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Near-term quantum computers are expected to facilitate material and chemical research through accurate
molecular simulations. Several developments have already shown that accurate ground-state energies for
small molecules can be evaluated on present-day quantum devices. Although electronically excited states
play a vital role in chemical processes and applications, the search for a reliable and practical approach for
routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state
methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-
of-motion-based method to compute excitation energies following the variational quantum eigensolver
algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on Ho,
Ha4, H>O, and LiH molecules to test our quantum self-consistent equation-of-motion (g-sc-EOM) method

and compare it to other current state-of-the-art methods. g-sc-EOM makes use of self-consistent
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Accepted 26th January 2023 operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It

provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization
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potentials and electron affinities. We also find that g-sc-EOM is more suitable for implementation on NISQ

rsc.li/chemical-science devices as it is expected to be more resilient to noise compared with the currently available methods.

For estimation of molecular ground-state properties on noisy
intermediate-scale quantum (NISQ) era devices, variational

1. Introduction

Quantum chemistry is expected to be one of the first areas
which can have demonstrable quantum advantages in the near
term."® This is due to the fact that the computational effort
required for exact evaluation of electron correlation on a
classical computer-whose accurate calculation is essential for
a reliable comparison with experimental values-scales
factorially with the number of molecular orbitals. This
unfavourable scaling is expected to reduce drastically when
wavefunctions are instead prepared on quantum devices.
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quantum eigensolver (VQE) based algorithms have gained
popularity due to their relatively low circuit depth and resilience
to noise.”' This has led to a series of successful demonstrations
involving the computation of molecular ground-state energies
of small molecules on present-day quantum devices and
simulators.*****> However, estimation of just the molecular
ground-state energy is not sufficient for describing many
interesting chemical processes that involve electronic
excitations in some form.*® For example, accurate modelling
of chemical phenomena such as photochemical reactions,
catalytic processes involving transition metal complexes,
photosynthesis, solar cell operation, etc. requires an accurate
simulation of both molecular ground and excited states. The
electronically excited states of such systems are generally
strongly correlated and hence, require the use of sophisticated
quantum chemical theories for their accurate description. A
number of methods have been developed in this regard in the
last few decades.”**> The equation-of-motion coupled-cluster
(EOM-CC)** approach, originally developed by Stanton and
Bartlett, is a popular example that is routinely used to calculate
molecular excited-state properties such as excitation energies
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and transition dipole moments.***” EOM-CC has also been
extended to calculate energies required to add or remove
electrons from the ground-state electronic configuration.***
For example, IP-EOM-CC***° and EA-EOM-CC* approaches have
been developed which can compute accurate vertical ionization
potentials (IPs) and vertical electron affinities (EAs),
respectively. IPs/EAs are defined as the difference in energy
between the ground state and the states obtained by a single
electron detachment/attachment process. Some of the other
advantages associated with the EOM-CC formalism are its
theoretical rigour, the accuracy and correct scaling behavior of
energy differences computed, and the ability to systematically
improve the results. However, standard quantum chemistry
methods such as EOM-CC sometimes face challenges in
a quantitative determination of excited states and their
properties, notably for same-symmetry conical intersections**-*
and when the ground state has a prominent multi-reference
character.”’*® Since VQE algorithms are expected to provide
accurate ground-state wavefunctions, even in the case of
strongly correlated systems, NISQ era devices can help address
these challenging problems with practical computational
expenses.

We would like to note that methods for the estimation of
molecular excited states on a quantum computer based on other
popular quantum algorithms have also been proposed. A number
of approaches are based on the quantum phase estimation
algorithm®~” with new developments for efficient implementation
on quantum computers.’*** Methods based on Krylov subspace
diagonalization®** and quantum annealing®* have also been
proposed. While these methods are theoretically exact (in the
absence of any noise) and expected to provide a significant
computational advantage over exact treatment on a classical
computer, they will mostly be useful in fault-tolerant quantum
computing and not suitable for NISQ era quantum computers due
to their high quantum resource requirements and low tolerance to
noise.

Significant effort has been made in developing methods for the
calculation of molecular excitation energies within the framework
of VQE in the last few years. These techniques can be broadly
classified into circuit optimization and diagonalization-based
approaches. In the former approach, optimal parametrized
circuits are obtained for every excited state, usually by minimizing
a cost function involving energies of one or multiple excited
states. Subspace-search VQE (SS-VQE),** orthogonal state
reduction variational eigensolver (OSRVE),* variational quantum
deflation (VQD)**® and the folded spectrum method* are some
examples. These approaches, however, generally require
increased quantum resources, specifically the gate depth. This
makes them challenging for near term applications. Moreover,
there is no guarantee for them to find the entire spectrum when
the states are close in energy to one another. On the other hand,
diagonalization-based approaches use a classical computer to
diagonalize the Hamiltonian in a subspace and can provide
several excited states simultaneously. In this regard, methods
such as quantum Krylov subspace expansion,***”° quantum
subspace expansion (QSE),”*” and the quantum equation-of-
motion (QEOM)”™ have been developed recently. QSE has had
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significant success in the last few years and has also been
extended to capture the missing correlation in large virtual orbital
spaces.”’® However, it requires an estimate of higher than 2-body
reduced density matrices (RDMs), prompting the use of cumulant
approximations™ inspired by developments in quantum
chemistry.***”” Furthermore, a significant drawback of the QSE
approach is the lack of size-intensivity of the computed excitation
energies. The property of size-intensivity ensures correct scaling of
excitation energies computed by a method with increasing size of
the system. The violation of this property can lead to errors and
even non-physical predictions; for instance, the QSE excitation
energies of a “super molecule” consisting of two non-interacting
systems are not guaranteed to be the same as the excitation
energies of the two systems calculated separately (see Fig. 7). This
may become a severe limitation when QSE is applied to larger
in the future and the underlying ground-state
wavefunction is imprecise.

In search of a size-intensive alternative, the EOM formalism
based qEOM method was proposed by Ollitrault et al.” for
electronic excitation energies (EEs). The ¢EOM method
provides good agreement for EEs with the exact results obtained
by the full configuration interaction (FCI) method. However, the
qEOM formalism (in ref. 75) does not necessarily satisfy the
vacuum annihilation condition (VAC), also known as the
killer condition,”®”® which ensures that the ground-state
wavefunction cannot be de-excited. This may result in the
appearance of large errors when the formalism is extended to
calculate properties such as IPs and EAs. Moreover, the gEOM
method, just like QSE, requires higher-body RDMs which
significantly increases the measurement challenges.

In this work, we propose a generally applicable EOM-based
formalism for the calculation of molecular properties such as
EEs, IPs, and EAs following a VQE ground-state calculation on
a quantum computer. Our formalism, which we refer to as g-sc-
EOM, satisfies the VAC; produces size-intensive and real energy
differences between the ground state and the excited states/
charged states; does not involve measurements of higher than
2-body RDM-type quantities; is expected to be more resilient to
noise than the current diagonalization-based state-of-the-art
methods.

This paper is organized as follows: Section 2.1. discusses the
theoretical formalism of ¢-sc-EOM using self-consistent
operators, while the implementation details and circuit
design are explained in Section 2.2. Section 3. provides the
computational details for the simulation data in this paper. In
Section 4., we discuss the results obtained in this work.
Specifically, Section 4.1. analyses the performance of the g-sc-
EOM method in calculating EEs, IPs, and EAs of H,, LiH, and
H,0 molecules, while Section 4.2. compares the performance of
the g-sccEOM method with those of the QSE and qEOM
formalisms. Finally, the key conclusions from the paper are
summarized in Section 5.

systems

2. Theory

The excitation energy of a given excited state can be obtained by
the action of the commutator of the Hamiltonian and the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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corresponding excitation operator acting on the exact ground-
state wavefunction. For an arbitrary kth excited state, this can
be expressed as

lpgr>7

1)

where |¥,,) is the ground-state wavefunction and Ez and Ej
refer to the energies of the ground and the kth excited state,
respectively. H is the molecular Hamiltonian, which in the
second quantization formalism can be written as

3 i ] st
H= thqapa,, + ZZ(qurs)a;aZasa,., (2)

rq pq.rs

.04 1910) = D) - Bufi ), = (5 - )

where £, and (pq||rs) are the one- and two-electron elements of
the Hamiltonian, respectively. &; and a, refer to the fermionic
creation and annihilation operators (with respect to physical
vacuum), respectively. Following common notations, here, we
use indices {p, g, r, s...} for arbitrary molecular orbitals while {a,
b, ...} and {i, j, ...} refer to unoccupied and occupied orbitals,
respectively in the Hartree-Fock (HF) wavefunction. The state-
transfer operator Oy is defined as

Ou|Wer) = W), 3)

where |¥;) is the wavefunction of the kth excited state. These
operators should ensure an important property, referred to as
vacuum annihilation or killer condition, which expresses that
the ground state cannot be de-excited:"®*?

O|Wy) =0 Vk. (a)

In the case of exact operators @,t and an exact ground-state
(¥,), the above equation can be reformulated as

®k

W) = (W) (1w,) =0 Vi, )

where @; = |Wg)(Wy|. 1t can be seen that this condition is
automatically satisfied for exact state-transfer operators acting
on an exact ground-state due to the orthogonality of eigenstates.
However, one needs to ensure that the VAC is satisfied when
approximate state-transfer operators are used.”®*® The state-
transfer operators that satisfy the VAC are referred to as “self-
consistent” operators.”®

This work utilizes the framework of unitary coupled-cluster
(UCC) theory, where the ground-state wavefunction is given by

[Wyce) = € |Wo), (6)

where [W,) is the HF wavefunction and e’ is a unitary operator.
An approximate form of ¢, which is a cluster operator, can be
written using single and double excitations as

G= 01+0,
G = Yof(aa—ala
— i ( o i a)7 (7)
= ab(Ftata o stats s
g, = Y0 (aaabaja, —a;a abaa)
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where ¢;” and oij"b are amplitudes for the associated excitations.
In order to capture the dominant electron-correlation effects
contributing to electronic excitations, an excitation manifold
can be constructed by including all possible single and double
excitations and de-excitations, represented by {G/}U{G,}. Here,
G, can refer to any single (a}a;) or double (afajaa;) excitation
operator. However, to satisfy the VAC, the excitation operator
manifold is rotated, forming the self-consistent manifold {5} }U
{8}, where

S[ = EO:GAIE_O:. (8)

Similar excitation manifolds can also be constructed using
particle number non-conserving excitation operators that are
needed for computation of IPs and EAs. This technique was
developed by Mukherjee and co-workers in ref. 78 and 84. This
self-consistent operator manifold can now be used to develop
excited-state methods that satisfy the VAC.

Following eqn (8), the state-transfer operator for electronic
excitations, (@k)EE, can now be written as a linear combination
of all possible operators from the self-consistent excitation
manifold, given by

(8) = (&), + (%), o

where (R¥)gg and (RS)gy are single and double excitation oper-
ators defined as

/N
=
=T
~—
o]
[e>]
I

s[(498; - (8.51).

a

ok ab sab N
(RZ)EE - E[(Ak)i/ Sfj - (B/&);hsjb}

ijab

(10)

Here, (4); and (B");" are the amplitudes corresponding to the
excitation (I) and de-excitation operators (I'), respectively, for
the kth excited state. Here I refers to all possible single and
double excitations. State-transfer operators for singly charged
states can also be defined in a similar manner,

(@k) ~ (&) (&)
IP/EA IP/EA IP/EA

where (RY)ip/ea and (R5)ip/ea refer to the particle number non-
conserving single and double excitation operators, defined as

(1), s -@s]

(11)

(#),- slugs-wys) "
and
RT)EA - ;[(Ak)aﬁa - (Bk)aga}7
) = KPS gy & (13)
<R2>EA_ %[(A )i i 7( )ab ah:|'

Chem. Sci., 2023, 14, 2405-2418 | 2407


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc05371c

Open Access Article. Published on 27 January 2023. Downloaded on 10/26/2025 7:24:14 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

2.1 q-sc-EOM method

In the VQE algorithm, the unitary evolution operator U(6) (¢ in
UCC theory) is implemented on a quantum computer using
a parameterized circuit. The parameters (6) of the circuit are
optimized to variationally minimize the molecular energy and
obtain the molecular ground state |¥yqg), such that

[Yvqe) = UWO)Wo). (14)

By projecting eqn (1) onto the kth excited state wavefunction
and using the state-transfer operator defined in eqn (9), the g-
sc-EOM excitation energy from the ground state to the kth
excited state (Eqz) is given by

(6, [ (0), JJeer

0k = (15)

<IIIVQE} |:(©Z)EE7 (@k>EJ |11UVQE>

Expressions for IPs and EAs can also be derived using the
associated state-transfer operators defined in eqn (11). As
discussed in ref. 75, eqn (15) provides size-intensive energy
differences. By inserting the expression for (@k)EE from eqn (9)
into eqn (15), it can be seen that the final equation for the
excitation energy for the kth excited state has a parametric
dependence on the amplitudes (4%); and (BY)], where I refers to
all possible single and double excitations. A variational
minimization of the resulting equation (3E,; = 0) with respect
to these amplitudes leads to the following secular equation:

M A \% A\ Ay
(@ () (e V(&)

where the matrix elements of matrices M, Q, V, and W are
defined as

My = (Wvex|[$), [H.8] | [Wvar),
Vie = (Wvos|[S), S1] [¥vae),
Oy = —<'PVQE| [Sj, [1:17 S;H ’WVQE>7

Wy = ‘<IPVQE| [SJ;,SH |IPVQE>~

Upon careful inspection, one can see that the matrices W
and Q are zero due to the use of self-consistent operators. This is
a simplification (compared to the gEOM formalism of ref. 75) as
it reduces the secular equation to

MA, = Ey VA,. (18)
The matrix elements of M and V can be further simplified as
s = (el S 1159

= (Woe| [UO)G,U(0), [, UO)G,U(0)] || ¥ve).

AT N ~
= <qj1)|G1 UT(0)HU(¢9)GJ\II’0) - B]J*Egl-,
(19)
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and

Vi = WVQE‘[SpSJ]‘WVQE>>

(20)

Thus, in g-sc-EOM the overlap matrix (V) is guaranteed to be
the identity matrix and does not need to be computed on
a quantum computer. It has two key benefits, namely, it leads to
a Hermitian formulation for excitation energy and it converts
the generalized eigenvalue equation into an eigenvalue
equation.

The formalism developed so far can be written in the form of
a concise eigenvalue equation as

Mss — Eg *Iss
Mps

Msp A" ) _ g [ AS
Mbpp — Ex*Ipp Apf 0k Ap* )’

(21)

where S and D refer to single and double excitations,
respectively. Thus, Mgg refers to the block of matrix M with two
single excitation operators in the double commutator (see eqn
(17)), while Ixx is an identity matrix of dimension X. It should be
emphasized that, since the above formulation is Hermitian, the
eigenvalues obtained using eqn (21) are guaranteed to be real
(unlike in EOM-CCSD or qEOM).**”>#* This also ensures that
this formulation is free from problems related to different left
and right eigenfunctions encountered in classical EOM-CC
methods.>®

Finally, each element of matrix M can be computed on
a quantum computer using eqn (19). The resulting eigenvalue
equation can then be solved classically to obtain g-sc-EOM EE
values. Here, Krylov subspace based formalisms, such as the
Davidson algorithm,***® can be used to obtain the excitation
energies of a few low-lying excited states while avoiding the
explicit evaluation and diagonalization of the M matrix. It
should be noted that this method is closely related to UCC-
based excited-state methods in quantum chemistry, and thus
eqn (21) resembles the equation for EEs for UCC-based methods
as derived, for example, in ref. 82 and 85.

2.2 Circuit design and implementation details

Here, we discuss our proposed implementation of the q-sc-EOM
formalism on a quantum computer. The discussion can be
divided into two parts: circuit details to evaluate the diagonal
and the off-diagonal elements of the matrix M in eqn (19). The
state preparation for the diagonal elements involves the same
circuit as the one optimized for the ground state, but it is now
applied to a classical state that represents an excited Slater
determinant. We refer to this classical state as the reference
state. Thus, the circuit can be prepared in two steps: the first
step is the creation of a reference state, whereas the second step
involves the action of the previously optimized ground-state
VQE circuit on the newly formed reference state. The

© 2023 The Author(s). Published by the Royal Society of Chemistry
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molecular Hamiltonian is then measured using this prepared
state, as performed for the ground-state energy evaluation. To
give an example of a state preparation circuit, we consider the
H, molecule in the STO-3G basis and use a singly excited
determinant in eqn (19). We choose the single-excitation oper-
ator for the excitation from 1s to 2s® (represented by [0011) —
|1001) notation in the qubit representation using the Jordan—
Wigner mapping). The classical state that corresponds to such
an excited Slater determinant can be created by the action of
two NOT gates, as shown in the circuit in Fig. 1a. U(6) in Fig. 1a
refers to the optimized circuit prepared for the VQE ground-
state evaluation, and the shaded region represents the circuit
needed to create the reference state. Note that the orbitals 1s%,
1s°, 25%, and 2s” are mapped onto the qubits in a bottom-to-top
order, such that the lowest energy orbitals are at the bottom.

The off-diagonal elements of the matrix M can be evaluated
using an entangled state of two excited Slater determinants, as
shown below. A representative off-diagonal element M, can be
written in terms of diagonal elements as

M, M.
Re[M; ;] = My — # - 2” (22)
where the term M, 1, is given by
Miyypes =
P NN I (23
MMJEQL+GOlﬂ@lﬂﬂ®;§«L+GOW%}

A similar expression holds for the imaginary part of M; ;. The
matrix elements M;; and M;; in eqn (22) are diagonal elements
that are evaluated using the method described previously
(without the ground-state energy term). The element My,; »,; can
be evaluated using eqn (23), which involves the creation of the I
+ J state, application of the unitary U(), and finally, the
measurement of the Hamiltonian using this prepared state. The
state I+ is a superposition state of two classical states I (G,|W,))
and J (G/|W,)). Notice that both of these states are excited Slater
determinants, which can be represented through qubit states in
the computational basis. An entangled state, such as I + J, is
commonly created by using an ancilla qubit (for example, see
ref. 13). In the case of g-sc-EOM, we can use a simpler method to

View Article Online
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create this entanglement without adding any ancilla qubits.
Being classical states, I and J are trivial to create on a quantum
computer using NOT gates. An entangled state can then be
created using a Hadamard gate and a series of CNOT gates. For
example, the I state can be created using NOT gates and then
transformed into the I + J state using Hadamard and CNOT
gates. We can take the example of two single excitations to
demonstrate this, specifically 1s* — 2s* and 1s° — 2s°
(denoted as |0011) — |1001) and |0011) — |0110) in the qubit
representation, respectively). Here, we need to create the

1
entangled state |I +J) = —(]|1001) + |0110)). The circuit for
g NG

creating this state and then evaluating My, is shown in
Fig. 1b. The shaded region represents the circuit used to create
the entangled |I +J) state. The gate sequences can be stored for
each excitation operator and can be applied to the HF state at
the start of the EOM procedure. A maximum of 7 CNOT gates
will be needed to create any entangled state for off-diagonal
terms, when using up to double excitations in eqn (19). This
is a very small number compared with the total number of
CNOT gates required to prepare the ground state using VQE-
based algorithms. It should be noted that this proposed
circuit design loses on the phase factor of excitation operators
in Iand J classical states, but all our numerical simulations have
consistently shown that these phase factors have no effect on
the computed eigenvalues of the eigenvalue equation. To
preserve the phase factor, an ancilla qubit based creation of
entangled I + J states could be used instead.

Regarding the resource requirements for running the g-sc-
EOM method on a quantum computer, the number of qubits
required for the evaluation of each matrix element is the same
as that required for the computation of the ground state. The
circuit that is implemented in the ground-state VQE calculation
remains unchanged in the generation of the EOM matrix
elements as well. The only difference is that the reference state
is changed from the HF determinant to an excited Slater
determinant or an entangled state involving two excited Slater
determinants, as discussed above. Thus, unlike qgEOM and QSE,
where the excitation operators are measured together with the
Hamiltonian, the excitation operators act directly on the HF

0) = x |- - 0y = x & ; —
0) — i — 0) — H : —
! 1 U(9) : | U(0)

) X — 1) — X o) ; |
1) ————— — 1) — - —

T T T

Fig. 1 Proposed quantum circuit for the estimation of a representative element of the M matrix for the H, molecule using (a) an excited Slater
determinant as the reference state needed to compute diagonal elements and (b) an entangled state involving two excited Slater determinants as

the reference required for the evaluation of off-diagonal elements.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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state in g-sc-EOM. This provides a notable advantage that g-sc-
EOM methods do not need the estimation of higher than 2-body
RDMs. Such a framework also makes it easier to include higher
excitations when required, such as triples, whose inclusion
becomes important in higher-accuracy charged-state
calculations.® The calculation of elements of the M matrix
can also be run in parallel on a quantum computer. The
evaluation of the M matrix on a quantum computer requires the
measurement of ¢ (o*v*) matrix elements, where o and v are the
numbers of occupied and unoccupied orbitals, respectively.
Despite this scaling, generally, the matrix M is very sparse. The
number of elements in the M matrix can be drastically reduced
using this sparsity through the use of spatial symmetry, spin
symmetry, etc., which will be a topic of future study. The major
advantages afforded by the use of quantum computers come
from the efficient evaluation of the g-sc-EOM matrix elements
and from the accurate ground state wavefunction provided by
the VQE-based algorithm.

3. Computational details

All the computations in this work utilize the STO-3G basis set.
One- and two-electron integrals are calculated using the PySCF*°
program with the HF reference state. The Jordan-Wigner
mapping and the transformation of the second-quantized
operators into the Pauli form are carried out using the
OpenFermion® software package. A classical noise-free
simulator, where exact unitary operations are applied to the
state vector representing the wavefunction, is used to assess the
accuracy of the formalism developed in this work. The ground-
state wavefunction is calculated using the fermionic ADAPT-
VQE method using the generalized singles and doubles (GSD)
operator pool." We use the gradient convergence criterion with
a threshold of 107 for all the ground-state energy calculations.
All the formalisms discussed in this work, namely g-sc-EOM,
gqEOM, and QSE, utilize the ground-state energy and
wavefunction obtained from the ADAPT-VQE simulation. It
should be noted that we have extended the gEOM formulation
of ref. 75, originally developed for the calculation of EEs, to
calculate IPs and EAs for our theoretical investigation. The EE
results obtained using the qEOM approach in this work are
verified against those of Qiskit's gEOM implementation.®” The
code used for generating the data in this work can be found in
ref. 93.

4. Results and discussion

We test the accuracy of the g-sc-EOM approach for three small
molecules: H,, LiH, and H,0, and compare the results obtained
with the exact FCI values. Computations are carried out for EEs,
IPs, and EAs for these molecules. The total energies of the
electronically excited, single electron-detached and single
electron-attached states are computed by adding the EEs, IPs and
EAs, calculated using g-sc-EOM, to the ground-state energy
obtained using the ADAPT-VQE simulations. Since the ground-
state energy computed using ADAPT-VQE is near-exact for the
molecules considered in this study, the errors in the energies of
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the electronically excited states and the single electron attached/
detached states, with respect to the FCI, are almost entirely due to
the error in the post-VQE procedure. For LiH and H,0, we invoke
the frozen-core approximation. Thus, the number of qubits
required for the g-sc-EOM computation for H,, LiH, and H,O are
4,10 and 12, respectively. We plot energy errors relative to the FCI
values and use shading to indicate errors below 0.1 eV, as this
value is generally the desired accuracy for these properties, so
that they can be quantitatively compared with those in
experiments. We also compare the performance of the g-sc-EOM
formalism with that of QSE and qEOM in Subsection 4.2.

4.1 EE, IP, and EA calculations with gq-sc-EOM

In Fig. 2, we show the energies of the ground state along with
the first few electronically excited, single electron-detached and
single electron-attached states of the H, molecule calculated
using g-sc-EOM, as a function of the inter-hydrogen distance.
The corresponding FCI results are shown as gray lines. The
errors in the energies with respect to the exact FCI values are
shown in the subgraph on top of each panel. It can be seen that
the errors in q-sc-EOM computed energies, or in other words, g-
sc-EOM evaluated EEs, IPs, and EAs are essentially identical to
those in FCI, with errors of less than 10~® Hartree. This is
because the g-sc-EOM formalism for the H, molecule using the
STO-3G basis set is exact, as the singles and doubles excitations
used in eqn (19) span the full excitation space and the VAC is
satisfied. Fig. 3 shows the energies of the ground state along
with the first few electronically excited, single electron-detached
and single electron-attached states for the LiH molecule as
a function of the Li-H bond length in a similar layout as the
previous figure. For both EEs and IPs, the g-sc-EOM method
gives nearly exact results, and as expected, errors less than 10~ °
Hartree were obtained with respect to the FCI values. However,
we start to see the appearance of non-negligible errors in the EA
results. This is because the computation of EAs for the LiH
molecule with g-sc-EOM is no longer exact due to the addition
of an electron. Thus, triple excitation operators should be added
to the excitation manifold for an exact treatment for EAs.
However, g-sc-EOM is still able to produce EAs within the
desired accuracy, as seen from the shaded region in the error
plot at the top of Fig. 3c. For the H,O molecule, we investigate
the performance of g-sc-EOM as a function of the O-H bond
length where both O-H bonds are stretched symmetrically.
From Fig. 4, one can see that the errors in EEs are within the
desired accuracy up to an O-H bond length of 1.4 A. The errors
build up as the two O-H bonds are broken further, due to the
appearance of strong correlation effects in the wavefunction.
Classical EOM-based methods, such as EOM-CCSD, show
similar trends in errors as well. The errors in IPs and EAs are
larger compared to those in EEs and are above our desirable
error limit of 0.1 eV. This is well-known in classical quantum
chemistry, where EOM-based methods require at least an
approximate treatment of triple excitations in the EOM
framework to reach an accuracy of 0.1 eV relative to FCI values
for IPs and EAs.***** For higher accuracy in charged
excitations, carefully selected triple excitations can be added to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 g-sc-EOM energies of (a) electronically excited, (b) single electron-detached, and (c) single electron-attached states along with the
ground state (black circles) of the H, molecule as a function of bond length. The gray lines correspond to the FCl results. The deviations from the
FClI results are shown in the upper panel, where the shaded region indicates errors below 0.1 eV.

the excitation manifold in g-sc-EOM. This will be a subject of
future study.

4.2 Comparison with QSE and qEOM

In this subsection, we discuss the connections between the g-sc-
EOM, QSE, and qEOM formalisms and compare them in the
contexts of (a) their accuracy in computing energy differences
and (b) quantum resource requirements and sensitivity to
noise. The EOM formulation in eqn (15) with excitation
operators taken from the excitation manifold represented as
{GJ}U{G}} (not the self-consistent excitation manifold) may lead

to a violation of the VAC. There are two methods discussed in
the quantum chemistry literature to impose the VAC in the EOM
formalism: the projected operator approach (see ref. 79) and the
self-consistent operator formalism (see ref. 78). If we use
projected operators based on ref. 79, we arrive at a QSE-type
formalism (as performed in ref. 96) to calculate excited-state
properties. The q-sc-EOM formalism developed in this work is
based on the use of self-consistent excitation operators to
impose the VAC. It should be noted that this concept has been
utilized in the development of different excited-state methods
in classical quantum chemistry.®>°7-°
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Fig. 3 g-sc-EOM energies of the first few (a) electronically excited, (b) single electron-detached, and (c) single electron-attached states along
with the ground state (black circles) of the LiH molecule as a function of bond length. The gray lines correspond to the FCl results. The deviations
from the FCI results are shown in the upper panel, where the shaded region indicates errors below 0.1 eV.
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4.2.1 Accuracy of energy differences. The qEOM method,
which uses the EOM formulation in eqn (16) with the
conventional excitation manifold, {Gj}U{G;} (details can be
found in ref. 75), may lead to large errors in calculated IPs and
EAs due to the violation of the VAC. This can be seen through
the qEOM-evaluated IPs and EAs added to the almost exact
ADAPT-VQE ground state of the H, molecule in the STO-3G
basis as shown in Fig. 5. Large deviation from the FCI results
can be observed in this image. It should be noted that although
single and double excitations span all the possible excitations in
the case of the H, molecule in the STO-3G basis, the VAC is still

(a) 1.00 H2 [IP] (b) H2 [EA]
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Fig. 5 Energies of (a) single electron-detached and (b) single
electron-attached states along with the ground state (black circles) of
the H, molecule plotted as a function of the H—H bond length using
the STO-3G basis. The FCI results are plotted in gray.
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not satisfied in qEOM. This is because the excitation manifold is
not complete with respect to the exact ground-state when we use
the {Gj]}U{G,} operator manifold corresponding to electron
detached/atached states. One way to solve this issue is by
increasing the size of the operator manifold. However, this
would significantly increase the computational cost. Fig. 6
shows the energies of the three lowest excited states evaluated
using qEOM and g-sc-EOM methods for a rectangle geometry
H, molecular system as a function of H,---H, separation

a) g-sc-EOM b)gEOM
-1.857e fe, &---9
. .. e ..
®®o0oo ° ..."01
o4 000000000

—1.90—......0-0... |

Energy (Ep)

—1.951 1
oo oo
..........1 .....000001
—2.001 1
1.8 2.0 2.2 24 1.8 2.0 22 24
Hz-H, (4) Ha-H, (A)

Fig. 6 Energies of the three lowest excited states along with the
ground state (black circles) computed using (a) g-sc-EOM and (b)
qEOM formalisms for the dissociation of a rectangular geometry of Hy
into Hy---H, as a function of the H,---H, separation distance. Both of
the H, molecules have a bond length of 1.5 A. The FCI results are
plotted in gray.
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distance. The H-H bond distance is fixed at 1.5 A in the two H,
molecules. We observe from Fig. 6 that g-sc-EOM is more robust
in strongly correlated situations, compared with the qEOM
method. The first and third excited states of H, computed using
the qEOM method show qualitatively wrong behaviour in the
region shown in the figure.

The EEs obtained using QSE are not necessarily size-
intensive for an inexact ground state. This is due to the
inclusion of an identity operator in the operator manifold used
in QSE. We illustrate this point using an H,---H, molecular
system as an example. Fig. 7 shows the difference in EEs
computed for an isolated H, molecule and an H,---H,
molecular supersystem with no interaction between the H, and
H, subsystems (the distance between H, and H, is taken as 100
A). An inexact ground state is taken using an ADAPT-VQE
simulation that is stopped after adding 3 operators. An
identity operator is added to the operator manifold of QSE
which uses the operator manifold represented by {G,} in Section
2.1. QSE computations give an error of ~81 mH in this test,
while the g-sc-EOM method shows the correct behavior. In this
scenario, the two EEs should be identical for a method that
provides size-intensive EEs. The magnitude of this size-
intensivity error in QSE will depend on the accuracy of the
ground state. Since it is expected that near-term quantum
computers may not provide exact ground-state energies for all
molecular cases, these size-intensivity errors may cause
problems. We note here that, just like g-sc-EOM, the qEOM
method provides size-intensive EEs, IPs and EAs as well.

4.2.2 Noise-sensitivity. Along with the above mentioned
theoretical  benefits, q-sccEOM also has important
computational advantages. q-sc-EOM is expected to be more
noise-resilient compared with gEOM and QSE. A prime reason
for this is because g-sc-EOM requires up to 2-RDM type
measurements while QSE and qEOM require measurement of
higher-body RDMs. Estimation of higher-body RDMs can
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Fig.7 Excitation energies of the H, molecule in isolated H; (grey lines)
and an H,-H,4 system with H, not interacting with Hy (H, and Hy
separation taken as 100 A) (triangles) using the STO-3G basis set. An
inexact ground state is used in the plot computed using ADAPT-VQE
stopped after adding 3 operators. The difference in the dashed line
with triangles represents the size-intensivity error for each excitation
energy using QSE.
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significantly increase the noise in measured matrix elements.
This has been noted in ref. 100 and shown using simple noise
models that the error in the expectation value will scale by
a factor exponential in the number of qubits measured together.
g-sc-EOM strictly requires measurement of up to 2-RDMs or
4 qubit measurements, while QSE and qEOM
measurements of up to 12 qubits at a time.

Additionally, we have also carried out a theoretical study
based on matrix perturbation theory to compare the noise-
resilience of QSE with ¢-sccEOM on a noisy quantum
computer. The analysis is carried out for an interacting pair of
H, molecules (H, structure with a rectangular geometry with 1.5
A and 2.0 A bond distances). We model the effect of noise by
adding random errors directly to each matrix element utilized
by the two methods. It should be noted that in real
implementations where these matrix elements are measured on
quantum computers, there will be multiple sources of errors
(gate errors, measurement errors, etc.), which will finally create
a net error in each matrix element. In our noise study, it is
reasonable to add errors directly as we assume that all matrix
elements, both in QSE and g-sc-EOM, will have errors of the
same magnitude when the same quantum resources are used.
This is an appropriate (and rather conservative) assumption for
two reasons: first, all measurements in both q-sc-EOM and QSE
utilize the same ground-state quantum circuit (with the
difference being that in g-sc-EOM the circuit is applied on
different reference states). Second, gq-sc-EOM makes use of at
most 2-body RDMs, while QSE requires the estimation of
higher-body RDMs as well, which is expected to generate errors
of the same or higher magnitude in the case of QSE. A more
detailed noise analysis performed on an actual quantum device
will be the subject of future studies.

In Fig. 8a, we show the performance of QSE compared with
that of g-sc-EOM, where to each matrix element we add random
offsets sampled from a uniform distribution in line with matrix
perturbation theory. The horizontal axes in the figure
correspond to the upper bound of this distribution (i.e., the
maximum allowed error). The EEs are calculated after solving
the eigenvalue equation of q-sc-EOM and the generalized
eigenvalue equation of QSE (the latter resembles eqn (18)).
Errors are defined with respect to the EE values obtained from
the associated method in the absence of noise. Fig. 8a shows the
error averaged over 100000 calculations of the EEs with
different random offsets in each case. We can observe in the
figure that QSE produces much larger errors at the same level of
noise compared to g-sc-EOM, thus showing that we can expect
g-sc-EOM to be more resilient to noise than QSE.

A key difference to consider between QSE and g-sc-EOM is
that the overlap matrix V in g-sc-EOM is exactly known to be the
identity matrix and thus does not need to be measured, while in
the case of QSE, the overlap matrix must be measured on
a quantum computer. Note that the latter is also true for gEOM.
Fig. 8b shows that if the overlap matrix is exactly known in QSE
(i.e., we compute it exactly without noise), the noise-resilience of
QSE is similar to that of g-sc-EOM. This suggests that the
knowledge of the exact overlap matrix in gq-sc-EOM is critical in
providing noise-resilience, whereas methods that measure the
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b) QSE (with exact overlap (V)) vs g-sc-EOM
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(a) Error in the first few excitation energies computed for H4 using the QSE versus g-sc-EOM frameworks plotted against the maximum

magnitude of errors in the matrix elements before diagonalization. (b) Error in the first few excitation energies computed for H4 using the QSE
(with no error in the overlap matrix (V) versus q-sc-EOM frameworks plotted against the maximum magnitude of errors in the matrix elements
before diagonalization. A rectangle geometry H, molecular system is used for the calculations with 1.5 A and 2.0 A as H-H distances. This shows
that most of the noise sensitivity in QSE arises from noise in the computed overlap matrix, while the overlap matrix in g-sc-EOM is exactly the

identity matrix and thus noise-free.

overlap matrix and thus solve the generalized eigenvalue
problem (such as QSE and qEOM) are expected to be more
sensitive to noise. This noise-sensitivity, we believe, is a direct
result of a noise-sensitive matrix inversion step in solving
a generalized eigenvalue problem. A detailed analysis of this
problem for general quantum algorithms for ground and
excited state estimation will be presented in a future work.

5. Conclusion

In this work, we propose a new method, named g-sc-EOM, for
calculating molecular excitation energies using a quantum
computer. The method can be implemented on top of any
quantum variational algorithm used to obtain the ground state of
the target molecule. Our approach is inspired by excited-state
methods developed in quantum chemistry, specifically the ones
based on the UCC theory. g-sccEOM has several important
benefits compared to current state-of-the-art excited-state methods
for the NISQ era, with theoretical benefits including: (a) g-sc-EOM
uses self-consistent operators that satisfy the vacuum annihilation
condition, and thus it can be generalized to evaluate accurate
vertical excitation energies, ionization potentials, and electron
affinities; (b) energy differences obtained using g-sc-EOM are
strictly size-intensive, an important property that ensures their
correct scaling with the size of the molecular system; (c) g-sc-EOM
is a Hermitian theory, providing guaranteed real energy
differences. The major computational benefit of q-sc-EOM is that
it can be expected to be more resilient to noise because (a) g-sc-
EOM does not require higher than 2-body RDMs; and (b) it
requires a classical solution of the eigenvalue equation, bypassing
the noise-sensitive step associated inversion of the overlap matrix
in solving the generalized eigenvalue equation in QSE and qEOM.
These benefits provide important theoretical and practical
advantages for the computation of excitation energies on near-
term quantum devices.

2414 | Chem. Sci, 2023, 14, 2405-2418

NISQ era devices are expected to be noisy with limited
resources. Thus, to achieve an advantage through these devices in
quantum chemistry problems over classical computation, one
should use methods that are meaningfully accurate, while at the
same time being resistant to errors and resource-efficient. The g-
sc-EOM method proposed in this work is promising in this
regard because it exhibits many of the crucial properties of highly
successful EOM-based quantum chemistry methods. At the same
time, it remains resource-efficient and is expected to be resilient to
noise compared to the currently available diagonalization-based
methods. Our future studies will combine g-sc-cEOM with the
recently developed transcorrelated Hamiltonian formalism'*** to
obtain quantitatively accurate excited-state properties with
minimal utilization of quantum resources, which otherwise
generally requires the use of large basis sets.
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