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enthalpy surface sampling
(RAESS) to characterize nanoporous materials†

Emmanuel Ren ab and François-Xavier Coudert *b

Molecular adsorption in nanoporous materials has many large-scale industrial applications ranging from

separation to storage. To design the best materials, computational simulations are key to guiding the

experimentation and engineering processes. Because nanoporous materials exist in a plethora of forms,

we need to speed up the existing simulation tools to be able to screen databases of hundreds of

thousands of structures. Here, we describe a new algorithm that quickly calculates adsorption enthalpies

by sampling the surface of the material instead of the whole porous space. This surface sampling has

been tested on the CoRE MOF 2019 database and has been proven to be more than 2 orders of

magnitude faster than the gold standard method (Widom insertion), with an acceptable level of error on

an enthalpy value of 0.34 kJ mol−1, and is therefore proposed as a valuable addition to the high-

throughput screening toolbox.
1 Introduction

Molecular adsorption has many large-scale industrial applica-
tions in our society, including uid storage, molecular separa-
tion, and purication, and is therefore a very active area of
research in both chemistry and materials science. Improvement
in the performance of adsorption-based processes could reduce
the environmental impact of separation and purication
applications by replacing energy-intensive processes such as
cryogenic distillation.1,2 In the energy industry, the use of
nanoporous solids is a promising low-energy alternative to
pressurized gas tanks for the storage of fuel such as H2 or CH4.3

Adsorption is also foreseen as a crucial component in the next
generation of carbon capture and storage systems.4 To further
unfold the potential of this technology, the design of materials
for targeted applications needs to be rened.

Although the nal steps of this design process can only be
achieved by experimentation and engineering, computational
simulations can play a key role in guiding the design process
and speeding up the discovery of materials for targeted appli-
cations. Thanks to initiatives such as the Materials Genome
project,5,6 we now have databases of hundreds of thousands of
structures at our disposal, including both experimentally
known and theoretically predicted structures, along with their
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associated physical and chemical properties. These databases
can be computationally screened to retrieve key structure–
property relationships, potential theoretical limitations and
promising new structures.7,8 This is particularly true in the case
of nanoporous materials, which have been extensively studied
in high-throughput screening methodologies9 for the identi-
cation of top-performing materials for applications such as
electrocatalysis,10 photocatalysis,11 heterogeneous catalysis,12

membrane separation,13 adsorptive separation,14 adsorptive
storage,15 mechanical behaviors,16 etc.

Because high-throughput screening is performed on the scale
of hundreds of thousands or even millions of structures, there is
a need for faster computational methods to predict the materials'
properties, to be able to analyze larger and larger databases. In the
eld of adsorption, several measures have been proposed in order
to study the performance of a material for the adsorption of
a specic guest molecule. The most accurate, but also the most
computationally expensive one, is the grand canonical Monte
Carlo (GCMC) simulation. On the other end of the scale, the use of
simple geometric descriptors (pore size, pore volume, and surface
area) has also been proposed as proxies for various adsorption-
related metrics. As the eld of computational chemistry is
turning more and more towards machine learning (ML), the
development of a wide range of rapidly calculable descriptors17 is
an exciting research focus especially to speed up computational
screenings.

For low-pressure adsorption, a widely used characterization
parameter is the adsorption enthalpy DHads, which describes the
affinity of an adsorbate molecule with the internal surface of
a porous framework. In theory,18 this value is derived from the
continuous Boltzmann average of the interaction energies Eint of
the adsorbate with the framework over the entire porous space,
Chem. Sci., 2023, 14, 1797–1807 | 1797
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and this integral is calculated using a discrete summation over
a set of well-chosen points i (note that the −RT term comes from
the ideal gas approximation):

DHads ¼
Ð
EintðrÞe�EintðrÞ=RTdrÐ

e�EintðrÞ=RTdr
� RTx

P
i

Eiexpð �Ei=RTÞ
P
i

expð �Ei=RTÞ � RT

(1)

However, in molecular simulations, a complete sampling of
the free volume can be extremely cumbersome. Therefore,
random samplings are used to reduce simulation time, for
example in the Widom insertion method.19 Still, convergence of
the random sampling of space requires a large number of
samples, and most of the points may not contribute signi-
cantly to the Boltzmann average (i.e., they might have high
energy). It is possible to reduce the computational cost further
by reducing the number of sampled points, to try and capture
only those with the highest contribution to the actual value of
enthalpy. But, how can we choose these points a priori, without
rst calculating their energy?

One such biased sampling methodology was recently
proposed and used in a computational screening study of
adsorptive separation of xenon from krypton. Simon et al. used
a machine learning model to screen over 670 000 structures
based on geometrical descriptors and one energy descriptor
that mainly explains the accuracy of the nal model. To calcu-
late this descriptor, the authors used the average of the inter-
action energy over the Voronoi network to account for the
exponential contribution of the energy in the Henry constant.
According to the authors, this approach can sample the most
favorable sites of the structure without wasting computational
time on unfavorable ones. However, because the sampled
points are at the center of the cages, they may not always be the
most attractive sites especially for large pores. This approximate
approach makes this sampling interesting for quickly
producing an energy-based ML descriptor, but it could not
replace a Widom insertion for assessing the adsorption
performance. Other biased sampling methods that calculate the
integrals of the adsorption enthalpy and the Henry constant
could be applied, instead. In this work we propose one way of
exploiting prior chemical knowledge of adsorption—the fact
that it occurs near the surface of the pores—to efficiently
sample the nanoporous space.

We propose a novel algorithm for rapid adsorption enthalpy
characterization, based on the reduction of the sampling space
from 3D to 2D. This method is more accurate than the previous
Voronoi sampling strategy. Moreover, the dimension reduction
coupled with symmetric properties makes it faster than the stan-
dard Widom insertion method. This algorithm has been tested on
xenon and is directly applicable to any spherical adsorbate model;
and it can then be adapted to polyatomic adsorbate molecules as
well. This algorithm can be used in the future to speed up the
calculation of adsorption properties in regular or ML-assisted
high-throughput computational screenings of nanoporous
materials.
1798 | Chem. Sci., 2023, 14, 1797–1807
2 Methods
2.1 Benchmark

Before describing the core components of our surface sampling
algorithm, we briey present the other simulation tools used in
the article, for comparison and benchmarking purposes. We
used the RASPA2 soware for calculations such as Widom
insertion and surface area calculations.20 For the Voronoi
sampling technique, we used the Zeo++ soware to determine
the positions of the Voronoi nodes.21 All the calculations were
performed by considering the CoRE MOF 2019 (ref. 22) struc-
tures as rigid. In order to speed up the surface sampling, our
algorithm exploits the symmetry of the material, looping over
all symmetry-inequivalent atoms. Since the space groups (and
symmetry operations) of the nanoporous structures in the CoRE
MOF database were not specied, we used a Python script based
on the Spglib library to determine them.23 The unique atoms are
dened according to the symmetry determined by the afore-
mentioned Python script.

All simulations are performed for xenon adsorption on struc-
tures of the CoRE MOF 2019 database at innite dilution and at
298 K. Krypton adsorption has also been considered in order to see
the viability of the method in prediction of Xe/Kr selective mate-
rials (see full details in ESI† Section S4). Adsorption at another
temperature (600 K) was tested using the nal algorithm, and the
results are presented in ESI† Section S2. Other databases have also
been briey explored to test the robustness of the proposed algo-
rithm. A subset of a hypothetical MOF database, the ToBaCCo
database,24 has been screened (Section S6.1†), because it contains
very different MOFs according to the diversity analysis of Moosavi
et al.25 (for instance, the pores are larger). An amorphous material
database (containing 205 structures) has also been screened and
the algorithm identied some top materials for xenon adsorption
(Section S6.2†).

Widom insertion19 is implemented in RASPA2. It consists in
randomly inserting a single molecule inside an existing molecular
system to measure an interaction energy. In adsorption simula-
tions, these interaction energies of the randomly inserted adsor-
bate are typically used to determine values of the Henry constant
KH and of adsorption enthalpy DHads at the zero-loading limit.

The surface area calculation implemented in RASPA2 follows
a very standard “rolling ball” algorithm26 based on hard spheres
with sizes determined by the sigma value of the Lennard-Jones
potential. First, a probe-molecule samples the spherical surface of
the atoms of the framework. A portion of the sphere is excluded,
because the probe overlaps with another atom. Each framework
atom has an area of adsorbable surface, and the sum of all the
areas gives the total adsorbable surface area. The values given by
these simulations are then compared to the values given by our
algorithm to check the consistency of our implementation.

In mathematics, a tessellation of a given space corresponds
to a partition into non overlapping sub-spaces. In the Voronoi
tessellation, named aer Georgy Feodosevich Voronoy

, a set of points (seeds) are
associated with a tessellation of regions (Voronoi cells) so that
each seed has a cell that is closer to it than any other seeds.27
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Applied in materials science, the Voronoi cells associated with
each atom of the framework can be used to determine key
geometrical descriptors (void volume, accessible surface area,
and pore sizes). At the vertices of each cell, there are Voronoi
nodes that were used in the Voronoi energy calculation pre-
sented by Simon et al.14 To compare our algorithm to a Voronoi
sampling, we used the interaction energy values at the Voronoi
nodes to calculate a Boltzmann average. These proxies for the
adsorption enthalpy are then indirectly compared to the
adsorption enthalpies calculated by our surface sampling.

2.2 Force eld

To model the van der Waals interactions, we used Lennard-Jones
(LJ) truncated and shied potentials with a 12 Å cut-off without
tail corrections. The atoms of the structures were modeled using
the LJ parameters from the universal force eld UFF.28 For xenon
we used the following LJ parameters:29 3Xe = 221.0 K and sXe =

4.100 Å.30 To determine cross interaction parameters between
xenon and the host atoms, we used the Lorentz–Berthelot combi-
nation rules.31 Throughout the article, all interaction energies are
calculated with these same parameters, and while the exact results
in terms of adsorption enthalpies depend on the force eld
chosen, the goal of this article is the comparison of different
methodologies. We want to stress that the sampling method
proposed herein could be used with any other force eld. Other
analytical forms could be used, or other LJ parameters could be
chosen; for example, it is standard to mix Dreiding32 for the
organic part and UFF for the inorganic part of the MOF structures.

2.3 Simulation box

To design a versatile simulation tool, we use periodic boundary
conditions to create a rectangular simulation box for structures
with non-rectangular unit cells. An extended neighbor list is
created from the atoms of the translated rectangular boxes
within the chosen cutoff. When looping over the unique atoms
of the framework in the surface sampling, this neighbor list is
restrained to a shorter neighbor list to be used in the interaction
energy calculation, like in most molecular simulation algo-
rithms.33 To evaluate the effect of the neighbor list, we tested the
nal implementation without the implementation of the
neighbor list, and the simulation ran for 12.6 s instead of 0.34 s
(37 times slower) without altering the accuracy. This shows that
the implementation of an efficient neighbor list is a key point in
our algorithm.

2.4 Sphere sampling algorithm

In our proposed method as in the surface area calculation
algorithm,26,34 we rely heavily on the use of a uniform sampling
of n points on the surface of a sphere, but this problem can be
quite challenging in and of itself. In fact, except for very specic
values of n, there is not a general analytical solution to the
problem, only numerical approximations. During the develop-
ment of our algorithm, we tested several existing methodolo-
gies35 to achieve this sampling.

The rst technique is to rely on random sampling, with no
guarantee of uniformity, but which should converge for a large
© 2023 The Author(s). Published by the Royal Society of Chemistry
n. To generate random 3D unit vectors, one approach is to draw
random vectors in the corresponding cube, rejecting the points
that are not inside the sphere. A simple normalization of the
remaining vectors gives a random sampling of the sphere
surface.36 The same result can also be achieved by generating
three normally distributed random values and normalizing the
vector obtained by these numbers.36,37

Another technique to obtain a uniform distribution is to
imagine using a simulation of n charged points on the surface
of a sphere and minimize their electrostatic repulsion. This
method, based on the Thomson problem,38 relies on numerical
optimization and can become very expensive if n is high.39

The method we found to be the most efficient (slightly faster)
for the typical values of n that we consider (between 100 and 300
000) consists in wrapping a string of points around the sphere in
a spiral manner. This technique is closer to laying a uniform grid
over the surface than a “random sampling” of the surface, which
avoids redundant sampling points. The height h = r cosf (where
(r, q, f) are the spherical coordinates) of the sphere is uniformly
divided into n points; for each of these heights we chose an angle q
in the orthogonal plane space so that the difference between two
consecutive angles is the golden number.40 Thismethod is referred
to as the spherical Fibonacci mapping. While it is not the optimal
solution to the Thomson problem, its uniformity is rather good for
our purposes (we have checked that its inuence on the calculated
properties is negligible) and the computational cost is lower. It also
gives a convergence for values of n smaller than the random
distribution methods described above, allowing us to use smaller
sampling sizes, which is why we used this method for the rest of
the surface sampling simulations presented in this article.
3 Results and discussion
3.1 Beyond Widom insertion

Widom insertion is a standard calculationmethod that consists in
randomly inserting a single molecule inside an existing molecular
system by randomly choosing its center and its rotation angle.19 By
measuring the interaction energy of themolecule inserted, one can
obtain the excess free energy DFexc difference associated with its
insertion into the framework, i.e., the species chemical potential
mi. In the context of adsorption, this method has been used to
randomly insert a molecule in the empty porous framework: aer
many cycles, the simulation has generated a diverse enough
sample of points with different interaction energies Eint, yielding
the adsorption free energy DFads = −RT ln(hexp(−Eint/RT)i), the
Henry constant KH, and the adsorption enthalpy, DHads (eqn (1)),
which has the opposite sign of the zero-loading isosteric heat of
adsorption Q0

st. The Henry constant18,41,42 KH (in mol kg−1 Pa−1)
associated with the adsorption inside a crystalline framework of
mass density rf at temperature T can be derived using the
following eqn (2):

KH ¼ hexpð �Eint=RTÞi
rfRT

¼ 1

rfRT

1

Nsample

X

i˛sample

expð �Ei=RTÞ

(2)
Chem. Sci., 2023, 14, 1797–1807 | 1799
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where i represents the point of a sample used in practice to
calculate the integral.

If the free volume has been thoroughly explored, the Boltzmann
average of the host/guest interaction energies converges to the
adsorption enthalpy at innite dilution. The Widom insertion
method is very accurate, meaning that it converges to the “perfect”
value of the adsorption enthalpy—for a given choice of interaction
parameters—in the limit of innite sampling. However, it is
computationally expensive, and a lot of computational resources
are wasted during this sampling in the calculation of interaction
energies that have a negligible contribution to the overall Boltz-
mann average (points of high energy). Therefore, we can improve
this method if we manage to sample preferentially points with the
most negative interaction energies. To achieve this improvement
we need to identify the characteristics of the adsorption sites that
will have the highest weight (“count themost”) in the nal average,
while avoiding sampling parts of space where points will have
marginal contribution.

The Voronoi sampling and the surface sampling presented in
this article are examples of biased sampling methods, that follow
this idea. The change in the sampling technique can dramatically
improve the computation time required, and even a slight
improvement in computational efficiency can have a non-
negligible impact when dealing with datasets containing thou-
sands of structures. This article focuses on biased sampling tech-
niques to speed up adsorption enthalpy calculations. As a proof of
concept, we only considermonoatomic adsorbates (in our tests, we
used xenon) or adsorbates that can be modeled as a sphere (which
is common in molecular simulations of species such as CH4).
However, the methodology can be adapted to rigid polyatomic
adsorbates, where the algorithm would need to be adapted by
sampling the rotational degree of freedom of the adsorbed
molecule.

In all the comparisons in this paper, we chose to take a Widom
insertion simulation with 100 000 cycles (a very large number) as
a ground truth or reference for the adsorption enthalpy values of
every structure of the CoRE MOF 2019 database.22
Fig. 1 Scatter-plot of the enthalpies calculated by a Voronoi sampling
compared to the enthalpies calculated by a 100k-step Widom inser-
tion simulation of xenon in the structures of CoRE MOF 2019. The
points are labeled according to the largest cavity diameter (LCD)
belonging to one of the intervals.
3.2 Voronoi sampling

The use of the Voronoi decomposition of the pore space of mate-
rials for their geometric characterization has been widely
employed in computational studies in the last decade,21 in
particular since it was made easily available as part of the Zeo++
soware package.43 Its use was extended recently to implement
a novel sampling scheme, in a study proposing the ML-assisted
screening of nanoporous materials for xenon/krypton separation.
In this article, Simon et al.14 relied on a Voronoi tessellation of the
nanoporous materials and assigned the potential adsorption sites
(i.e., the sampling points) at the nodes of this decomposition. The
Voronoi tessellation identies the vertices of polygons that corre-
spond to the closest regions of each atom of the structure. These
vertices (or Voronoi nodes) are the points equidistant to at least
four atoms of the structure, and they can be associated with
adsorption sites since they are positioned near the center of the
pores. It is possible to calculate the host/guest interaction energies
at every Voronoi node, and average them to obtain an
1800 | Chem. Sci., 2023, 14, 1797–1807
approximation of the adsorption enthalpy. However, this sampling
assumes that the nodes are close to the real, most favorable,
adsorption sites. Or to put it differently, the adsorption sites need
to be at the center of the pores, which is only true for structures
with pore sizes close to the adsorbate size.

To check the accuracy of this sampling technique, we compared
it to our reference sampling, the Widom insertion with 100 000
cycles. Fig. 1 compares the enthalpy computed in the Voronoi
sampling with the reference adsorption enthalpy (ground truth)—
showing at the same time the largest cavity diameter for each
porous framework. The correlation between the values of enthalpy
is very good only for a restricted number of structures with
enthalpy of around −50 kJ mol−1. For structures with higher
enthalpy, the correlation starts to degrade, and becomes very poor
for small-pore structures. For the points in purple, the largest
cavity diameter is lower than the kinetic diameter of a xenon,
where the sampling of the Voronoi nodes is clearly insufficient. In
addition, the accuracy loss at the other points (larger pores) can be
explained by the fact that the pores are slightly bigger and the
center of the pore is not a good approximation of adsorption site
position anymore: the adsorption sites are actually closer to the
pore surface than to the center of the pore. This conclusion is what
prompted us to propose a new sampling scheme based on the
molecular surface of the pore space, which we will detail in the
next sections.

The root mean square error (RMSE) and the mean absolute
error (MAE) for Voronoi sampling are respectively 6.78 kJ mol−1

and 2.01 kJ mol−1, if we consider all structures in our set, which
seem too high to be useful for screening purposes. However, non-
porous materials would be screened out a priori in any high-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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throughput workow, as they would not be of interest. We can only
consider the structures with large enough cavities, larger than 3.7 Å
(a bit lower than 3.96 Å Xe kinetic diameter). Thereby, the RMSE
and MAE drop respectively to 2.11 kJ mol−1 and 1.55 kJ mol−1,
which can be considered acceptable for a quick estimation of the
guest–host affinity, but not for an accurate adsorption enthalpy
calculation.

This is reinforced by the very low computational cost of the
method. The Voronoi tessellation performed using the Zeo++
soware is extremely quick and can output the positions of the
Voronoi nodes in 0.28 s (measured as an average over all the
structures of the CoRE MOF 2019 database), on a typical
workstation (a single Intel Xeon Platinum 8168 core at 2.7 GHz).
While a simple Python code for the energy calculation took
around 27 s per structure, we benchmarked that a C++ opti-
mized implementation can perform the Voronoi sampling in
around 0.4 s. We only need to remember that this method takes
a few hundred milliseconds per structure, while a Widom
insertion needs approximately hundreds of seconds per struc-
ture. A Voronoi sampling is therefore 2 to 3 orders of magnitude
quicker than a full sampling of the pore space.

This preliminary study identied a fast method for adsorption
enthalpy calculations that can be widely used in screening proce-
dures, but has limited accuracy for quantitative prediction. It
raised important questions on the importance of selecting
sampling points within the pore space ofmaterials, and we wanted
to develop an intermediate technique that is both fast and accurate
for the prediction of adsorption enthalpy. For this purpose, we
developed and optimized a new sampling technique that focuses
the sampling on the surface of the material, which is expected to
make up for the main aws of the Voronoi sampling.
3.3 Construction of a surface sampling algorithm

In this section we describe the development of our surface
sampling algorithm, with the goal of being more accurate than
Fig. 2 Schematic description of our surface sampling based on the three
sampling around each atom, and the energy averaging. The adsorbate is r
unique atoms of the structure.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Voronoi sampling and faster than Widom insertion. Our initial
idea is based on a series of theoretical considerations: (1) the
strong adsorption sites are near the surface of the material; (2) by
changing the problem from 3D to 2D sampling we can reduce the
complexity; and (3) the algorithm can scale with the number of
unique atoms in the structure (and not with the size of the unit
cell), which is efficient because many porous frameworks have
high symmetry. The rst consideration ensures that this method
will be more accurate than a Voronoi sampling, and the last two
made us think that a well-optimized code would be fast. To
conrm these hypotheses, we will analyze both the accuracy and
the speed of this new algorithm and compare them to those of
existing methods.

3.3.1 Initial implementation. We present here our initial
implementation of the surface sampling algorithm, and its
basic principles. This rst implementation is a relatively basic
one and already performs well compared to the other methods.
In the next sections, we rene it with two additional features
that will improve its accuracy and its speed.

This initial implementation speeds up the calculation of
adsorption enthalpy in nanoporous materials by sampling
interaction energies only near the surface. It is illustrated in
Fig. 2. For this purpose, a loop over all unique atoms (as dened
by crystalline symmetry) is performed. And for each atom,
a sphere around its position is sampled using a uniform distri-
bution around it; these points will be called sampling points and
we can change the number of sampling points. The default
radius chosen for the sampling spheres is the distance rmin = 21/
6sij to the minimum of the LJ potential between atoms of type i
(belonging to the framework) and j (the guest), corresponding to
the strongest possible pair interaction (although the neighboring
atoms will of course have an inuence). Aer calculating the
interaction energy at each of the sampled points, a Boltzmann
average of these energies corresponds to a biased adsorption
enthalpy, as described by eqn (1).
main steps of the algorithm: the loop over the unique atoms, the spiral
epresented by the point i and is moved across all the points around the
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Fig. 3 RMSE convergence of our algorithm (left) compared to a 100k-
step Widom insertion simulation (right) for xenon adsorption in all the
structures of the CoRE MOF 2019 database.
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In order to validate the accuracy of the approximation made
using this sampling, we applied this algorithm with 300 000
sampling points per unique atom. The results are illustrated in Fig.
S1 and S2 and Table S1 of the ESI.† There is a good numerical
agreement with the reference calculations; the RMSE andMAE are
only around 0.90 kJ mol−1 and 0.66 kJ mol−1 considering all the
structures from the database. Moreover, there is no noticeable
difference in RMSE when considering the structures with a pore
size above 3.7 Å (as determined by the largest cavity diameter, or
LCD). Unlike Voronoi sampling, this method gives a consistent
accuracy across all the structures of the database with a lower
error. The fact that the RMSE error is below 1 kJ mol−1 is quite
promising, and validates our intuition that this new sampling
technique can be an intermediate between to the two previous
methods (Voronoi and Widom).

Aer proving the good accuracy of the method, we are now
exploring the computation time required. We see in Fig. 3 that the
method reaches an RMSE below 1.0 kJ mol−1 very quickly for an
average CPU time of 1.2 s (Table S1†), corresponding to 2000
sampling points per atom. This is far less than the 150 s (Table
S2†) required for a Widom insertion to reach its plateau value, for
an RMSE of 0.10 kJmol−1 with 12 000 cycles.Moreover, theWidom
insertion needs around 14 s to reach a similar RMSE of 1.0 kJ
mol−1, which is still slower than the surface sampling. We can
conclude that this initial implementation of the surface sampling
is faster than a standard Widom insertion, with a good accuracy.

However, this initial implementation of the method is slower
than a Voronoi sampling that only needs to sample around 1600
points on average, instead of 13 000 sampled points on average
(if we multiply by the average number of unique atoms). The
sampling part would take approximately 0.15 s, and the Voronoi
node generation 0.28 s, so our surface sampling algorithm
remains 2 to 3 times slower (implemented in an identically
compiled language, in this case C++). In order to improve the
accuracy and performance, we have further tweaked the surface
sampling method, adjusting the size of the sampling sphere
1802 | Chem. Sci., 2023, 14, 1797–1807
and adopting a fast rejection criterion. The rejection of high-
energy points with little contribution to the nal enthalpy
value can reduce the simulation time, whereas the size of the
sampling sphere can improve the accuracy. The initially chosen
sphere size only takes into account the interaction with the
closest atom; we therefore chose to set it at the minimum of
Lennard-Jones potential. However, the interaction with the
neighboring atoms can further stabilize the adsorbate, so
sampling further from this minimum could in consequence
increase the accuracy of our surface sampling method.

3.3.2 Size of the sampling sphere. The validity of the initial
algorithm is based on the assumption that the adsorption site is
at the minimum of the Lennard-Jones potential. It will only
perform well if the closest atom contributes to almost all the
interactions, but in real frameworks other neighboring atoms
contribute to the host/guest interaction as well. We have found
that in the vast majority of materials, the adsorption sites are
located farther apart compared to the LJ potential minimum, in
order to maximize the contribution of all atoms—and because
of the dissymmetry of the interaction potential well. In order to
see if this could be introduced in our algorithm, we imple-
mented a parameter l, and the sampling sphere radius is now
dened using Rl = ls, where s is the distance at which the LJ
potential is zero. If l = 21/6, we fall back to our initial denition
of the sampling sphere, and the adsorbent is at the minimum of
the LJ potential of the atom. If l = 1, the sampling sphere is at
the zero of the LJ potential, and by increasing this parameter,
we can check if our intuition was right.

Because we have no physical model that would predict the
optimal value of the sampling sphere, we followed a statistical
approach. We studied the inuence of the l parameter on both
the accuracy and the computation time, and the results are
presented in Fig. 4. The RMSE turns out to be relatively high at
around 0.90 kJ mol−1 for a radius of the sphere lower than the
rmin, and it then decreases for larger values of radius to reach
a plateau at around 0.35 kJ mol−1. We conrm that by
increasing the sampling sphere radius we can improve the
accuracy of our algorithm, and nd that for values of l higher
than 1.6, the accuracy is stabilized. We also nd that increasing
the sphere radius negatively impacts the computational effi-
ciency, since it increases the number of neighbors considered in
the energy calculation.

By choosing an optimal sampling sphere, we can more than
halve the error, while increasing the computation time by
around 20 percent, when comparing the case l = 1.6 with l =

1.1 (close to rmin). In most cases, it will be an acceptable trade-
off. However, in a case where the computation time is crucial,
like in a rapid screening, the optimal choice might not be to
increase the sampling sphere at l = 1.6 but to have it lower at l
= 1.4 or l= 1.2, and have an RMSE at around 0.5 kJ mol−1—still
quite acceptable. The new scale parameter introduced in this
section can therefore be tweaked to serve the users' purpose,
whether it is to focus on the accuracy or to optimize the
computation speed. If one wants to use it on a completely
different database under very different conditions, then one can
either choose a default value that works ne (e.g. l = 1.4) or one
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Influence of the sampling sphere radius Rl on the average CPU
time required for a simulation of 100k sampling points and the RMSE,
compared to the reference adsorption enthalpy. The averaging is
performed only on the structures with a largest cavity diameter (LCD)
higher than 3.7 Å.

Fig. 6 Influence of the rejection coefficient m on the average CPU
time required for a simulation of 100k sampling points and the RMSE
compared to the reference adsorption enthalpy. The averaging is
performed only on the structures with a largest cavity diameter (LCD)
greater than 3.7 Å.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

23
/2

02
5 

8:
51

:0
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
can optimize the parameter on a small diverse sample of the
unseen data.

3.3.3 Rejection conditions. As shown above, our algorithm
has better accuracy than Voronoi sampling, but its initial
implementation was several times slower, which could make it
unsuitable for screening applications in high-throughput
workows, where the number of structures to be screened can
reach one million or more. To reduce the computational
expense, we thought of rejecting the points with little contri-
bution to the nal enthalpy, i.e., the largely positive interaction
energies that would vanish in the exponential of the Boltzmann
average.

Inspired by typical methods for accessible surface calcula-
tions, we implemented a hard sphere rejection condition based
on the distance to neighbors. If the adsorbate is too close to
another atom of the structure, the sampling point is rejected,
i.e., its energy is not calculated (or considered to be innite). We
based this distance threshold on the sij parameter of the
Lennard-Jones potential. To determine the optimal threshold,
we introduced a factor m with real values between 0 and 1 that
changes the size of the hard sphere rejection condition. If the
guest–host distance is lower than dm = m × s, then the point is
rejected. If m= 0, then there is no rejection condition. And if m=

1, we reject all points with a positive energy interaction with at
least one atom of the structure. This condition could be a bit
Fig. 5 Simplified 2D representation of the principle of rejection conditi
channels of a nanoporous material.

© 2023 The Author(s). Published by the Royal Society of Chemistry
strong and points with non negligible contribution would end
up being rejected. This rejection condition is schematically
represented in Fig. 5.

This rejection condition is expected to speed up the calcula-
tions, since the energy calculation is avoided for the rejected
sampling points. The energy calculation accounts for the largest
portion of the CPU time spent on the surface sampling. For the
structure KAXQIL,44 the Lennard-Jones potential calculation
represents up to 90% of the calculation time for 100 000 sampling
points per sphere (with the initial algorithm). The higher the factor
m, the more rejections there would be. But, if too many points are
rejected, the accuracy will drop. Here again, we used a statistical
analysis to determine the optimal value of m, making our sampling
faster without compromising the accuracy of the enthalpy calcu-
lation. The results are displayed in Fig. 6.

The values of RMSE and time in Fig. 6 are averaged only on
themost interesting structures for xenon adsorption (LCD$ 3.7
Å). For m# 0.85, increasing the value of m improves the speed of
the calculation without changing the RMSE.‡ For high values of
m, the rejection condition is too strong and we reject points with
non-negligible contribution to the overall enthalpy. The RMSE
increases as a consequence. If we want to keep the accuracy
unchanged, the optimal value is therefore m x 0.85, because it
gives the lowest computation time with a similar RMSE. We
note that it would be possible, in specic cases, to explore
ons and the concept of sampling spheres inside the one-dimensional
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Fig. 7 Comparison of the RMSE to the reference Widom insertion
(100k cycles) and the average computation time for different types of
enthalpy calculation methods. The surface sampling calculations were
all performed with 2k sampling points on each sphere and the Widom
simulations were performed using 12k cycles. These values corre-
spond to the value at the convergence identified using Fig. 3.
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higher values of m that trade a bit more accuracy in exchange of
further speed gains.

For the simulations considered in Fig. 6, the use of a rejec-
tion condition m = 0.85 makes the simulation four times faster
than the standard algorithm. As we will see in the next section,
the combination of optimal values for the l and m parameters
generates an algorithm with very interesting performance
compared to Voronoi sampling or Widom insertion.
3.4 Final surface sampling algorithm

3.4.1 Performance comparison. For the calculation of
adsorption enthalpy, our proposed surface sampling method is
a good compromise between the accuracy of Widom insertion (full
sampling of the porous space) and the speed of a less accurate
method such as Voronoi sampling. The performance of our algo-
rithm, including the two new features (sampling sphere scaling
and rejection criterion) is illustrated in Fig. 7, where we can see the
improvement brought about by each feature and how it compares
to reference simulations. All CPU times are calculated using the
smallest possible number of sampling points so that the respective
algorithms reach convergence. With the implementation of
a rejection condition, wend that surface sampling is even quicker
than Voronoi sampling. Moreover, the increase in the size of the
sampling sphere makes the surface sampling much more accu-
rate, reaching an RMSE of 0.33 kJ mol−1 and an MAE of 0.21 kJ
mol−1. The ideal set of parameters, determined for porous mate-
rials from the CoRE MOF 2019 database, is (l = 1.6, m = 0.85) in
order to combine the lowest error and smallest computational
cost. By combining both of these new features into the algorithm,
we have a nal surface sampling method with an RMSE of 0.33 kJ
mol−1 and an average computation time of 0.34 s per structure.
According to the data in Table S3,† it is about 6 times more
1804 | Chem. Sci., 2023, 14, 1797–1807
accurate and 26% faster than Voronoi sampling, and it is also
about 430 times faster than a Widom insertion with 12k cycles.

Finally, we suggest that the values of the parameters optimized
in this work might need adjustment when applied to other
adsorption systems. The optimal m parameter depends on the size
of the adsorbent, and it should be tweaked differently when
considering another adsorbent. For instance, the set of structures
used for the optimization of m depends on the size of their cavities,
and the 3.7 Å threshold chosen here would need to be changed
according to the kinetic diameter of the adsorbate. Furthermore,
as aforementioned in the section on rejection conditions, it is
possible to trade-off a bit of accuracy for faster simulations espe-
cially in high-throughput screenings where speed is extremely
important. Similarly, in the case of xenon, the cost of increasing
the sphere size is around 10 to 20%. On very large databases, one
could consider that this increase in the required computational
time is not worth the accuracy improvement, and one could decide
to keep a smaller sampling sphere. If this method is transposed to
different molecular systems, its parameters should be tested on
the specic database and adsorbate of interest.

3.4.2 Calculation of the Henry constant and surface area.
The main goal of our sampling algorithm is to calculate
adsorption enthalpy at the zero-loading limit. But the method
can also calculate the Henry constant and surface area of the
materials at the same time, without signicant additional
computational cost. The Henry constant is a key metric for
assessing the affinity of an adsorbate to a nanoporous structure.
The A/B gas selectivity at low pressure is dened as a ratio of the
Henry constants of components A and B. This important
property can be calculated using eqn (2) in a Widom insertion
calculation. Instead of using the interaction energies at the
Widom inserted points, we can now use the surface sampled
points to get an approximate value for the Henry constant.

Using the optimized set of parameters for surface sampling,
we assessed the performance of our algorithm on the values of
the Henry constant by comparing them to ground truth ob-
tained by 100 000 cycles of Widom insertion. Since the Henry
constant corresponds to the exponential of an adsorption free
energy and we are more interested in the precision of the free
energy, we are using a log-scale evaluation metric. For surface
sampling, the log-RMSE of KH is equal to 0.2, which means that
the order of magnitude of the values is well predicted (Table
S4†). If we consider the derived free energy DFads = −RT
log(rfRTKH), the RMSE is of the order of 1.1 kJ mol−1 reached in
about 1 s (Table S6†), whereas for Widom insertion, this level of
error is also reached in a similar amount of time and 0.1 kJ
mol−1 of RMSE is reached in about 86 s (Table S7†). For free
energy calculations, surface sampling is still 86 times faster to
converge. If we consider that the main target is the adsorption
enthalpy, the Henry constant can be calculated with little
additional computational cost and with reasonable accuracy: we
get two thermodynamic properties of interest for the price of
one.

The same goes for the determination of the surface area. We
can adapt our algorithm to count the number of points of the
sampling spheres that have a negative energy. These represent
the points where a guest molecule can favorably interact;
© 2023 The Author(s). Published by the Royal Society of Chemistry
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therefore when dividing it by the number of sampled points, we
obtain a proportion of the adsorbable area of the sphere.
Summing this over all atoms, we obtain the total surface area.
This implementation is summed up in eqn (3):

SA ¼ 1

V

X

a˛cell

NaccessibleðaÞ
Ntotal

4prðaÞ2 (3)

where V is the volume of the cell; a is the number of atoms of the
cell; Naccessible(a) is the number of accessible points around the
atom a; Ntotal is the total number of sampling points; r(a) is the
radius of the sampling sphere around the atom a. When we set l
= 1, we are sampling spheres that have a radius of s and it is
equivalent to considering hard spheres all dened using s

(convention used by RASPA2 to calculate surface areas). If we
compare simulation with l = 1, we obtain surface areas that are
very close to the one obtained by RASPA2 (see Fig. S11 in the
ESI†). However, when we consider l = 1.6, we lose the accor-
dance previously obtained and the points are weakly correlated
at the log-scale (see Fig. S10 in the ESI†). The difference can be
explained by the fact that the sphere size is larger, but the
proportion of adsorbable points also changes. The relationship
between these two adsorption surface areas is not trivial at all.
Since the calculation of surface areas is quite cheap, this
implementation would not be very useful, except for having
a rough idea of the surface area.

4 Conclusions and perspectives

In the present article, we described a novel algorithm for the
high-speed calculation of adsorption enthalpy in nanoporous
materials that takes a unique approach to reduce the sampling
necessary. This new algorithm is based on the core principle of
dimensional reduction, from a volume problem to a surface
one. The algorithm is proven to be signicantly faster than the
reference Widom insertion (random sampling of porous space).
Moreover, the error associated is found to be in the order of 0.4
kJ mol−1, tested throughout the entire CoRE MOF 2019 data-
base, for xenon adsorption. Even when compared to existing
very fast sampling techniques such as Voronoi sampling, this
surface sampling technique requires similar CPU time,
combined with a better accuracy.

Based on these results, this algorithm has important
potential for applications in the current computational analysis
workows of material databases, such as high-throughput
screening studies. For instance, this algorithm can be used to
get a fast approximation of the low-loading adsorption enthalpy
of a molecule inside nanoporous materials. This cheap evalu-
ation of enthalpy can be used to screen out the structures with
little affinity with the targeted adsorbate molecule. It can also be
used as a thermodynamic descriptor for selectivity prediction in
a machine learning model, as performed by Simon et al.14 The
computational speed-up brought about by this novel method-
ology can also enable the screening of materials databases at
a larger scale in the future.

We note, moreover, that the speed of our method resides in
the sampling technique itself, rather than in the actual energy
calculation. While we have benchmarked it in this work for
© 2023 The Author(s). Published by the Royal Society of Chemistry
a simple Lennard-Jones interaction potential, this sampling
technique could equally be used to speed up samplings of space
based on more expensive modeling strategies, including polar-
izable force elds or density functional theory (DFT) calculations.
In the literature, the need for cheap ab initio grade thermody-
namic properties is usually fullled by using an importance
sampling method based on a classical force eld.45 In our
method, the description of surface sampling is independent of
any force eld, and the sampling spheres can be dened
according to kinetic radius, van der Waals radius or any other
physically relevant distance. Consequently, given a denition of
atomic radii, it is possible to dene a surface on which to carry
out other types of simulations such as neural network potential,
DFT or any other force elds. Although the accuracy or relevance
of such a sampling remains an open question, the approach will
undeniably speed up the simulations. This could even be applied
to calculate adsorption enthalpies while considering intrinsic
structure exibility,46 a task whose main drawback is the high
computation time required. Since surface sampling is hundreds
of time faster than standard methodologies, we could use
hundreds of snapshots in a exibility-aware calculation.

Finally, although the algorithm in its present form can already
be applied in a wide range of applications, additional develop-
ment work could allow us to generalize it to polyatomic adsor-
bates. For instance, we would need to work on a denition of the
molecular radius for nonspherical adsorbates as well as all the
orientation conformations of the adsorbent. We could imagine
making the distance to the surface depend on the orientation of
the adsorbate or sample a band volume on the surface. Although
the best implementation of surface sampling for polyatomic
adsorbates remains an open question, in theory it should be
possible to apply it to more complex adsorbates than spherical
noble gas. This would add more complexity to the algorithm but
would not change the fundamental speed up due to surface
sampling, since these orientation moves are also performed in
other standard methodologies. To improve the accuracy even
more, we could test hybrid samplings with multiple sampling
spheres, or a combination of Voronoi nodes and sampling
spheres. Another idea could be to have fractions of spheres that
are oriented toward the center of pores given by the Voronoi
node. In theory, having a wider variety of sampling points can
only improve the sampling. There are therefore multiple possible
sampling techniques that could be built around the method
introduced herein. The code is made freely available on the
group's GitHub, where further development will be released.

Data availability

Data and code related to this study are available from our group
repository at https://github.com/fxcoudert/citable-data. The
RAESS code is available at https://github.com/coudertlab/RAESS.

Author contributions

Both authors designed the study, analysed the results, wrote
and revised the article. E. R. wrote the RAESS soware and ran
the molecular simulations.
Chem. Sci., 2023, 14, 1797–1807 | 1805

https://github.com/fxcoudert/citable-data
https://github.com/coudertlab/RAESS
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc05810c


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

23
/2

02
5 

8:
51

:0
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This work was nancially supported by Orano. The authors
thank Philippe Guilbaud and Isabelle Hablot for discussions on
the topic of adsorption-based separation.
Notes and references
‡ In fact, what we observe is a deterioration of the accuracy for structures with
small pores because the probability of rejection in a conned space is really high
and all sampled points end up rejected. But these points are not considered, if we
apply the condition on the cavity size (LCD $ 3.7 Å).

1 D. S. Sholl and R. P. Lively, Seven chemical separations to
change the world, Nature, 2016, 532, 435–437.

2 National Academies of Sciences, Engineering, and Medicine, A
Research Agenda for Transforming Separation Science, National
Academies Press, 2019.

3 R. Morris and P. Wheatley, Gas Storage in Nanoporous
Materials, Angew. Chem., Int. Ed., 2008, 47, 4966–4981.

4 M. Ding, R. W. Flaig, H.-L. Jiang and O. M. Yaghi, Carbon
capture and conversion using metal–organic frameworks and
MOF-based materials, Chem. Soc. Rev., 2019, 48, 2783–2828.

5 , The Materials Genome Initiative. , 2022, Available online at
https://www.mgi.gov/.

6 T. Kalil and C. Wadia Materials Genome Initiative for Global
Competitiveness. 2011.

7 S. Chibani and F.-X. Coudert, Systematic exploration of the
mechanical properties of 13 621 inorganic compounds,
Chem. Sci., 2019, 10, 8589–8599.

8 E. Ren and F.-X. Coudert, Thermodynamic exploration of
xenon/krypton separation based on a high-throughput
screening, Faraday Discuss., 2021, 231, 201–223.

9 E. Ren, P. Guilbaud and F.-X. Coudert, High-throughput
computational screening of nanoporous materials in
targeted applications, Digital Discovery, 2022, 1, 355–374.

10 J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and
J. K. Nørskov, Computational high-throughput screening of
electrocatalytic materials for hydrogen evolution, Nat.
Mater., 2006, 5, 909–913.

11 A. K. Singh, K. Mathew, H. L. Zhuang and R. G. Hennig,
Computational Screening of 2D Materials for
Photocatalysis, J. Phys. Chem. Lett., 2015, 6, 1087–1098.

12 S. Back, K. Tran and Z. W. Ulissi, Discovery of Acid-Stable
Oxygen Evolution Catalysts: High-Throughput
Computational Screening of Equimolar Bimetallic Oxides,
ACS Appl. Mater. Interfaces, 2020, 12, 38256–38265.

13 S. Han, Y. Huang, T. Watanabe, Y. Dai, K. S. Walton, S. Nair,
D. S. Sholl and J. C. Meredith, High-Throughput Screening of
Metal–Organic Frameworks for CO2Separation, ACS Comb.
Sci., 2012, 14, 263–267.

14 C. M. Simon, R. Mercado, S. K. Schnell, B. Smit and
M. Haranczyk, What Are the Best Materials To Separate
1806 | Chem. Sci., 2023, 14, 1797–1807
a Xenon/Krypton Mixture?, Chem. Mater., 2015, 27, 4459–
4475.

15 C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser,
J. T. Hupp and R. Q. Snurr, Large-scale screening of
hypothetical metal–organic frameworks, Nat. Chem., 2011,
4, 83–89.

16 R. Gaillac, S. Chibani and F.-X. Coudert, Speeding Up
Discovery of Auxetic Zeolite Frameworks by Machine
Learning, Chem. Mater., 2020, 32, 2653–2663.

17 K. Jorner , Solvent accessible surface area. , 2021; Available
online at https://kjelljorner.github.io/morfeus/sasa.html.

18 S. Kar and C. Chakravarty, Computational evaluation of
Henry's constants and isosteric heats of sorption for
Lennard-Jones sorbates in Na-Y zeolite, Mol. Phys., 2001,
99, 1517–1521.

19 B. Widom, Some Topics in the Theory of Fluids, J. Chem.
Phys., 1963, 39, 2808–2812.

20 D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, RASPA:
molecular simulation soware for adsorption and diffusion
in exible nanoporous materials,Mol. Simul., 2016, 42, 81–101.

21 T. F. Willems, C. H. Rycro, M. Kazi, J. C. Meza and
M. Haranczyk, Algorithms and tools for high-throughput
geometry-based analysis of crystalline porous materials,
Microporous Mesoporous Mater., 2012, 149, 134–141.

22 Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee,
H. Zhang, K. D. Vogiatzis, M. Milisavljevic, S. Ling,
J. S. Camp, B. Slater, J. I. Siepmann, D. S. Sholl and
R. Q. Snurr, Advances, Updates, and Analytics for the
Computation-Ready, Experimental Metal–Organic
Framework Database: CoRE MOF 2019, J. Chem. Eng. Data,
2019, 64, 5985–5998.

23 A. Togo and I. Tanaka Spglib: a soware library for crystal
symmetry search. 2018; https://arxiv.org/abs/1808.01590.

24 Y. J. Colon, D. A. Gomez-Gualdron and R. Q. Snurr,
Topologically Guided, Automated Construction of Metal–
Organic Frameworks and Their Evaluation for Energy-
Related Applications, Cryst. Growth Des., 2017, 17, 5801–
5810.

25 S. M. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk,
K. C. Stylianou and B. Smit, Capturing chemical intuition
in synthesis of metal-organic frameworks, Nat. Commun.,
2019, 10, 539.

26 A. Shrake and J. Rupley, Environment and exposure to
solvent of protein atoms. Lysozyme and insulin, J. Mol.
Biol., 1973, 79, 351–371.

27 C. H. Rycro, VORO++: A three-dimensional Voronoi cell
library in C++, Chaos, 2009, 19, 041111.

28 A. K. Rappe, C. J. Casewit, K. Colwell, W. A. Goddard III and
W. M. Skiff, UFF, a full periodic table force eld for
molecular mechanics and molecular dynamics
simulations, J. Am. Chem. Soc., 1992, 114, 10024–10035.

29 P. Ryan, O. K. Farha, L. J. Broadbelt and R. Q. Snurr,
Computational screening of metal-organic frameworks for
xenon/krypton separation, AIChE J., 2010, 57, 1759–1766.

30 J. O. Hirschfelder; C. F. Curtiss and R. B. Bird Molecular
theory of gases and liquids. Molecular theory of gases and
liquids 1964.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://www.mgi.gov/
https://kjelljorner.github.io/morfeus/sasa.html
https://arxiv.org/abs/1808.01590
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc05810c


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

23
/2

02
5 

8:
51

:0
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
31 H. A. Lorentz, Ueber die Anwendung des Satzes vom Virial in
der kinetischen Theorie der Gase, Ann. Phys., 1881, 248, 127–
136.

32 S. L. Mayo, B. D. Olafson and W. A. Goddard, DREIDING:
a generic force eld for molecular simulations, J. Phys.
Chem., 1990, 94, 8897–8909.

33 D. Frenkel and B. Smit Understanding molecular simulation:
from algorithms to applications, Elsevier, 2001, vol. 1.

34 F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander and
M. Scharf, The double cubic lattice method: Efficient
approaches to numerical integration of surface area and
volume and to dot surface contouring of molecular
assemblies, J. Comput. Chem., 1995, 16, 273–284.

35 B. Edward and A. B. K. Saff, Distributing many points on
a sphere, Math. Intell, 1997, 19, 5–11.

36 G. Marsaglia, Choosing a Point from the Surface of a Sphere,
Ann. Math. Stat., 1972, 43, 645–646.

37 C. Simon Generating uniformly distributed numbers on
a sphere. 2015, Available online at http://
corysimon.github.io/articles/uniformdistn-on-sphere/.

38 J. J. Thomson, On the structure of the atom: an investigation
of the stability and periods of oscillation of a number of
corpuscles arranged at equal intervals around the
circumference of a circle; with application of the results to
the theory of atomic structure, Lond. Edinb. Dublin Philos.
Mag. J. Sci., 1904, 7, 237–265.
© 2023 The Author(s). Published by the Royal Society of Chemistry
39 J. R. Morris, D. M. Deaven and K. M. Ho, Genetic-algorithm
energy minimization for point charges on a sphere, Phys.
Rev. B: Condens. Matter Mater. Phys., 1996, 53, R1740–R1743.

40 A. Gonzalez, Measurement of Areas on a Sphere Using
Fibonacci and Latitude–Longitude Lattices, Math. Geosci.,
2009, 42, 49–64.

41 R. L. June, A. T. Bell and D. N. Theodorou, Prediction of low
occupancy sorption of alkanes in silicalite, J. Phys. Chem.,
1990, 94, 1508–1516.

42 L. Sarkisov, R. Bueno-Perez, M. Sutharson and D. Fairen-
Jimenez, Materials Informatics with PoreBlazer v4.0 and
the CSD MOF Database, Chem. Mater., 2020, 32, 9849–9867.

43 M. Pinheiro, R. L. Martin, C. H. Rycro, A. Jones, E. Iglesia
and M. Haranczyk, Characterization and comparison of
pore landscapes in crystalline porous materials, J. Mol.
Graphics Modell., 2013, 44, 208–219.

44 D. Banerjee, Z. Zhang, A. M. Plonka, J. Li and J. B. Parise, A
Calcium Coordination Framework Having Permanent
Porosity and High CO2/N2 Selectivity, Cryst. Growth Des.,
2012, 12, 2162–2165.

45 S. Vandenbrande, M. Waroquier, V. V. Speybroeck and
T. Verstraelen, Ab Initio Evaluation of Henry Coefficients
Using Importance Sampling, J. Chem. Theory Comput.,
2018, 14, 6359–6369.

46 M. Witman, S. Ling, S. Jawahery, P. G. Boyd, M. Haranczyk,
B. Slater and B. Smit, The Inuence of Intrinsic Framework
Flexibility on Adsorption in Nanoporous Materials, J. Am.
Chem. Soc., 2017, 139, 5547–5557.
Chem. Sci., 2023, 14, 1797–1807 | 1807

http://corysimon.github.io/articles/uniformdistn-on-sphere/
http://corysimon.github.io/articles/uniformdistn-on-sphere/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc05810c

	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...

	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...

	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...
	Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materialsElectronic supplementary information (ESI) available:...


