocal functional

approximations, which suffer from delocalization error and poor quality conformational energies, and to

systems with a few hundreds of atoms at most due to unfavorable scaling. In this work, we combine

XDM with numerical atomic orbitals, which enable the efficient use of XDM-corrected hybrid functionals

for molecular crystals. We test the new XDM-corrected functionals for their ability to predict the lattice

energies of molecular crystals for the X23 set and 13 ice phases, the latter being a particularly stringent

test. A composite approach using a XDM-corrected, 25% hybrid functional based on B86bPBE achieves

a mean absolute error of 0.48 kcal mol−1 per molecule for the X23 set and 0.19 kcal mol−1 for the total

lattice energies of the ice phases, compared to recent diffusion Monte-Carlo data. These results make

the new XDM-corrected hybrids not only far more computationally efficient than previous XDM

implementations, but also the most accurate density-functional methods for molecular crystal lattice

energies to date.
1 Introduction

The accurate description of molecular crystals is a challenge for
current computational methods. Molecular crystal structures
typically have unit cells containing hundreds of atoms, meaning
a high computational expense, and feature a delicate balance
between weak non-covalent (intermolecular) and strong cova-
lent (intramolecular) interactions, both of which have to be
described accurately by the chosen method. The computational
description of these systems is important in the study of poly-
morphism, which is particularly prevalent in molecular crys-
tals,1,2 pressure-temperature phase diagrams,2 and in any
discipline in which the solid form of a molecular material
controls a property of interest: pharmaceuticals (solubility/
bioavailability and patentability3–6), foodstuffs (organoleptic
properties7), energetic materials (sensitivity to detonation8–10),
sity, 6274 Coburg Rd, Halifax, B3H 4R2,
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2

organic semiconductors (charge carrier mobility11–15), and
others.12

Having a method that is able to rank molecular crystal
structures accurately is essential for crystal structure prediction
(CSP) – the prediction of the crystal structure of a compound
from its molecular diagram only.6,16,17 A reliable CSP protocol
would be extremely useful in the disciplines listed above, as it
would allow circumventing experimental solid-form screening
processes, which are expensive and time-consuming,18–22 and
would provide a detailed energy–structure–function map for the
chosen molecule and property of interest.11,12 To gauge progress
in the eld, the Cambridge Crystallographic Data Centre
(CCDC) periodically runs CSP blind test competitions in which
participant groups try to predict the observed crystal structures
of a few molecular compounds.23–28 The 5th blind test, held in
2011, showed that nal ranking of the candidate structures
using dispersion-corrected DFT is quite effective, and far
superior to force elds in most cases,27,29–32 and this conclusion
was further supported by the 6th blind test.28 Although other
techniques such as fragment-based methods,2,33–37 wave-
function theory,38,39 and machine-learning methods37,40 have
been used, DFT is arguably the current workhorse for modeling
molecular materials.17,41–54

Dispersion-corrected functionals based on the exchange-
hole dipole moment (XDM) model,55–58 in particular the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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semilocal functional B86bPBE-XDM,59,60 have shown excellent
performance for description of molecular crystals44,45,57,61 and
non-covalent interactions in general.62,63 In its current plane-
wave/pseudopotentials implementation, while still effective
for CSP, B86bPBE-XDM is affected by outstanding drawbacks
shared by all semilocal functionals. First, the use of a plane-
wave basis set makes the computational requirements scale
signicantly with system size, such that calculations involving
unit cells with hundreds to thousands of atoms are on the verge
of being infeasible. Second, GGA functionals spuriously over-
stabilize systems affected by delocalization error,64–66 which
negatively impacts the modeling of molecular salts, acid–base
co-crystals, hydrogen bonding, and halogen bonding, to list
only a few examples.44,67–69 Lastly, GGA functionals give a poor
description of conformational energies, which are important
when comparing crystal polymorphs composed of exible
molecules.45,70–72 Notably, several studies have demonstrated the
poor performance of B86bPBE-XDM for relative lattice energies
in cases where delocalization error is prevalent,44,45,70–72

emphasizing the need for hybrid DFT.
In this work, we address these shortcomings by combining

XDM functionals with the numerical atomic orbital (NAO) basis
sets in the Fritz Haber Institute ab initio materials simulations
(FHI-aims) package.73–76 FHI-aims offers near linear scaling with
system size for self-consistent DFT calculations73,74 and enables
relatively inexpensive use of hybrid functionals,75 compared to
plane-wave approaches. This is important because hybrid
functionals can be used to mitigate delocalization error66,68,77–81

and are generally more accurate than GGAs for conformational
energies.72 One drawback of NAOs is the possible appearance of
basis-set incompleteness error (BSIE), which is known to have
a deleterious effect on the description of non-covalent
interactions,82–84 although we show that BSIE can be effectively
mitigated by parametrization of the dispersion damping func-
tion. Dispersion-corrected DFT methods with NAOs have been
applied to molecular crystals in combination with the Tka-
chenko–Scheffler (TS)85 and many-body dispersion (MBD)86,87

family of corrections.49–53

To assess the new XDM-corrected hybrid functionals, we
focus on molecular crystal lattice energies, as they are the key
property for CSP ranking88 and one of the most demanding tests
for computational methods regarding non-covalent interac-
tions.2 The lattice energy of a molecular crystal is the energy
required to separate the crystal at its equilibrium geometry into
its component molecules. This is an essential parameter when
assessing the accuracy of computational methods for modeling
molecular crystals because the lattice energy is determined by
a delicate balance between intermolecular and intramolecular
interactions.2 The accurate calculation of lattice energies is also
a stricter performance test for computational methods than
energy differences between molecular crystal pairs because the
benets from error cancellation are minimized, while longer-
range interactions and many-body effects become far more
important. Here, we consider the lattice energies of the X23
set35,38,39,57,89,90 and of 13 ice phases, for which diffusion Monte
Carlo (DMC) data has been generated.91 The latter is a particu-
larly stringent test because determining accurate lattice
© 2023 The Author(s). Published by the Royal Society of Chemistry
energies for ice relies on a ne balance of dispersion, electro-
static, and many-body induction effects. At present, there is no
functional that gives a good description of the absolute and
relative energies of all ice phases,91 and therefore the reliable
treatment of water and ice with DFT methods remains an
unsolved problem.91–93

Herein, we show that the NAO implementation of XDM-
corrected functionals provides excellent performance for the
description of molecular dimers, ice, and molecular crystal
lattice energies in general, with high computational efficiency.
In particular, a composite method combining B86bPBE-XDM
and its sequent 25% hybrid functional achieves mean abso-
lute errors (MAEs) for the X23 and ice lattice energies of
0.48 kcal mol−1 and 0.19 kcal mol−1, respectively. For the X23,
the reported MAE is roughly half the previous best value,
making the new XDM methods the most accurate DFT
approaches for modeling of molecular materials currently
available.
2 Methods
2.1 Theory

A summary of the XDM dispersion model and its implementa-
tion in the FHIaims package is presented in this section. More
details about the XDM method can be found in previous works
(see ref. 58 and references therein). In XDM, the dispersion
energy is calculated using a damped asymptotic pairwise
dispersion expression,

EXDM ¼ �
X

n¼6;8;10

X
i. j

Cn;ij

Rn
ij þ Rn

vdW;ij

; (1)

which is then added to the energy from the base density
functional,

E = Ebase + EXDM. (2)

In eqn (1), i and j run over atoms, Rij are the interatomic
distances, Cn,ij are the dispersion coefficients, and the RvdW,ij are
damping lengths calculated as

RvdW,ij = a1Rc,ij + a2, (3)

with

Rc;ij ¼ 1

3

2
664
�
C8;ij

C6;ij

�1
2 þ

�
C10;ij

C8;ij

�1
2 þ

�
C10;ij

C6;ij

�1
4

3
775: (4)

The a1 and a2 parameters are the damping function coeffi-
cients, which are determined for every functional and basis set
combination by minimizing the root-mean-square percent error
in binding energies for 49 small molecular dimers, relative to
high-level reference data (the Kannemann–Becke set,77,94,95

KB49). The damping function is therefore used to match the
XDM dispersion contribution to the particular exchange-
repulsion behavior of the chosen functional, as well as to
Chem. Sci., 2023, 14, 1252–1262 | 1253
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mitigate any (moderate) BSIE from an incomplete basis set.
BSIE generally causes some overbinding of intermolecular
dimers provided reasonable basis sets of at least double-z
quality are used. Therefore, if the dispersion energy is damped
slightly more strongly for an incomplete basis set, the overall
binding energies can provide a good approximation to basis-set
limit results. Importantly, once the a1 and a2 parameters are
determined, they remain the same for every system to which the
functional and basis set are applied, molecular or periodic, and
are never re-parametrized for specic cases.

The dispersion coefficients in eqn (1) (Cn,ij) are calculated
non-empirically from the self-consistent electron density, its
derivatives, and the kinetic energy density. It has been shown
that the dependence of these coefficients on the chemical
environment (the electronic many-body dispersion effects) is
essential to the accuracy of the XDM method.96 Calculation of
three-body and higher-order dispersion coefficients, of which
the Axilrod–Teller–Muto (C9) is the leading term, is possible in
XDM,97 but we have found that including this term has either
little impact or degrades the accuracy of XDM-corrected
functionals.96

The performance of an XDM-corrected method depends
critically on the base functional with which it is paired. In this
article, we consider two generalized-gradient-approximation
(GGA) functionals: PBE,60 due to its popularity in the solid-
state community, and B86bPBE,59,60 which is our GGA func-
tional of choice when non-covalent interactions are dominant,
thanks to its ability to accurately describe non-bonded repul-
sion.57,62,95,98,99 In addition, we consider multiple hybrid density
functionals with exchange-correlation (XC) energies of the form

EXC = (1 − aX)E
PBE/B86b
X + aXE

SD
X + EPBE

C . (5)

The exchange GGA is either PBE or B86b, aX controls the frac-
tion of exact exchange used in the functional, and the correla-
tion contribution comes from PBE. We note that ESDX is the
exchange energy obtained using the exact formula for a single
Slater determinant (as in Hartree–Fock theory) with the self-
consistent orbitals as input. The PBE0 functional100 corre-
sponds to the choice of PBE exchange and aX = 0.25. Func-
tionals with 50% exact exchange (“half-and-half”) have been
shown to minimize delocalization error,67,68,101 so we also
considered “PBE-50” with PBE exchange and aX = 0.5. Given the
good behavior of B86bPBE for intermolecular closed-shell
repulsion, we dene 25% and 50% hybrids built on B86b
exchange as well, termed B86bPBE-25 and B86bPBE-50,
respectively.68 Finally, we included the range-separated HSE06
hybrid functional102 as its use is fairly common in solid-state
applications.

2.2 Computational details

All calculations in this work were carried out with the FHI-aims
program (version 210513). The XDM method, B86b exchange,
and the ensuing hybrid functionals, were all implemented in
a copy of the code. The basis sets used for the calculations were
either the “light” or the “tight” settings, which correspond to
double-z and triple-z basis sets, respectively. Based on our
1254 | Chem. Sci., 2023, 14, 1252–1262
initial exploration, the choice of integration mesh can
substantially affect the stability of the geometry optimization
procedure for molecular crystals. We therefore chose to always
use the integration meshes from the tight settings, with up to
434 angular grid points.

The memory requirements of hybrid functional calculations
with the tight basis set exceeded our current computational
resources, so we approximated the hybrid/tight result using
a correction calculated by evaluating the energy difference
between tight and light bases at the GGA level:

Etight
hybrid z Elight

hybrid + (Etight
GGA − Elight

GGA). (6)

This type of basis-set correction is analogous to using the
difference between large- and small-basis MP2 energies to
correct small-basis CCSD(T) energies, as in common practice in
wavefunction theory calculations.103 In addition to the XDM-
corrected functionals mentioned above, we also considered
the Tkachenko–Scheffler (TS)85 and many-body dispersion
(MBD)86,87 methods for comparison, since they are already
implemented in FHIaims and are routinely used for molecular
crystals and CSP.49–53 In the case of MBD, we usedMBD@rsSCS87

as recommended by the FHI-aims documentation. In the rest of
the article, MBD@rsSCS is referred to simply as MBD.

All calculations for the KB49,77,94 S22×5,104 and S66×8 105,106

benchmarks of gas-phase dimer binding energies, as well as the
3B-69107 set of three-body interaction energies in molecular
trimers, were carried out as single-point energy evaluations at
the literature geometries. This is standard for these benchmark
sets and is done to facilitate direct comparison with the
CCSD(T) reference data. Since the S22×5, S66×8, and 3B-69 all
contain dimer and trimer geometries far from equilibrium,
geometry optimization would be meaningless for these systems.
Conversely, full geometry optimizations were performed with
each functional on both the molecular crystals and isolated
molecules forming the X23 set89,90,108 of lattice energies. The
geometries of the 13 ice polymorphs forming the ICE13 set91

were also fully optimized, although the geometry of the isolated
water molecule was kept xed, as described in ref. 91, for
consistency. For the crystals, reciprocal-space k-point grids were
selected with the number of points, n1 × n2 × n3, given by

ni = int[max(1,Rkjbij + 0.5)], (7)

where jbij is the length of the ith reciprocal lattice vector and Rk

= 50 bohr.
3 XDM parametrization

Before using the new FHIaims XDM implementation, we rst
need to parametrize the XDM damping function (eqn (3)) and
nd the optimal a1 and a2 for all chosen functional and basis set
combinations. This is done in the same way as in previous
studies, by minimizing the root-mean-square percent (RMSP)
error in the binding energies of the 49 molecular dimers
comprising the Kannemann–Becke set.77,94 The optimal
parameter values, along with the resulting KB49 error statistics,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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are collected in Table 1. It is important to note that these a1 and
a2 values are xed for each particular functional and basis set
combination, and do not change with the system to which XDM
is applied.

The errors shown in Table 1 are comparable to those ob-
tained with our previous plane-wave (Quantum ESPRESSO57,109)
and Gaussian basis-set (using Gaussian110 or psi4 111 with the
postg program112) results contained in the current XDM
parametrization database.113 For example, the MAPE for
B86bPBE/tight in Table 1 (11.0%) is very close to the MAPE
obtained for the same functional using the projector
augmented wave (PAW) method114 (11.8%), plane waves plus
norm-conserving pseudopotentials (12.4%), and the aug-cc-
pVTZ Gaussian basis set (11.4%). The MAPEs obtained with
other functionals, such as PBE, PBE0, or HSE06, also deviate
from those in the parametrization database by around 1% at
most. This is a strong indication that our FHIaims XDM
implementation is working correctly.

Focusing on the results for the tight basis set, Table 1 shows
that hybrid functionals outperform GGAs, and that B86b-based
functionals consistently give lower errors than the analogous
PBE-based functionals. This is also in agreement with our
previous works.57,77 The lowest errors among the functionals
studied are obtained for the B86bPBE-25 hybrid, with a MAE of
0.32 kcal mol−1 and a MAPE of 8.4%.

Because the tight basis set is too expensive for routine
geometry optimizations, we resort to using the smaller, light
basis set and relying on the XDM damping function to partially
alleviate any BSIE.77,82 Table 1 also shows the average errors for
the light (double-z) basis set. While lower errors are obtained
with the tight (triple-z) basis set, the good performance of the
light basis set indicates a reasonably low impact on the accuracy
Table 1 Optimal XDM parameters (a1 and a2) for selected functionals,
with exact-exchange mixing fractions (aX) indicated

a

Functional aX a1 a2 (Å) MAE MAPE

Light basis set
PBE 0.00 0.5312 2.3270 0.67 19.0
B86bPBE 0.00 0.8219 1.2069 0.54 14.9
HSE06 0.11b 0.3268 3.0431 0.52 13.6
PBE0 0.25 0.3302 3.0042 0.46 12.5
PBE-50c 0.50 0.0000 4.1971 0.38 9.8
B86bPBE-25 0.25 0.5235 2.1995 0.35 9.7
B86bPBE-50 0.50 0.0831 3.7362 0.30 8.5
Tight basis set
PBE 0.00 0.6438 1.8533 0.50 14.1
B86bPBE 0.00 0.8976 0.8518 0.38 11.0
HSE06 0.11b 0.5020 2.3000 0.46 11.1
PBE0 0.25 0.5053 2.2527 0.41 10.2
PBE-50 0.50 0.3983 2.5986 0.42 9.6
B86bPBE-25 0.25 0.6546 1.6097 0.32 8.4
B86bPBE-50 0.50 0.4887 2.1855 0.36 8.5

a The mean absolute errors (MAE, in kcal mol−1) and mean absolute
percent errors (MAPE) for the KB49 t set are also shown. The best
overall results for each basis set are indicated in bold. b This value is
the range-separation parameter (u) instead of the exact-exchange
fraction. c The optimal a1 value was negative, so it was set to zero
during the parametrization.

© 2023 The Author(s). Published by the Royal Society of Chemistry
caused by BSIE. This is in stark contrast to our previous results
using the double-z basis set in the SIESTA NAO code,115,116where
the MAPE was in the 20% to 30% range and could not mitigated
by using counterpoise corrections. The differences between
FHI-aims and SIESTA are likely due to the different strategies
employed by their developers for NAO construction (see ref. 73
and 115 for details). The small magnitude of the BSIE with FHI-
aims can be conrmed by comparing the dispersion-
uncorrected binding energies calculated with the light and
tight basis sets using the same functional. For example, the
mean absolute difference between the light and tight binding
energies obtained using B86bPBE (without XDM) is
0.32 kcal mol−1, with individual errors not exceeding
0.75 kcal mol−1.

4 Molecular benchmarks

In order to build a method that works reliably for molecular
crystals, it is imperative to avoid error cancellation as much as
possible. Therefore, it is interesting to examine whether indi-
vidual interactions between monomer pairs are accurately rep-
resented. For this reason, we rst evaluate the performance of
the new implementation of XDM for selected molecular
benchmarks comprising gas-phase dimers, and compare it to
the TS85 and MBD86,87 dispersion corrections also implemented
in FHI-aims. We consider the S22×5 104 and S66× 8105,106

benchmarks, which comprise non-covalent interaction energies
of small molecular dimers at and around their equilibrium
geometries. It is worth noting that the single damping param-
eter employed in MBD was t to minimize the mean absolute
relative error in the S66×8 binding energies,87 although this
parameter was only t for use with the tight setting (termed the
“tier 2” basis set in ref. 87) and, unlike the XDM damping
parameters, is not basis-set dependent. TS and MBD are paired
only with the PBE, HSE06, and PBE0 functionals for which
damping parameters are available.

The S22×5 and S66×8 error statistics for the various
combinations of functional, basis set, and dispersion correction
are shown in Table 2. As for the KB49 set, the average errors are
lower for the tight basis set, and hybrid functionals slightly
outperform GGAs regardless of the dispersion correction
employed. The XDM values in the table are also similar to those
reported for the same benchmarks using the aug-cc-pVTZ
Gaussian basis set.58 While all basis set, functional, and
dispersion method combinations perform generally well,
B86bPBE-25-XDM consistently gives the lowest errors by a small
margin, with MAEs in the range of 0.2–0.4 kcal mol−1.

Beyond-pairwise intermolecular interactions are also
important in molecular crystals, since they represent a small
but signicant fraction of the total lattice energy.2,117 For this
reason, we consider as an additional benchmark the 3B-69 set of
molecular trimers.107 In this case, the reference data corre-
sponds to the difference between the trimer binding energy and
the pairwise sum of the constituent dimer binding energies.
This is a good measure of whether the considered methods can
describe non-additive many-body intermolecular interactions96

and, as such, highlight their performance in the treatment of
Chem. Sci., 2023, 14, 1252–1262 | 1255
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Table 2 Mean absolute errors (in kcal mol−1) for the S22×5, 104

S66×8,105 and 3B-69 107 molecular benchmarks using selected func-
tionals and dispersion correctionsa

Functional

Dispersion S22×5 S66×8 3B-69

Correction Light Tight Light Tight Light Tight

PBE TS 0.57 0.39 0.60 0.38 0.078 0.080
HSE06 TS 0.63 0.45 0.64 0.38 0.046 0.042
PBE0 TS 0.58 0.42 0.59 0.33 0.044 0.039
PBE MBD 0.55 0.44 0.44 0.28 0.113 0.113
HSE06 MBD 0.53 0.48 0.45 0.29 0.069 0.066
PBE0 MBD 0.50 0.46 0.40 0.26 0.060 0.055
PBE XDM 0.58 0.44 0.45 0.29 0.101 0.099
B86bPBE XDM 0.46 0.34 0.35 0.20 0.050 0.052
HSE06 XDM 0.52 0.45 0.41 0.28 0.054 0.055
PBE0 XDM 0.49 0.43 0.38 0.25 0.044 0.045
PBE-50 XDM 0.47 0.47 0.37 0.28 0.047 0.030
B86bPBE-25 XDM 0.39 0.35 0.30 0.19 0.037 0.040
B86bPBE-50 XDM 0.40 0.41 0.32 0.24 0.055 0.051

a The best overall results in each column are indicated in bold.

Table 3 Mean absolute errors (in kcal mol−1) for the X23 solid-state
benchmark with selected functionals, dispersion corrections, and basis
sets

Functional Dispersion Light Tight

Full geometry relaxation
PBE TS 4.17 3.14
HSE06 TS 4.57 —
PBE0 TS 4.44 2.39a

PBE MBD 1.61 0.94
HSE06 MBD 2.12 —
PBE0 MBD 1.98 0.84a

PBE XDM 1.14 1.04
HSE06 XDM 1.20 —
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beyond-pairwise effects. Table 2 shows that BSIE has less
impact on the three-body energies than it does for the pairwise
binding energies, with the light and tight MAEs being approx-
imately the same.

MBD might be expected to be the most accurate dispersion
correction for the 3B-69 benchmark due to the many-body
nature of the interactions. However, we observe that all three
dispersion methods provide roughly comparable performance,
with XDM being slightly superior to MBD for the same func-
tional and basis set combination. Instead, it is the choice of
base functional that is the determining factor, with PBE
consistently giving the largest errors, while use of either B86b or
exact exchange improves performance in the treatment of three-
body interactions. This conrms our previous observation that
the choice of base functional is critical for accurate treatment of
beyond-pairwise non-covalent interactions.118 Overall, XDM
paired with either the B86bPBE-25 or PBE-50 hybrid functionals
(depending on basis set) gives the lowest MAE. The fact that
XDM (which does not incorporate a three-body dispersion
contribution) outperforms MBD (which does) for the descrip-
tion of three-body intermolecular interactions suggests that
electronic many-body effects are muchmore important than the
atomic many-body dispersion effects encapsulated by the
Axilrod–Teller–Muto term.96
PBE0 XDM 1.14 —
PBE50 XDM 1.25 —
B86bPBE XDM 0.83 0.72
B86bPBE-25 XDM 0.81 —
B86bPBE-50 XDM 1.06 —
Single points at GGA/light geometries
PBE0//PBE MBD 1.97 1.07b

PBE0//PBE XDM 1.01 0.96b

PBE-50//PBE XDM 1.00 0.87b

B86bPBE-25//B86bPBE XDM 0.66 0.48b

B86bPBE-50//B86bPBE XDM 0.70 0.53b

a Literature value obtained from ref. 87. b The hybrid energies with the
light settings are corrected using the difference between light and tight
results at the GGA level (via eqn (6)).
5 X23 lattice energies

Reference lattice energies for molecular crystals are typically
derived from experimental sublimation enthalpies119 using
a back-correction for vibrational effects.35,38,39,57,89,90 The X23
set,89,108 which comprises 23 reference lattice energies, has
become the standard benchmark and DFT methods have been
extensively tested using this set.38,57,89,120,121 Here, we use the
most recent re-determination of the X23 reference data90 to
assess the performance of the various functionals and
1256 | Chem. Sci., 2023, 14, 1252–1262
dispersion corrections examined in this work. The error statis-
tics are shown in Table 3.

The table is separated into two sections, with the upper part
showing results obtained with full geometry optimization of the
molecular crystals at each listed level of theory. As noted in the
computational methods section, we were only able to perform
calculations using the tight basis set for GGA functionals due to
the high memory requirements for hybrids. However, literature
results87 for PBE0-TS and PBE0-MBD with tight settings (which
used the earlier X23 reference data89) are provided as these
combinations give the lowest MAEs obtained with each of these
dispersion corrections. We note that updating the reference
data causes the MAEs to change by at most 0.25 kcal mol−1,
although oen the deviation is lower.

As observed previously,87,108 TS massively overbinds these
molecular crystals. With TS and MBD, there is a signicant
difference between the light and tight results, which occurs
because the damping parameters within these dispersion
corrections are not optimized for each basis set independently.
As a result, XDM signicantly outperforms MBD with the light
basis set, although the twomethods give comparable MAEs with
the tight basis. Also, the PBE-XDM and B86bPBE-XDM MAEs
with light are in excellent agreement with previous results ob-
tained using the Quantum ESPRESSO plane-wave code.62

B86bPBE-XDM with the tight basis set yields the lowest MAE
(0.72 kcal mol−1) yet obtained for the X23 set with any
dispersion-corrected GGA, although this is largely due to the
improvement in the reference data (the MAE compared to the
values in ref. 89 is 0.90 kcal mol−1). For comparison, the MAE
for PBE0-MBD in Table 3 is 0.84 kcal mol−1 and the lowest MAE
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Relative energies of the a and b polymorphs of oxalic acid
computed with various XDM-corrected GGA and hybrid functionals
with the light basis set, evaluated at the corresponding GGA geome-
tries. The a form is the most stable experimentally.
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reported by Thomas et al.122 for the X23 is 0.81 kcal mol−1, ob-
tained with the TPSS-D3 dispersion-corrected meta-GGA. (The
D3 dispersion correction by Grimme et al. is not available in
FHIaims, so a direct comparison was not possible.) The best
GGA results given by Thomas et al.122 are 0.93 kcal mol−1

(B86bPBE-XDM with plane-waves, a slightly outdated XDM
implementation, and only for the C21) followed by PBE-D3 at
0.98 kcal mol−1. Regarding the dispersion-corrected hybrid
functionals, the best results are obtained with B86bPBE-25/light
(0.81 kcal mol−1 with either the Dolgonos et al.90 or the older
Reilly et al.89 reference data) followed by PBE0-MBD/tight
(0.84 kcal mol−1), with the former being considerably more
efficient. For comparison, Thomas et al.122 report MAEs of
0.93 kcal mol−1 for PBE0-MBD at the PBE-TS optimized geom-
etries and 1.03 kcal mol−1 for PBE0-D3.

Computational efficiency is an important consideration in
CSP, where hundreds to thousands of candidate crystal struc-
tures must be ranked with DFT for a given compound.
Composite approaches, in which a relatively low level of theory
is used for geometry optimization, followed by single-point
energy evaluation at a higher level of theory, are an excellent
strategy to reduce the computational cost without losing accu-
racy.46,123 In this work, we consider composite approaches that
use dispersion-corrected GGA functionals (PBE-MBD, PBE-
XDM, or B86bPBE-XDM) and the light basis set for geometry
optimization. Single-point energies are then evaluated with the
corresponding 25% or 50% hybrid functionals and the light
basis set and, in some cases, also with the same GGA and the
tight basis set. This allows us to obtain energies (via eqn (6))
with an accuracy comparable to what would be expected from
full hybrid/tight calculations, but with a drastically reduced
computational cost. MAEs in the X23 lattice energies obtained
using this type of composite approach are shown in the lower
portion of Table 3. The notation in the table is high-level
(hybrid)//low-level (GGA).

The MAEs obtained with the composite approach using
B86bPBE-25-XDM and B86bPBE-50-XDM are the lowest errors
yet obtained for the X23 set with any DFT method. The
composite B86bPBE-25-XDM//B86bPBE-XDM approach with
basis-set correction gives an MAE of only 0.48 kcal mol−1, well
below the usual target of 1 kcal mol−1 deemed to be chemical
accuracy and almost exactly on the 2 kJ mol−1 mark commonly
cited as the average energy difference between polymorphs.124 It
is also reassuring that the average error for molecular crystals is
similar to that for dimers formed from molecules with similar
sizes (Table 2), for which the MAEs were in the 0.2 kcal mol−1 to
0.4 kcal mol−1 range.

While good performance for absolute lattice energies is
highly desirable, it does not necessarily ensure reliable poly-
morph ranking, which is dependent on accurate lattice-energy
differences (as well as thermal and kinetic factors). The
performance of the proposed methods for relative lattice ener-
gies will be examined in detail elsewhere. Nonetheless,
improvements in absolute lattice energies do tend to result in
more accurate relative lattice energies, as seen for the two oxalic
acid polymorphs (a and b forms) appearing in the X23 set. The
choice of dispersion correction has only a minor effect on this
© 2023 The Author(s). Published by the Royal Society of Chemistry
energy difference, although the polymorph ordering is highly
dependent on exact-exchange mixing in the base functional. As
shown in Fig. 1, the GGAs predict the incorrect energy ordering
and relatively large fractions of exact exchange (near 50%) are
needed to recover the reference lattice-energy difference. This
suggests that delocalization error is a factor in determining the
most stable oxalic acid polymorph, with the b form likely
favored by GGAs due to its dimeric hydrogen-bonding.
6 Ice lattice energies

Lastly, we examine the calculation of the lattice energies for the
various phases of ice. The study of intermolecular interactions
in water is both very important, because of its central role in
many disciplines, and very challenging computationally, as
electrostatics, induction, and dispersion all play a role. In
general, it is agreed that the dispersion contribution, albeit
smaller than in other non-covalently bound systems, is still
necessary to describe water-water interactions accurately.91,92

There are also signicant many-body effects in water arising
from intermolecular electron delocalization93 that lead to
delocalization error. As a result, a functional that describes the
properties of water and ice accurately is still missing.91,93

A strict test of density functionals and dispersion corrections
for water is calculation of the absolute lattice energies of the
various (ordered) ice phases. Different ice phases vary in
molecular arrangements and in the extent of electron delocal-
ization, which has been shown to correlate with the absolute
lattice energy.125 In a recent work, Della Pia et al.91 reported
absolute lattice energies of 13 ordered ice phases calculated
using Diffusion Monte Carlo (DMC), and subsequently bench-
marked a number of functionals using a plane-wave approach.
Relative to the X23, this set has the advantage that no vibra-
tional or nuclear quantum effects need to be removed before
comparison to DFT results. We now use this ICE13 set, which is
a superset of the previous ICE10 set proposed by Brandenburg
et al.,92 to evaluate the performance of our XDM-corrected
methods.
Chem. Sci., 2023, 14, 1252–1262 | 1257
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Table 4 shows the MAEs calculated for the absolute and
relative lattice energies of the ICE13 set with respect to the DMC
data. The MAE of the relative energies is calculated by consid-
ering all 78 pairs of crystals in the ICE13 set, to avoid singling
out any particular ice phase. As in the case of the X23, the MAEs
with the tight basis set are lower (in most cases) than with light,
both for the absolute and for the relative lattice energies. XDM
outperforms TS and MBD for absolute lattice energies by
around 0.4–0.5 kcal mol−1, but gives higher errors by a few
tenths of a kcal mol−1 for the relative lattice energies. The
average errors from the GGA functionals are quite high, in the
vicinity of 2 kcal mol−1 for the absolute lattice energies and ca.
0.5 kcal mol−1 or more for the relative lattice energies. Hybrids
give improved results, providing another indication that the
cooperative hydrogen bonding networks in ice exhibit consid-
erable delocalization error.

While we could not run the hybrid calculations with the tight
basis set, the light results indicate that 25% hybrid functionals
reduce the MAE, and 50% hybrids reduce it even further.
However, the statistics for the composite methods in Table 4
allow us to understand the effects of BSIE and the incorporation
of exact exchange separately, and reveal that this may be
ascribed to error cancellation. While the results with the 25%
hybrids improve when the basis-set correction of eqn (6) is
added, the 50% hybrid functionals perform better with the light
basis set and no BSIE correction. This suggests that, when half-
and-half functionals are used for water, there is error cancella-
tion between delocalization error and BSIE.
Table 4 Mean absolute errors (in kcal mol−1) for the ICE13 ice phases
benchmark with selected functionals, dispersion corrections, and basis
sets

Functional

Dispersion Absolute Relative

Correction Light Tight Light Tight

Full geometry relaxation
PBE TS 3.69 2.18 0.56 0.51
HSE06 TS 2.68 — 0.40 —
PBE0 TS 2.38 — 0.37 —
PBE MBD 3.70 2.19 0.66 0.60
HSE06 MBD 2.68 — 0.40 —
PBE0 MBD 2.38 — 0.37 —
PBE XDM 2.79 1.71 0.91 0.73
HSE06 XDM 1.60 — 0.72 —
PBE0 XDM 1.35 — 0.65 —
PBE50 XDM 0.79 — 0.46 —
B86bPBE XDM 2.69 1.78 0.67 0.45
B86bPBE-25 XDM 1.16 — 0.53 —
B86bPBE-50 XDM 0.55 — 0.42 —
Single points at GGA/light geometries
PBE0//PBE MBD 2.13 0.61a 0.34 0.29a

PBE0//PBE XDM 1.11 0.30a 0.61 0.43a

PBE-50//PBE XDM 0.25 1.16a 0.35 0.21a

B86bPBE-25//B86bPBE XDM 0.93 0.19a 0.49 0.28a

B86bPBE-50//B86bPBE XDM 0.32 1.20a 0.31 0.19a

a The hybrid energies with the light settings are corrected using the
difference between light and tight results at the GGA level (via eqn (6)).

1258 | Chem. Sci., 2023, 14, 1252–1262
As for the X23, the best-performing method for ice is found
to be the composite approach using B86bPBE-25-XDM with the
additive BSIE correction, which yields MAEs of 0.19 kcal mol−1

and 0.28 kcal mol−1 for the absolute and relative lattice ener-
gies, respectively. This absolute lattice-energy error is lower
than theMAEs of all functionals studied by Della Pia et al.,91 and
the relative-energy error is also among the best. For compar-
ison, the best-performing functional reported91 for absolute
lattice energies is the revPBE-D3 GGA, with a MAE of 0.22 kcal-
mol−1, and the best functionals in each of the other classes are
rSCAN (meta-GGA, 0.23 kcal mol−1), vdw-DF2 (non-local,
0.32 kcal mol−1), and revPBE0-D3 (hybrid, 0.39 kcal mol−1).
Naturally, all these functionals are well within the “good func-
tional” category established by the authors (MAEs
<0.96 kcal mol−1 and <0.48 kcal mol−1 for absolute and relative
lattice energies, respectively).

7 Conclusions

The calculation of lattice energies, the energy required to
separate a molecular crystal into its component molecules, is of
fundamental importance and a particularly stringent test for
computational methods. The plane-wave implementation of
exchange-hole dipole moment (XDM) dispersion model, in
particular in combination with the B86bPBE functional, has
been shown to give excellent results for the calculation of
absolute and relative lattice energies. This makes it a good
choice for the nal energy ranking inmolecular crystal structure
prediction (CSP). However, the reliance on plane waves imposes
a poor computational scaling with system size and limits the
applicability of XDM to semilocal functionals, which results in
poor performance for systems with high conformational exi-
bility or signicant delocalization error. In this work, we pre-
sented the implementation of XDM with numerical atomic
orbitals (NAO) in the FHIaims package. This enables the effi-
cient combination of XDM with hybrid functionals without
signicant basis-set incompleteness errors, thus mitigating the
aforementioned problems.

To test the accuracy of the new XDM-corrected hybrid func-
tionals, we assessed their performance for binding energies of
molecular gas-phase dimers and trimers, as well as lattice
energies of small molecular crystals (the X23 set) and 13 phases
of ice (the ICE13 set). The results were compared to the Tka-
chenko–Scheffler (TS) and state-of-the-art many-body disper-
sion (MBD@rsSCS) methods. For molecular dimers, XDM-
corrected functionals achieve a mean average error (MAE) of
between 0.2 and 0.4 kcal mol−1, slightly outperforming TS and
MBD. More importantly, XDM-corrected functionals also show
excellent performance for three-body interaction energies (the
3B-69 set), suggesting that electronic many-body effects are
much more important than atomic many-body dispersion
effects, which are not included in the canonical XDM methods.

The XDM-corrected methods also yield very low average
errors for the X23 set of lattice energies, particularly if hybrid
methods or relatively large (“tight”) basis sets are used. The
most intriguing result is the spectacular performance of
composite methods, in which a GGA geometry optimization
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(e.g. B86bPBE-XDM) is followed by a single-point energy calcu-
lation to incorporate the benets of using a hybrid functional
(e.g. B86bPBE-25-XDM), and perhaps an additional single-point
correction to treat basis-set incompleteness error (the difference
between tight and light energies at the GGA level). The best-
performing composite method (B86bPBE-25-XDM with basis-
set correction, at the B86bPBE-XDM equilibrium geometries)
achieves a MAE of only 0.48 kcal mol−1 for the X23 set, roughly
half the error of other similar DFT methods. Moreover, this
composite approach can be routinely applied to molecular
crystals containing as many as 1000 atoms within the unit cell.

The excellent performance of the basis-corrected B86bPBE-
25-XDM//B86bPBE-XDM composite method extends to the
calculation of the absolute lattice energies of 13 ice phases, for
which it achieves an MAE of only 0.19 kcal mol−1, out-
performing all DFT functionals reported to date. The calcula-
tion of absolute lattice energies of ice is particularly difficult due
to the presence of delocalization error and the delicate balance
between electrostatics, dispersion, and induction. It is an key
point that one single methodology works well for molecular
dimers and trimers, and achieves the lowest MAE for both the
X23 and ICE13 lattice energies. Obtaining good across-the-
board performance in all tests examined is of paramount
importance when modeling complex materials that feature
several disparate types of non-covalent interactions. This makes
us condent that the proposed XDM-corrected methods will
serve nicely for accurate energy ranking in crystal structure
prediction.
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