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ectivity profiles enable prediction
in synergistic catalyst space†

Yutao Kuang, Junshan Lai and Jolene P. Reid *

Organometallic intermediates participate inmanymulti-catalytic enantioselective transformations directed by

a chiral catalyst, but the requirement of optimizing two catalyst components is a significant barrier to widely

adopting this approach for chiral molecule synthesis. Algorithms can potentially accelerate the screening

process by developing quantitative structure–function relationships from large experimental datasets.

However, the chemical data available in this catalyst space is limited. Herein, we report a data-driven

strategy that effectively translates selectivity relationships trained on enantioselectivity outcomes derived

from one catalyst reaction systems where an abundance of data exists, to synergistic catalyst space. We

describe three case studies involving different modes of catalysis (Brønsted acid, chiral anion, and

secondary amine) that substantiate the prospect of this approach to predict and elucidate selectivity in

reactions where more than one catalyst is involved. Ultimately, the success in applying our approach to

diverse areas of asymmetric catalysis implies that this general workflow should find broad use in the study

and development of new enantioselective, multi-catalytic processes.
1 Introduction

Small organic molecules effectively catalyze a signicant number
of reactions and, in particular, have been essential to advances in
the preparation of stereochemically pure compounds.1–6 Oen,
these transformations proceed through low energy pathways that
involve a single chiral catalyst. For many examples the catalyst
activates either substrate (nucleophile or electrophile) and in
some cases both substrates can simultaneously be primed for
a reaction.7–11 However, some transformations are still chal-
lenging or completely unobtainable using one catalyst systems.
Accordingly, synergistic catalysis (also referred to as co-operative
or multi-catalysis) in which more than one catalyst is involved
in the activation of substrates is an important technique.12–14 This
approach has been greatly enabling the discovery of new enan-
tioselective, catalytic processes. Indeed, there are many examples
of powerful classes of reactions that were developed by combining
an organocatalyst with a metal.15–22 Unfortunately, implementing
this valuable tactic in asymmetric synthesis is oen met with the
formidable challenge of optimizing two catalyst components (as
well as other reaction parameters) to achieve high levels of
enantioselectivity.23,24 While ideal reaction conditions have
conventionally been discovered through empiricism, recent
applications of data-driven reaction optimization have demon-
strated that algorithms can streamline this process. Indeed,
h Columbia, 2036 Main Mall, Vancouver,
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signicant research efforts have been dedicated to developing
a statistical toolset that combines numerical descriptors, regres-
sion analysis, and chemical data to correlate reaction
outcomes.25–27 The resulting mathematical models can then be
leveraged to predict the outcome of new experiments typically
through interpolation and provide mechanistic insight in the
process. In some cases, researchers combine experimental data
sets gathered from separate literature reports to increase the
number of existing data points for implementing this approach.
However, experimental results gathered from synergistic reac-
tions cannot be meaningfully combined to create such combi-
natorial datasets since protocols involving multiple catalysts have
been developed for individual transformations operating under
different mechanisms. This severely constrains the amount of
data available formodel building,making the application of these
statistical techniques to the multi-catalyst domain less straight-
forward. Accordingly, a different statistical approach must be
employed to achieve efficient and robust prediction of enantio-
selectivity values in complex catalyst space.

On the basis of our recent efforts to deploy comprehensive
multidimensional analysis to develop and leverage general
mechanistic models,28,29 we became interested in investigating if
ourmultireaction workows can be embedded in the optimization
and quantitative prediction of reaction systems involving two
catalysts (Fig. 1A). In this approach the features of all the reaction
components are correlated to the experimentally obtained enan-
tioselectivity outcomes conveyed as DDG‡ using density functional
theory (DFT) calculated descriptors and multivariate linear
regression (MLR). Essentially, these techniques permit the devel-
opment of mechanistically informative correlations providing the
Chem. Sci., 2023, 14, 1885–1895 | 1885
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Fig. 1 Application of statistical modeling workflow to multi-catalysis.
(A) Workflow for MLR analysis and further application in reaction
systems involving more than one catalyst. (B) Overview of the study's
goals and approach in vetting the techniques on three catalyst systems
involving distinct catalytic modes of activation.
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View Article Online
basis to transfer enantioselectivity outcomes to predict the impact
of reaction components not included in the initial training
correlation, like a new catalyst or substrate.

In the context of this study, the success of this approach to
predict synergistic catalysis would be contingent on the model's
ability to transfer the stereochemical information from one or
more reactions facilitated by a single catalyst to another mecha-
nistically similar process that involves two catalyst systems.
Although multi-catalyst reaction designs share some common
mechanistic features with single catalyst systems (e.g., optimal
chiral catalyst structure), comparative studies that would reveal
reaction specic contacts and general connections have not been
performed. Such investigations would be valuable for formalizing
mechanistic principles and considering the limits of model
generality. As a result, despite the practical appeal of an approach
that would preclude the requirement for explicit chemical data on
synergistic reaction systems, the applicability domain of such
statistical models would likely be challenging to estimate. To that
extent, we envisioned that the general mechanisms of stereo-
induction in asymmetric catalysis should extend to multi-catalyst
reaction strategies that focus on combining a chiral catalyst with
a reactive intermediate that is generated from a second achiral
catalyst species. Because these types of transformations are not
signicantly affected by the presence of a second catalyst, they
should be particularly amenable to our modelling approach that
1886 | Chem. Sci., 2023, 14, 1885–1895
uses data from one or more reactions to predict the result of
a similar system (Fig. 1B).

To effectively assess how broadly applicable this approach
could be we decided to select three case studies that encompass
different modes of organocatalysis. Since statistical models
describing the nucleophilic additions to iminiums catalysed by
chiral phosphoric acids and phosphates are easily accessible
through previous reports these were both identied as suitable
case studies for an initial evaluation. The second criteria in
selecting a predictive platform is determining a chiral catalyst
system that has been widely used in synergistic catalyst space
such that signicant validation data exists. Consequently, we
identied reactions involving secondary amines as a third study.
To this end, we develop and deploy MLR as a transferability
method to achieve quantitative predictions and mechanistic
analysis in diverse synergistic catalyst space.

2 Results and discussion
2.1. Assessment of previously reported statistical models

Rather than statistically evaluate reactions involving multiple
catalysts directly, we pursued a transfer learning strategy wherein
we curated enantioselectivity data from various transformations
deploying a single catalyst chemotype responsible for stereo-
induction. By focusing reaction selection on those operating
under a common catalytic mode of activation, reactions can be
connected via general selectivity features revealed by regression
analysis and a predictive model assembled. Since existing statis-
tical models in chiral Brønsted acid30 and anion catalyst space29

are available for experimentation we rst evaluated their ability to
extrapolate to reactions facilitated by two catalysts. It should be
noted that these models were applied without alteration to the
identied parameters or data sets from their published forms.
Because the full details for constructing and applying the models
are described elsewhere,29,30 we will only discuss the model
components necessary for analysing the predicted results.

In seeking an ambitious and relevant rst test, we selected the
hydrogenation of imines using molecular hydrogen.31 Since this
process cannot be simply facilitated solely by chiral organic
molecules,32 approaches have focused on two catalyst systems.
Beller and co-workers demonstrated that Knölker's complex,
a simple achiral iron hydrogenation catalyst, can be used in
combination with a chiral Brønsted acid to provide enantioen-
riched secondary amines.31 Considering the overlap in structural
features of the reaction components we anticipated that a previ-
ously generated statistical model constructed of chiral phosphoric
acid catalysed additions of nucleophiles to imines could be
deployed to predict the reaction outcomes (Fig. 2).30 In the
previous study, reaction performance was rst evaluated using
a comprehensive model built from the entire data set constructed
of reactions that proceeded through two different pathways, an E
(+ee) or Z (−ee) transition state. While prediction errors were
typically larger with this all-inclusivemodel, its use is imperative to
determine the stereochemistry of the nal product and the
pathway under operation. Use of this inclusive model is particu-
larly important for predicting reactions involving ketimines as
these can progress through either the E or Z iminium geometries
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Published statistical models for predicting chiral phosphoric acid catalysed reactions involving imines and protic nucleophiles. The
comprehensive model on the left is used to first determine the double bond configuration of the iminium intermediate and the stereochemistry
of the final product. This model includes 367 training data points while the mechanism specific model used to refine predictions was trained on
147 data points. ‘Sol’ is a molecular graph representation of the solvent, ‘NBON’ and ‘NBOC’ are imine natural bond orbital parameters, ‘Ls

’ is the
length (Sterimol L) of the smallest imine substituent, ‘H–X–CNu’ is the nucleophile angle measurement and Lcat is the length of the catalyst 2-
substituent. Key parameters included in the Z-imine only model include ‘NBOH’ and ‘NBOPG’which are imine natural bond orbital parameters, Ls
is a steric descriptor of the smallest imine substituent, ‘B5Nu’ is the Sterimol B5 term representing the nucleophile's maximumwidth and ‘B1cat’ is
the Sterimol B1 term describing the minimum width. The NBO values exist for specific atoms as indicated by the superscript. For example, N, C,
and H superscripts correspond to nitrogen, carbon and hydrogen atoms. PG stands for protecting group and refers to the atom connecting the
PG to the imine N, typically a carbon. A positive free energy value indicates the E-imine transition state, and a negative free energy value indicates
the Z-imine transition state.
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making it difficult to determine the favoured reaction pathway.
This is in contrast to imines derived from aldehydes which have
been shown to proceed solely through structures possessing the E
conguration.11 Following the E or Zmechanistic assignment, the
prediction accuracy can be improved by applying the mechanism
specicmodels (E or Z). Because two different data sets are used in
the construction of these statistical models the included terms
and nal predictions are slightly different. For example, the
comprehensive model emphasizes solvent (black), imine (blue),
nucleophile (green) and catalyst (red) terms distributed over six
parameters, as contributors to the enantioselectivity across
seventeen reaction types. These parameters capture the general
steric and electronic inuences of the individual reaction
components on the experimental outcome allowing for accurate
out-of-sample prediction and further mechanistic interpretation.
Focused correlations can then be produced by modeling only
a subset of these reactions to reveal more intricate mechanistic
details through better feature selection. In other words, truncating
the data set will facilitate the identication of the structural
features that affect particular mechanistic pathways (E or Z)
allowing better predictions to be achieved. Although having this
option to model only portions of the data has been proven to be
benecial, it is not common or necessary. The comprehensive
model does not naturally allow for the prediction of stereochem-
istry but the product conguration can be assigned by applying the
© 2023 The Author(s). Published by the Royal Society of Chemistry
simple models displayed in Fig. 2. These are based on the amine
product generated from an E or Z TS and catalysed by the (S)-CPA.
The standard steps for ee prediction and the assignment of
product stereochemistry include: (1) locating the ground state of
the targeted reaction variable by DFT, (2) obtaining the key
molecular features necessary for prediction, and (3) submitting
these to both mathematical equations.

To put it generally, the application of these models to syner-
gistic reactions requires the second achiral catalyst to be featurized
as an electrophile or nucleophile. This can be determined by
considering the reaction mechanism and the structures involved
in the key transition states. On this basis, to predict the enantio-
selectivity of this reaction type the achiral iron complex is catego-
rized as the nucleophile and the necessary parameters, the H–X–
CNu (the nucleophile angle measurement) and B5Nu (the nucle-
ophile steric descriptor) parameters are to be collected from this
structure. For consistent results, the same level of theory that was
used to optimize the nucleophiles incorporated in the original
model should be applied to optimize the iron complex (organo-
metallic nucleophile); however, the M06-2X density functional that
was implemented is not applicable for molecules containing
metals.33 Instead, we employed M06/def2TZVP calculations which
are suitable for organometallic systems, and when tested against
a subset of nine nucleophiles, geometryminimizations provide the
same value for the key bond angle and Sterimol B5 nucleophile
Chem. Sci., 2023, 14, 1885–1895 | 1887
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terms when compared toM06-2X/def2TZVP (average deviation was
calculated to be 0.8° and 0.02 Å, respectively). Condent that this
adjustment would not signicantly impact the results, we opti-
mized the iron complex with this set of computational conditions
and collected the necessary Sterimol B5 and angle nucleophile
parameters for prediction from this structure. In other words, this
computational method comparison suggested that a predictive
model built from M06-2X descriptors could be used to predict the
impact of hydrogenation reactions given the key nucleophile
parameters calculated at the M06 level. Taking these steps, we
evaluated the twenty reported hydrogenations involving aromatic
imines catalysed by TRIP. Both the catalyst andmost of the imines
were part of the published training set making the nucleophile
(achiral iron complex) the only component not to be explicitly
included. Each result was predicted using the comprehensive
model, with an average absolute DDG‡ error of 0.64 kcal mol−1 (14
examples within 5% ee) and the absolute stereochemistry was
correctly assigned as S, demonstrating the ability of the model to
extrapolate effectively to an organometallic nucleophilic interme-
diate (Fig. 3). A slightly improved outcome is observed using the Z-
imine mechanistic model with a 0.48 kcal mol−1 average error (15
examples within 5% ee). Considering this, the average error is
slightly inated and inspection of the maximum errors shows that
this is due to two reactions that had prediction errors >1 kcal
mol−1. In these cases the reaction performed less well than ex-
pected considering the conditions employed are associated with
very high enantioselectivities. Accordingly, the model cannot
capture the few results where the general enantioselectivity trends
do not translate. Mechanistically, the ability to extrapolate to
complex multi-catalytic reaction space suggests that transition
state features like the arrangement of the reactants and hydrogen
bonding contacts to the catalyst are similar to those found in one
catalyst systems. This observation is consistent with previous
computational studies which show an iron-phosphoric acid
mediated hydrogenation with a similar substrate.34
Fig. 3 Extrapolation of a previously reported chiral Brønsted acid
imine reaction model to iron catalysed hydrogenation.

1888 | Chem. Sci., 2023, 14, 1885–1895
Inspired by these successful results, we selected to further
evaluate the generality in our observations by investigating chiral
phosphate catalysed reaction systems.29 In considering this we
noted that the addition of 2-naphthols to gold(I) activated allena-
mides exhibited overlapping transition state features with our
previously built statistical model, i.e., combines an iminium with
a nucleophile in the presence of a chiral phosphate (Fig. 4).35 As
with the chiral phosphoric acid study, to deploy the published
chiral phosphate model to predict the impact of utilizing an
organometallic intermediate as a reaction component, the sensi-
tivity of the previously identied parameters to the computational
method must be taken into account. Guided in part by the
proposed transition state, the second achiral catalyst species was
to be combined with the allenamide to form a cationic interme-
diate which undergoes nucleophilic addition in the enantiode-
termining step. As such, the necessary parameters NBOS (the NBO
charge of the rst atom on the smallest iminium group), Sterimol
B1 of the large iminium group (B1L) and polarizability that
represent the electrophile components are to be collected from
these organometallic structures. Because we expected NBO
charges to be sensitive to the computational methods employed,
we re-optimized each iminium intermediate at the M06/def2TZVP
level to ensure that all electrophilic components (organic and
organometallic) were treated uniformly. Aer replacing the
Fig. 4 The published statistical model describing the chiral phosphate
catalysed nucleophilic addition to iminium intermediates. ‘NBOS’ and
‘NBONu’ are the natural bond orbital parameters corresponding to the
first atom of the iminium small group (usually a hydrogen) and the
nucleophilic site (either a carbon, hydrogen, oxygen, or nitrogen), ‘B1L’
is the minimum width (Sterimol B1) of the largest iminium substituent,
‘pol’ is the calculated polarizability of the iminium, ‘LNu’ is the nucle-
ophile length (Sterimol L), B5C5 is the maximum width (Sterimol B5) of
the catalyst 5-substituent, LC6 is the length of the catalyst 6-substit-
uent, and finally ‘POas’ is the asymmetric P–O stretching frequency.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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iminium parameters (NBO, Sterimol B1 and polarizability) calcu-
lated at M06-2X/def2TZVP with those acquired from M06/
def2TZVP optimized structures, the statistical model was re-
created in MATLAB using the same enantioselectivity data and
identied parameters from the previous publication (Fig. 4).29 This
model could then be deployed to predict the organometallic data
set (Fig. 5A). However, this is a more challenging scenario, as the
structural overlap between the training and the prediction set is
slightly reduced. More specically, the reaction components to be
predicted are not explicitly included in the training data but
belong to general subclasses of iminiums, naphthols, and chiral
phosphates. Following calculations, the key iminium parameters
(NBO, Sterimol B1 and polarizability) were collected from the
electrophilic gold complex and inputted into the model for
prediction. Again, accurate predictions were construed with the
statistical model with an average absolute DDG‡ error of 0.33 kcal
mol−1 (4 examples within 2% ee and 6 examples within 5% ee).
Like the previous test, one poorly predicted reaction (with an error
of around 1 kcal mol−1) inated the average mean error. Again,
this situation arises from a reaction that should be high-
performing given the general enantioselectivity trend. The pres-
ence of a methyl group had the most detrimental effect on selec-
tivity (4% ee experimental and −11% ee predicted) and excitingly,
this could be accurately captured by themodel (Fig. 5B).While it is
supercially surprising that the model can successfully anticipate
signicant enantioselectivity changes due to minor substrate
modications (i.e., switching a phenyl for a methyl), close exami-
nation of key parameters in the model reveals that the lower
Fig. 5 (A) Application of the previously reported chiral phosphate
iminium reaction model to the gold catalyzed dearomatization of
naphthols. (B) Interpretation of key NBO charges to describe poorly
performing substrates.

© 2023 The Author(s). Published by the Royal Society of Chemistry
enantioselectivity for this substrate can be attributed to the more
positive NBO (Fig. 5B, gold intermediate A). This is intriguing as in
both cases the atom remains a hydrogen suggesting the model is
describing a subtler effect on the enantioselectivity outcome.
Perhaps the most powerful analysis of the model is illustrated by
comparing the substrate proles of the one (chiral phosphate
only)36 and two (chiral phosphate combined with gold) catalyst
systems. Remarkably, the optimal iminium intermediate was
reversed between the two methods. In other words, the lead
substrate with chiral phosphate catalysis failed to provide high
enantioselectivities under the gold conditions and vice versa. Once
again, the model clearly explains why certain substrates should be
particularly amenable to different protocols. Under chiral phos-
phate catalysis the NBOS values are comparable for the two
substrates (0.246, Ph and 0.247, 4-CF3Ph) and the difference in
polarizability, the second important iminium term, explains the
contrast in enantioselectivity. Under gold catalysis, the more
negative NBO values associated with gold intermediate B, largely
compensate for a slightly lower polarizability term, and the ee is
increased (Fig. 5B). This demonstrates that gold binding to the
substrate and changes to the N-substituent (i.e. switching a Ph to
a Me) alters the electron density of the iminium hydrogen, a key
site for establishing non-covalent interactions with the catalyst,29

ultimately suggesting that the iminiums ability to engage in weak
hydrogen bonding interactions is attenuated allowing for these
substrate effects to emerge. The ability of the model to accurately
reect the outcomes with different substrates suggests that it
could be applied to guide successful reaction scope extension.
Based on the previous evaluation and the included model
parameters we considered that the model could be reliably
broadened to include 1-naphthols as the nucleophile component.
By deploying the descriptor set and the training model, the
resultant extrapolation of the nucleophile space predicted only
moderately good enantioselectivities, an observation validated by
new experiments (Table 1). This result is compelling in that we
could reach an informed decision about pursuing 1-naphthols as
a substrate class while also providing a useful starting point for
further reaction optimization. Ultimately, this demonstrates that
the model’s capabilities are not limited to classifying and
Table 1 Testing and predicting the effect of including a 1-naphthol as
the nucleophile in this reactiona

Entry CPA L Yieldb (%) eec (%)
Predicted ee
(%)

1 9-Anthryl PPh3 68 76 62
2 9-Anthryl JohnPhos 66 74 67

a Reactions were run with the following conditions: allene substrate
(0.15 mmol), naphthol (0.1 mmol), gold phosphine (5 mol%), chiral
silver phosphate (5 mol%), toluene (1 mL), rt, 16 h. b Isolated yields
are given. c Enantioselectivities (ee) were measured by HPLC.

Chem. Sci., 2023, 14, 1885–1895 | 1889
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predicting literature data sets but can be applied to analyze and
predict new reactions even in complex multi-catalytic reaction
space. Because the models are only capable of predicting enan-
tioselectivities, one limitation to acknowledge is that the tools can
only guide users in substrate scope expansion where the desired
reactivity is more certain. This is exemplied by the fact that no
reactivity was observed with 2-phenylcyclohexanone under our
conditions although these substrates work effectively with chiral
phosphate only protocols (see the ESI†).37
Fig. 6 Comprehensive model development and validation. The
regression model is trained on 361 data points and validated with the
remaining 91. ‘KS’, ‘CI’, and ‘2D shape’ are molecular graph represen-
tations of the solvent, ‘Ls’ is the length (Sterimol L) of the smallest
carbonyl substituent, ‘HOMO’ is the calculated highest occupied
molecular orbital of the reactant (green) or catalyst (red), ‘pol’ is the
calculated polarizability of the reactant, ‘iNH’ is the intensity of the N–
H stretching frequency, ‘NBOC1’ and

‘NBOA2
’ are catalyst natural bond

orbital parameters, ‘B5C1Up’ and ‘B5C1down’, are Sterimol B5 steric
descriptors of those particular amine groups and ‘LUMO’ is the
calculated lowest unoccupied molecular orbital of the catalyst. A
positive free energy value indicates the steric blocking transition state,
and a negative free energy value indicates the hydrogen bonding
transition state.
2.2. Secondary amine model development

Aer evaluating the two published statistical models in chiral
phosphoric acid and phosphate catalysed reaction space, the
second stage of this study was directed at evaluating a wider set of
synergistic reactions involving secondary amines. To accomplish
this, a comprehensive MLR model that relates the features of all
of the reaction components to the experimentally obtained
enantioselectivity outcomes conveyed as DDG‡ for this catalyst
class would be required (see the ESI† for full details).

Despite the potential for extensive catalyst structure modula-
tion, only a limited set of secondary amines have witnessed broad
application. This is in contrast to the many other catalyst che-
motypes employed in asymmetric synthesis where necessary and
extensive optimization efforts have generated considerably sized
catalyst libraries. Thus, the most signicant challenge in the early
stages of implementing our workow was dening a useful data
set containing both high and low enantioselectivities for model
construction. Consequently, to supplement our data mining
efforts on published data from scientic journals, we explored the
use of publicly available PhD theses. Because the reported data
meet the degree requirements for characterisation PhD theses
typically contain experimental data of high quality. But they
remain unpublished presumably because the research objective of
delivering the product in high enantioselectivity was not met.38

Accordingly, we postulated that these data could be a targetable
source of negative results required for robust model building.
Throughout this literature evaluation, we strategically avoided two
types of reaction examples. First we ignored reactions that showed
product racemization to be strongly contributing to the overall
enantioselectivity outcome (i.e. time and temperature sensi-
tive).39,40 In the absence of strongly supporting experimental data,
it is only possible to minimize rather than eliminate the inuence
of such effects in our analysis through the removal of unusual
experimental results.41Consequently, some proportion of variation
between measured and predicted enantioselectivity values will
likely be attributable to these factors in addition to experimental
and analytical error. Secondly, we did not include examples that
combined proline type catalysts with reactants that did not contain
strongly electronegative atoms. In these cases, the structure of the
reactant would make it difficult to determine if hydrogen bonding
was directing its approach and therefore, hard to assign the mode
of enantioinduction (in more detail below).

On this basis, to construct a predictive model, an expanded
inventory of 452 reactions with varied components was curated
from multiple sources (for a list of references see the ESI†). From
this survey, we categorized the dataset by general catalyst
1890 | Chem. Sci., 2023, 14, 1885–1895
structure which is a signicant factor in determining the mode of
enantioinduction (steric blocking or hydrogen bonding) wherein
imidazolidinone42 and diphenylprolinol ethers43 are grouped by
a +ee value and proline type catalysts, a −ee value (Fig. 6).
Therefore, the sign of the ee represents one of two transition state
(TS) categories, depending on the catalyst involved. This is
important in understanding the product enantioselectivities,
because reactant addition to the top or bottom face will produce
opposite enantiomers. Accordingly, the statistical model will be
able to determine whether the reaction proceeds through steric
blocking (predicts + ee value) or hydrogen bonding modes of
enantioinduction (predicts −ee value) and this information can
be used to make predictions about the absolute congurations by
using the qualitative pictures shown in Fig. 6. Furthermore, the
TS-guided categorization strategy is useful in producing a well-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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distributed data set which would be hard to achieve by not taking
into account the absolute product stereochemistry and demon-
strated to be an effective technique in other studies.29,30 Next,
a diverse array of molecular descriptor values were collected from
DFT optimized geometries to describe the overlapping structural
features of each electrophile, nucleophile, catalyst, solvent, and
co-catalyst.44,45 Because this model is being built with the sole aim
of predicting reactions involving an organometallic intermediate,
we naturally choose the appropriate computational methods from
the beginning. This involved optimizing the reactant at the M06/
def2TZVP level and all other components with M06-2X/def2TZVP.
The commonality in the substrate and catalyst substructure
allowed collection of natural bond orbital (NBO) charges and
Sterimol values from the conserved portions. However, the
nucleophile had a minimal structure overlap; thus, polarizability,
highest occupied molecular orbital (HOMO), and lowest unoccu-
pied molecular orbital (LUMO) energies, which do not rely on
common substructures, were collected to describe this compo-
nent. Unfortunately, the lack of consistency in the reaction
conditions renders the identication of readily comprehensible
and extensive parameter sets for the remaining components
a challenge. For example, several reactions required Brønsted acid
co-catalysts and employed solventmixtures whilemany others did
not. Guided by the proposed mechanism of catalysis, we postu-
lated that in cases where the acid additive was absent, the proton
could originate from another source, a reagent or catalyst, and
relevant descriptors could be collected from these components.
Because solute–solvent interactions with polar substances will
likely dominate over those with non-polar molecules, we collected
topological, two-dimensional descriptors from the solvent with
the largest dielectric constant (see the ESI†).46,47

Prior to model building, the data set was partitioned into 80 :
20 training:validation sets using MATLAB's deterministic equi-
distant splitting function. Linear regression algorithms were then
applied to the training set (80% of the entire data set that
incorporates both + ee and −ee reactions) to identify prospective
correlations between the molecular structure of every reaction
variable dened by the parameters collected in the previous step
of the workow and the measured enantioselectivity, DDG‡

(where DDG‡ =−RT ln(e.r.) and T is the temperature at which the
reaction was performed). Since the training set includes signi-
cant diversity in the reaction component structure and mecha-
nism, we anticipated that several descriptors would be required to
achieve predictive correlations. Using forward stepwise linear
regression48 we determined a model that includes solvent (black),
substrate (blue), reactant (green), and catalyst (red) terms
distributed over thirteen parameters to be appropriate. Despite
the high R2 value and validation scores, a relatively small number
of outliers appeared at around 0 kcal mol−1 on the x-axis.
Essentially, these correspond to a few reactions that provided
almost racemic mixtures in the experiment. Such unique reaction
features will not conform to trends revealed by comprehensive
MLR models as these operate by linking reactions via general
connections i.e., structural effects that apply to the majority of
reactions included in the data set.

Previous computational studies show that enantiose-
lectivity arises from the geometry of the enamine/iminium
© 2023 The Author(s). Published by the Royal Society of Chemistry
double bond (s-trans or s-cis) and the approach of the reac-
tant (top or bottom).49 Therefore, it is possible that the
mathematical model also reveals some of these mechanistic
features despite the complex equation. Notably, the catalyst
descriptors have the largest coefficients in the normalized
equation, demonstrating that stereocontrol is dominated by
catalyst architecture for this class of reactions. The presence of
B5C1(up) lends to a straightforward analysis by implying that
larger substituents at this position makes reactant approach to
the double bond from the top less possible. Additionally, large
groups at C1 would direct the double bond to occupy the
opposite side of the catalyst thereby favoring the formation of
the s-trans isomer. We interpreted the inclusion of the NBOC1

term as a categorical descriptor that essentially highlights that
proline type catalysts (typically negative NBOC1 and−ee) direct
the reactant to the top via a hydrogen bonding interaction
whereas steric blocking catalysts (usually positive NBOC1 and
+ee) that incorporate large alkyl or aromatic groups at this
position promote reaction on the opposite face. Importantly,
the presence of B5C1(down) with a negative coefficient likely
indicates that TSmajor is also sensitive to the catalyst features.
In other words, larger substituents at this position may
enhance repulsive interactions between the catalyst and
reactant in the TS that forms the major product, ultimately
favouring the formation of the opposite enantiomer. Indeed,
imidazolidinone catalysts that have two large groups at the C1
position generally provide lower levels of enantioselectivity
supporting this assertion. The s-trans/s-cis isomer ratio also
depends on the substrate, and having inversely sized groups
on either side of the carbonyl will strongly reinforce the pref-
erence for the s-trans. This is expressed by the LS model term
and reected in the lower enantioselectivities obtained for
ketones compared to aldehydes. Because ketones are
predominantly used in combination with proline (i.e., result-
ing in −ee reactions) the coefficient associated with LS is
positive. The role of the reactant is described through polar-
izability which likely acts as a proxy for chemical size (see the
ESI†) and the HOMO energy. The relationship also includes
three solvent parameters with relatively small coefficients,
suggesting that most solvents are compatible and the assort-
ment of optimal solvents is a reection of reaction component
solubility.50,51 Although relating the correlation to previous
ndings demonstrates that the model also provides insightful
mechanistic information, another important test is to remove
correlated parameters and replace these with dummy values.
This test is more important in this example as many parame-
ters are being used to t the data. Model building with these
meaningless reaction barcodes shows the statistical scores to
be much worse (R2 = 0.69, Q2 = 0.65, LOO = 0.63, and 10-fold
CV = 0.62), suggesting that the descriptors are correlating
something meaningful (see the ESI† for more details).

Considering that the goal of the prediction analysis is to
transfer enantioselectivity trends of one catalyst systems to
multi-catalysis, the next step is validating the secondary amine
model’s ability of extrapolating to new reaction types involving
a single catalyst (Fig. 7). Thus, for each out-of-sample prediction
platform, both the catalyst and substrate are contained in our
Chem. Sci., 2023, 14, 1885–1895 | 1891
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Fig. 7 Demonstration of mechanistic transferability by predicting
enantioselectivity outcomes involving the hydroxylation and amination
of aldehydes.
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training set (see the ESI† for additional out-of-sample predic-
tions). It should be noted that the model can only make
predictions about the reaction enantioselectivity and not the
diastereoselectivity if two stereocenters are created. This second
aspect of selectivity arises from the orientation of the reactant
substituents relative to those on the enamine/iminium, and this
may be governed by a different set of molecular features.
However, diastereoselectivity is typically not the experimental
output that requires signicant optimization and high levels are
usually observed regardless of the reaction conditions. Thus, the
prediction of diastereoselectivity is not crucial for reaction
Fig. 8 Applying the secondary amine regression model to predict react
prediction capabilities with the arylation of aldehydes. (B) Effective pred

1892 | Chem. Sci., 2023, 14, 1885–1895
development, providing an incentive to exclude this output from
our regression analysis. As a rst assessment, we evaluated the
ability to predict nine hydroxylation reactions, involving an
oxime and diphenylprolinol ether.52 This set was predicted
accurately, with an average absolute DDG‡ error of 0.12 kcal
mol−1 (eight examples predicted within 5% ee). By using the
simple reaction model presented in Fig. 6, the absolute cong-
uration is correctly assigned as R. As a second case study, the
model was assessed in the same manner with seven proline
catalyzed amination reactions involving an azodicarboxylate.53

Again accurate predictions were obtained with this statistical
model (DDG‡ error of 0.19 kcal mol−1, six examples predicted
within 5% ee) with the qualitative diagram shown in Fig. 6
condently determining the stereochemical outcome to be R.
The small maximum observed error in both cases shows that all
of the reactions were well predicted by the model.

2.3. Application to synergistic catalysis

With our secondary amine statistical model thoroughly validated,
we next sought to test its performance in the prediction of
synergistic reaction systems involving secondary amines (Fig. 8
and 9). Because copper can generate both electrophilic and
nucleophilic reactive intermediates complementing the reactivity
prole of enamide and iminium catalysis, there are a number of
examples in the chemical literature where this type of merger is
employed. We focused on the arylation and triuoromethylation
of aldehydes reported by MacMillan as representative systems
involving enamide.54,55 The predictions obtained from the model
are shown in Fig. 8 alongside the experimental results, and
satisfyingly, the agreement was generally excellent. More speci-
cally, the rst case utilizes an aryl copper(III) species and a catalyst
not included in the training set. With a novel catalyst/reactant
ion outcomes involving copper catalyzed intermediates. (A) Assessing
iction of trifluoromethylation reactions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Application to combinations involving copper and iminium catalysis. (A) Location of the target component (red point) relative to the
training set (grey points) in influential feature space determined by the MLR model. (B) Modified model that includes the HOMO–LUMO
descriptor. (C) Summary of the model's performance in predicting copper catalyzed conjugate silyl addition.
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pairing, an average DDG‡ error of 0.27 kcal mol−1 over twenty
examples was determined (Fig. 8A). As exemplied in the second
case, copper can also be employed as a Lewis acid to increase the
reactivity of the electrophilic triuoromethylation agent, and in
the presence of an imidazolidinone, we predicted six reactions
with an average DDG‡ error of 0.22 kcal mol−1 (Fig. 8B). Because
the model only incorporates a single substrate parameter that
essentially classies if an aldehyde or ketone was employed, the
model correctly predicts that large changes in aldehyde structure
leads to small changes in the observed DDG‡ for both cases. In
other words, this statistical model appropriately envisages that
a wide spectrum of aldehydes should, in principle, constitute
excellent substrates. As before, the qualitative pictures displayed
in Fig. 6 can be applied to correctly assign the stereochemistry as S
for both examples. To test this approach on reactions proceeding
via iminium intermediates, copper catalysed silyl addition was
probed.56 On collecting the key reactant HOMO parameters
required for prediction, we detected that the values were signi-
cantly different from those included in the training set. Based on
the premise that we can predict reactions most similar to that of
the training set, we hypothesized that proximity in the chemical
space representation provided by mapping the HOMO against
polarizability (i.e., inuential feature space) would correspond to
accuracy in out-of-sample prediction. Ultimately, our plot shown
in Fig. 9A suggested that extrapolation to this reaction component
would lead to large errors in predicting the enantioselectivity. This
prompted us to search for an alternative descriptor that would
capture the reactant in inuential feature space. Since the
HOMO–LUMO energy gap is correlative to the original parameter
we generated property maps including this descriptor. Intrigu-
ingly, these indicated that the organometallic intermediate is now
projected in the same feature space as the training set (Fig. 9A).
Next, we manually altered the model by replacing the HOMO
energy term for the HOMO–LUMO difference and predicted the
enantioselectivity outcomes (Fig. 9B). Each result was predicted
© 2023 The Author(s). Published by the Royal Society of Chemistry
using themodiedmodel, with an average absoluteDDG‡ error of
0.32 kcal mol−1 (ten examples within 10% ee) and the absolute
stereochemistry was correctly assigned as S (Fig. 9C). This result is
compelling in that we could rationally re-engineer the inuential
features to generalize the statistical model across diverse reaction
space. Like the previous one catalyst examples, only small
maximum errors were calculated on comparing model predicted
values to experimental data.
3 Conclusions

Here, we describe three case studies involving different modes of
catalysis that demonstrate the benets of utilizing MLR as
a transferability tool to predict and elucidate enantioselectivity
outcomes in reactions where more than one catalyst is involved.
Specically, our strategy focused on revealing general mechanistic
models produced through extensive data mining and advanced
parameter sets. Because the selectivity discriminants were consis-
tent across a reaction range, the resulting correlation could be
leveraged for the translation of experimental observations derived
from reactions utilizing a single catalyst to another similar process
that involves two catalyst systems. In general, we expect this
transferability workow to be valuable in data limiting situations,
for example, where practitioners have incomplete data sets either
early in an optimization campaign or the complexity of reaction
conditions makes it difficult to explore reaction component space
completely. Consequently, our ndings should be broadly appli-
cable and benecial for the prediction and investigation of other
catalytic systems widely applied in asymmetric synthesis.
Data availability

The Cartesian coordinates of all computed geometries and
extracted parameters are provided in the ESI.†
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