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We report unprecedented photochemistry for the diamidocarbene 1. Described within are the double
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1 Introduction

The use of light as a renewable, green reagent to alter chemical
reactivity or to activate or catalyse a chemical reaction remains
ever important with dwindling global resources. Indeed, recent
advances in photochemistry have made a profound impact on
chemical synthesis; leading to a renaissance of contemporary
photochemical studies in areas ranging from catalysis, switch-
able reactivity, materials science, medicinal chemistry, sensors,
and fine chemical synthesis.'™®

For example, photoredox catalysts derived from Ru/Ir poly-
pyridyl complexes, dihydrophenazines, or simple dyes such as
Eosin Y and Rose Bengal have been extensively investigated in
recent years to mediate the single electron oxidation or reduc-
tion of organic molecules in exquisite organic synthesis.””
Similarly, photocatalytic pyrylium salts can initiate ring-
opening metathesis polymerization of strained olefins,' and
photoswitchable carbenes have been developed where light can
modulate the electronic properties of the carbene center."

Photocatalytic C-H activation has been shown to occur in
heterogeneous  systems, but rarely with molecular
photocatalysts.***** Indeed, there have been many reports of
C-H functionalization using organophotoredox catalysis, but
the challenge of C-H activation, especially among unactivated
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of 4 was obtained using single crystal electron diffraction.

C-H bonds, has remained.®*'*"” Thus, the use of precious metal
catalysts, high temperatures, and directing group manipula-
tions are typically required."” Additionally, photochemically
generated carbenes have been reported previously, performing
group transfer of aryl groups, but not C-H activation.™®

We recently demonstrated that the singlet ground state of
the N,N-diamidocarbene (DAC) 1 could be photochemically
switched to a triplet excited state through intersystem crossing
from an excited singlet state.'* The new excited state was
determined to originate from a triplet spin state carbene
through a combination of experimental and computational
approaches (Fig. 1). Interestingly, we found that the triplet
excited state of carbene 1 undergoes Biichner ring expansion

Photochemical switching of spin states of DAC 1 and reversible
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Fig. 1 Previously reported photochemical Blchner reactions with
DAC 1, *1 and *3 denotes excited singlet and triplet states, respectively.
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reactions in the presence of various arenes to give thermally
reversible products (Fig. 1). While triplet carbenes had been
previously reported to undergo Biichner ring expansion reac-
tions, the thermal reversibility observed with the triplet DAC
was unprecedented and allowed for the photochemical inter-
conversion between Biichner ring expansion products.

Similar to our study, Aldridge and co-workers found that the
aluminyl complex, I, could undergo reversible Buchner ring
expansion with benzene under thermal conditions (Scheme
1a).?° They also found that compound I could thermally insert
into the C-H bonds of naphthalene and other arenes including
benzene, toluene, n-butylbenzene, and xylenes (Scheme 1b).2*>*
In contrast to C-H activation, Kira and co-workers observed that
silylene II could undergo single, and double cyclopropanation
reactions when irradiated in the presence of naphthalene,
among other ring insertion reactions (Scheme 1c).>* Addition-
ally, Ollevier and co-workers have performed cyclopropenation
reactions from photolytically generated carbenes derived from
diazirines,” and Nguyen and Koenigs demonstrated that nor-
caradienes (i.e. cyclopropanated benzene derivatives) could be
obtained from blue light irradiation of diazoacetates.* In 2011,
Braunschweig was able to trap the parent borylene (BH) through
a formal [2 + 1] cycloaddition reaction in the presence of

a) thermal reversible Biichner ring expansions - Aldridge 2019
[K(2.2,2-cryptand)] ©
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Scheme 1 Thermal insertion and C—H activation reactions with | (a
and b), photochemical cyclopropanation of naphthalene with Il (c),
and trapping of parent borylene with naphthalene (d).
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naphthalene that is analogous to the aforementioned cyclo-
propanation reactions (Scheme 1d).>

Inspired by these results, we herein report novel photo-
chemical reactivity of DAC 1, including the cyclopropanation of
arenes, addition to heterocyclic arenes, and insertion into
unactivated sp> C-H bonds.

2 Results and discussion

After discovering that DAC 1 could undergo reversible Biichner
ring expansion reactions upon irradiation, we became inter-
ested in exploring the photochemistry of this carbene further.
We first decided to explore the photochemical reactions of 1
with naphthalene, taking inspiration from Kira and Aldridge, as
described above.

Following the reported procedure from Kira, we irradiated
a hexanes solution of DAC 1 and 10 molar equivalents of
naphthalene at 380 nm for two hours. Unfortunately, the
NMR spectrum of the crude reaction product revealed an
intractable mixture of several different compounds. Impor-
tantly, we noted that the majority of these compounds appeared
to be products from the insertion of 1 into C-H bonds of the
solvent. Due to the constitutional isomeric mixture of hexanes,
and the multiple different C-H bonds, there are numerous
potential C-H insertion products. While this reaction was
murky, it did expose an unexpected reactivity profile: unac-
tivated sp®> C-H bond insertion.?® Given the inherent compli-
cation of attempting additional photolysis reactions in organic
solvents, we began exploring reactions with liquid substrates to
reduce potential unwanted side-reactions. To this end, DAC 1
was irradiated at 380 nm in neat 1-bromonaphthalene, pyri-
dine, cyclohexane, and tetramethylsilane (Scheme 2).

2.1 Photochemical reaction of DAC 1 with 1-
bromonaphthalene

As can be seen in Scheme 2, irradiation of 1 at 380 nm in neat 1-
bromonaphthalene, led to clean conversion to the doubly

N
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Scheme 2 Photochemical reactions of DAC 1 with 1-bromonaph-
thalene (upper left), pyridine (upper right), cyclohexane (lower left), and
tetramethylsilane (lower right).
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cyclopropanated naphthalene compound (2) in good yield
(73%). While Kira observed both single and double cyclo-
propanation products of naphthalene by silylene II, irradiation
of 1 with 1-bromonaphthalene gave exclusively compound 2.*”
This is in stark contrast to the thermally reversible cyclo-
propanation reported by Kira with silylene II and naph-
thalene.?** While DAC 1 has been shown to undergo thermal [2 +
1] cycloaddition reactions with olefins, aldehydes, and nitriles,?®
our study represents the first example where 1 was shown to
cyclopropanate an aromatic C=C bond.

Compound 2 was fully characterized by 'H and *C NMR
spectroscopy, and the identity of the compound was further
verified by single crystal X-ray diffraction (Fig. 2). Salient spec-
troscopic features that were observed in the "H NMR spectrum
(CDCl3) of compound 2 include four inequivalent cyclopropyl
protons which were all observed as doublets at 1.15 ppm (J = 12
Hz), 1.36 ppm (] = 12 Hz), 2.02 ppm (J = 8 Hz) and 2.11 ppm (] =
8 Hz). Additionally, two sets of signals for the inequivalent
carbenes were observed, along with a doublet at 6.94 ppm (J =
7.7 Hz), a triplet at 7.03 ppm (/ = 7.7 Hz), and a doublet at 7.44 (J
= 7.8 Hz) which corresponded to the bromonaphthalene
protons. A "H-"H NMR correlation spectroscopy (COSY) exper-
iment was also performed on compound 2 in CDCl; to properly
assign the cyclopropyl protons (see ESIt for full discussion).
Fig. 3, which shows an expanded region of the COSY spectrum
of compound 2 from 0.6 to 3.0 ppm, clearly shows that the
proton labelled H2a is strongly correlated to H3a, and H5a is
likewise correlated to H6a as expected for vicinal (J3) coupling.
Importantly, no correlation between H3a and H5a was
observed, consistent with the Karplus equation, which states
that nuclear spin-spin coupling is maximized as the dihedral
angle between neighbouring nuclei approaches either 0° or
180° and minimized at 90°.*° For H3a and H5a, the dihedral
angle as measured by single crystal X-ray diffraction was
83.0(4)°, consistent with the COSY data.

In the solid state, the two independent cyclopropyl moieties
exhibit the expected bond angles: C1-C2a-C3a = 60.0(18)°,
C2a-C1-C3a = 57.9(14)°, C1-C3a-C2a = 62.1(16)° (ring A), and
C4-C5a-Céa = 60.7(15)°, C5a—C4-Cé6a = 61.1(13)°, C4-C6a—-C5a
= 58.2(19)° (ring B), which give 180° for the sum of the internal
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Fig. 3 H-H correlation spectrum (COSY) of compound 2 from 0.6—
3.0 ppm.

angles for each ring, consistent with the formation of cyclo-
propanes. As mentioned in the previous paragraph, the dihe-
dral angle ® = 83.0(4)° between H3a and H5a is consistent with
the apparent lack of coupling between these two vicinal protons
in the '"H NMR and attendant COSY spectra.

2.2 Photochemical reaction of DAC 1 with pyridine

We next investigated the photochemical reaction of DAC 1 with
pyridine as we wanted to explore the effect of a heteroatom on
the regiochemistry of the Biichner ring expansion reaction
described in Fig. 1. To this end, a solution of 1 in pyridine was
irradiated at 380 nm for 30 minutes (Scheme 2) to give exclusive
formation of compound 3 in excellent yield (89%).

When the "H NMR (C¢Dg) of 3 was first examined, we had
initially thought that the expected Biichner ring expansion had
occurred due to the appearance of olefinic protons spanning 4-
6 ppm (Fig. 4). However, closer inspection into the integration
of the olefinic signals compared to signals arising from the
former carbene revealed that the product obtained had incor-
porated two carbene moieties into a single pyridine molecule.
Additionally, a singlet at 5.06 ppm was observed which is
consistent with addition of a hydrogen atom to the carbene
centre of 1,** indicating that the carbene had inserted into the
C-H bond of the pyridine. The identity of compound 3 was
further confirmed by single crystal X-ray diffraction (Fig. 2).

Fig. 2 Crystal structures of 2 (far left and middle) and 3 (far right), thermal ellipsoids rendered at 50% probability. Hydrogen atoms have been
removed for clarity with the exception of H2a, H3a, H5a, and H6a in compound 2 as well as H1 in compound 3. Pertinent metrical parameters are

provided in the text.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Chem. Sci., 2023, 14, 7867-7874 | 7869


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc05122b

Open Access Article. Published on 10 May 2023. Downloaded on 2/20/2026 9:51:48 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

Fig. 4 H NMR of compound 3 taken in CgDe.

In the solid state structure of 3, the quinoidal geometry of
the central - former pyridyl - ring was easily observed with short
C7-C4, C5-C6, and C3-C2 distances of 1.373(2), 1.344(2), and
1.340(2) A, respectively and longer C3-C4 and C4-C5 distances
of 1.459(2) and 1.460(2) A, respectively. Moreover, it was evident
that the C7 carbon centre of a former carbene is trigonal planar
and sp>-hybridized with the S, angles = 360.0. However, the
C1 centre - the carbon atom of the second carbene molecule,
adopts a distorted tetrahedral geometry, ¥, angles = 335.32°,
consistent with the presence of the attached H1 atom. Based on
this data, we hypothesize that one molecule of the triplet excited
state DAC 1 inserted into the para C-H bond of pyridine fol-
lowed by deprotonation or H-atom abstraction by a second
equivalent of 1. Finally, combination of the two fragments
resulted in formation of 3 (Fig. 5 below).

It has recently been shown by Bertrand and Stephan that
carbenes including 1 can thermally insert into the C-F bonds of
pentafluoropyridine®* and tris(pentafluorophenyl)borane,*
respectively; and more recently Hansmann® showed that 1
could insert into the para C-H bond of pyridinium cations

View Article Online

Edge Article

(Scheme 3). However, the electron poor substrates, such as
those described in Hansmann's work are well known to undergo
nucleophilic aromatic substitution in the presence of Lewis
bases.****3* In very stark contrast to these other thermal reac-
tions, the formation of compound 3 was only observed when 1
was irradiated in the presence of pyridine, heating solutions of 1
only gave the known intramolecular C-H activation product.**

To better understand this reactivity, we calculated probable
thermal (singlet) and photochemical (triplet) intermediates for
the formation of compound 3 starting from pyridine and singlet
DAC 1 (1°%) which have been defined as the zero-point energy
(Fig. 5) using Q-Chem 5-package® with the wB97x-D functional
and 6-31G*/cc-pvtz basis sets for the optimization/energy
calculations, respectively.***” As described, the singlet pathway
(shown as blue structures) requires an activation energy of at
least 54.0 kcal mol " to obtain the highest energy intermedi-
ates, BS' and B%? for the thermal reaction to proceed to the
product 3. For the thermal pathway, addition of one molecule of
DAC to the para carbon of pyridine gives the adduct AS* which is
17.8 keal mol " above 1°, Next, deprotonation by another DAC
molecule results in formation of the highest energy

o o — -
. o
N. N 2 equivalents 0, o
Mes” 7 “Mes o N—Mes
1 = NN
N H Mes Mes
+ /
Mes leq.
S THF - DAC -
+ ABFs — | P "N” “Ph| — Ph” "N TPh
Ph N Ph RT
L BF tau 46 % yield 'Bu

Bu

Scheme 3 Known thermal insertion reactions of DAC 1 with pyr-
idinium cations.
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Fig. 5 Calculated singlet (blue) and triplet (red) pathways for the formati
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intermediates BS. Coupling of these B® intermediates affords 3
(—74.3 kecal mol ™! relative to the zero-point energy).

On the other hand, the photochemical pathway (red struc-
tures) begins with a higher energy (+100.9 kcal mol "), yet
photochemically accessible triplet state (17). From there, the
remainder of the triplet pathway is downhill, first proceeding
through H atom abstraction from pyridine by 1" to give inter-
mediates A" at approximately 4 kcal mol " lower energy. Next,
another 90 kcal mol™* of energy is released upon coupling of
pyridyl and 1"-derived radicals affords intermediate B.
Hydrogen atom abstraction from BT by an additional equivalent
of 17 releases an additional 37 kcal mol ' giving radical inter-
mediates C* which undergo radical coupling to afford the final
product 3.

2.3 Photochemical reactions of DAC 1 with cyclohexane and
tetramethylsilane

Earlier, it was described that photochemical reactions of 1 in
hydrocarbon solvents such as hexanes were complicated due to
what appeared to be insertion into the multiple different C-H
bonds in the solvent. To verify if photochemical C-H activation
was possible using DAC, we next focused on the photolysis of 1
in liquid hydrocarbons featuring only a single type of C-H bond.
First, we investigated the photochemical reaction of 1 with
cyclohexane.

Gratifyingly, irradiation of 1 in cyclohexane at 380 nm for 2
hours resulted in the formation of the C-H activation product,
4,in 73% yield. The identity of 4 was first confirmed by '"H NMR
(CsDg) which revealed two diagnostic signals. First, a doublet (3
= 1.4 Hz) centred at 5.32 ppm, was observed which was
consistent with a hydrogen atom (H1) bound to the former
carbene C1 carbon atom (vide supra), and second, a multiplet
centred at 1.62 was observed which corresponded to the
remaining cyclohexyl proton (H2) attached to the C2 atom. A
COSY NMR of compound 4 was performed to verify that H1 was
indeed coupled to H2 (Fig. 6). As expected a correlation between
the protons labelled H1 and H2 in the COSY spectrum was
observed as indicated by the red boxes.

To obtain further confirmation that C-H insertion into
a cyclohexane molecule had been achieved, we next attempted
to grow single crystals suitable for an X-ray diffraction analysis.
Despite several solvent(s)/solvent combinations and various
temperatures, we were only able to obtain microcrystalline

JL s
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Fig. 6 H-H correlation (COSY) spectrum of compound 4.
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Fig. 7 Single crystal electron diffraction structure of compound 4,
thermal ellipsoids rendered at 30% probability. Hydrogen atoms
except for H1 and H2 were removed for clarity. Pertinent metrical
parameters are provided in the text.

powder. We confirmed that this powder was crystalline material
out past 30° 20 using powder XRD (see ESIf). With this
microcrystalline sample in hand, we were able to obtain
publishable electron diffraction (ED) data which unequivocally
confirmed the identity of compound 4 (Fig. 7).

In the crystal structure of 4, the pyramidalization of the
former carbene carbon atom, C1, was apparent with a X, angies
=340.18°and a7, parameter®® of 0.92. It was also clear that the
DAC inserted into the H1-C2 bond of the cyclohexyl substit-
uent. Moreover, the H1-H2 dihedral angle of 72.6° was
consistent with the weak coupling observed in the "H NMR and
COSY spectra obtained for compound 4. The C1-C2 distance of
1.605(17) A was also slightly elongated when compared to the
average C-C distance within the cyclohexyl moiety (1.541 A), and
most likely arises from steric strain. Unremarkably, the cyclo-
hexyl group adopts the lowest energy chair conformation as
would be expected.

In an effort to interrogate if C-H or C-Si insertion reaction(s)
could take place we explored the photochemical reaction of DAC
1 with tetramethylsilane (TMS). Although this reaction proved to
be sluggish, taking up to 4 days with poor to moderate conver-
sion, we observed insertion in the C-H bond of a methyl group on
the TMS to afford compound 5 in 57% yield (based on purity of
'H NMR, see ESIf for detailed discussion). The most salient
spectroscopic feature in the "H NMR (C¢Ds) that allowed us to
identify the structure of 5 was the characteristic Ccarbene—H
resonance centred at 5.32 ppm. Unlike the NMR for compound 4,

Ha

lh_ﬂuﬁ I )

1 F1[ppm]

7 7 S ¢
Il o=
Hb E o
- Mes ~
= 7<C .
“Hb . .
Si(CH3);
compound 5
) -«
4 = 0
Had @ = E
o

5 4 3 2 1 F2[ppm]

Fig. 8 H-'H correlation spectrum (COSY) of compound 5 from 0-
5.6 ppm.
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this resonance was a triplet (}Jy_y = 4.0 Hz) that was coupled to
a doublet centred at 1.32 (*Jy_y = 4.0 Hz) which integrated to two
protons corresponding to the methylene CH,-Si(CHj3); protons.
Additionally, a high-field singlet which integrated to 9 protons
was observed at —0.64 ppm corresponding to the Si(CH;); group.
Similar to compound 4, the coupling of the triplet (proton Ha) at
5.32 ppm and the doublet (proton Hb) at 1.32 ppm was observed
in the COSY spectrum of compound 5 (Fig. 8). Indeed, there is
a correlation between the protons labelled Ha and Hb in the
COSY spectrum of compound 5 as indicated in the red boxes.

2.4 Photochemical reactions of DAC 1 with n-pentane

Finally, we sought to preliminarily investigate if DAC 1 has
a preference for inserting into various C-H bonds, i.e. primary,
secondary, or tertiary. It must be stated that to fully establish
accurate reactivity trends, it would require the screening of
numerous substrates of varying degrees of sterics and/or elec-
tronic features-which is beyond the scope of this paper. To
further investigate the reactivity of this system, we have per-
formed an additional study using n-pentane as a substrate.
Irradiation of a suspension 1 in n-pentane at 380 nm for 12
hours resulted in the dissolution of the majority of the solid
material. The yellow supernatant solution was separated from
the residual solid by filtration followed by the evaporation of all
volatile materials to afford compounds 6a-c as a mixture of
isomers in 87.6% yield which, to date, we have been unable to
separate (Scheme 4). Characterization of the residual solid from
the reaction revealed minor amounts of unreacted DAC 1 and
some DAC-ether which forms from trace water in the reaction.
Although we have been unable to separate the isomeric mixture,
we have confirmed the identity of these compounds using
HRMS, "H NMR spectroscopy, and computational methods.
First, we performed HRMS (ESI}) to confirm the identity of
the mixture of compounds and observed signals corresponding
to the M + H (m/z = 449.3166) and M + Na (m/z = 471.2987)
species which were nearly identical with the predicted values
shown in Scheme 4. Second, we were able to identify the proton
Ha corresponding to compound 6a, which appeared as a triplet
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[ /N\/ [
Mes i Mes I
1 |
He | , Ha
} | f
NN M
— —
380 nm, 8 B 4
12h 5.62 5.58 5.54 5.50 5.46 542 538 534 530 : 5.26
£L.(opm
N_ _N., N _N. N_ _N,
Mes” Mes t s Mes t s Mes
L Ha' Hb He
6

a: 21.18% 6b: 61.46% 6c: 17.36%

Chemical Formula: CygHgoN205, m/z = 449.3168 (M+H) and 471.2988 (M+Na)

Scheme 4 Photochemical reaction of DAC 1 with n-pentane to afford
isomeric mixture of 6a—c. Inset shows *H NMR (C¢Dg) of product
mixture from 5.24-5.64 ppm.
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at 5.366 ppm (CgDs, °J = 6.2 Hz) due to coupling to the adjacent
methylene group, where the DAC had inserted into the C-H
bond of either the C1 or C5 carbon atoms. To identify Hb and
Hc corresponding to 6b and 6c¢, respectively, we utilized DFT
methods. The structures of compounds 6a-c were optimized
using the B3LYP functional and 6-31G+d basis set and GAIO-
SCF (benzene) NMR calculations were performed to correlate
the observed experimental NMR signals to the appropriate
products (see ESIT for full discussion).

The experimental and calculated NMR chemical shifts are
provided in Table 1. The calculated chemical shifts were
collectively upfield relative to the experimental values by an
average of 0.098 ppm, but were all in good agreement. To
differentiate between compounds 6b and 6c, the dihedral
angles between Hb or Hc and their corresponding vicinal
hydrogen atoms obtained from the optimized structures were
inputted into the Karplus equation® and the [ coupling
constants were calculated. Although there is a larger deviation
between the calculated and experimental coupling constants,
the magnitude of the coupling allowed us to assign the NMR
signal at 5.399 ppm to 6b and at 5.565 ppm to 6c. Statistically,
this is what one would expect as there are four available
secondary C-H bonds on carbons C2/C4 of pentane versus only
two available C-H bonds on carbon C3, resulting in 6b forming
preferentially over 6¢c. Moreover, the fact that 6b and 6¢ were not
formed in the statistical 2:1 ratio, indicates that additional
factors, such as the more sterically encumbered C-H bonds on
C3 to give 6¢, may play a role in the observed selectivity.

Admittedly, these preliminary results do not provide a full
structure-reactivity relationship as they do not address steric or
electronic factors, nor do they evaluate tertiary C-H bonds.
However, these results clearly demonstrate that the excited state
triplet DAC preferentially reacts with secondary over primary
C-H bonds. This is evidenced by the distribution of 78.82% of
the products (6b and 6c¢) being derived from secondary C-H
bonds whereas only 21.18% (6a) comes from insertion into
a primary C-H bond. Importantly, statistics do not play a role in
this observed preference as there are exactly six secondary and
six primary C-H bonds available for insertion.

Table1 Selected experimental and calculated *H NMR data (CgDs) for
compounds 6a—c

Exp. chemical Calc. chemical Delta of exp. vs.

Proton  shift (ppm) shift (ppm) calc. chemical shift (ppm)
Ha 5.366 5.276 0.090
Hb 5.399 5.301 0.098
Hc 5.565 5.459 0.106
Calc.

Exp. auw Cale. *J_y  Delta of exp. vs. calc. 3Jia. dihedral
Proton (Hz) (Hz) u (Hz) angle (°)
Ha 6.2 6.14 0.06 166/79
Hb 1.65 1.22 0.43 78.29
Hc 1.45 1.16 0.29 80.02

© 2023 The Author(s). Published by the Royal Society of Chemistry
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3 Conclusions

The photochemical reactions of diamidocarbene 1 with 1-bro-
monaphthalene, pyridine, cyclohexane, and tetra-methylsilane
have been explored. These reactions demonstrated that the
photochemically accessible triplet excited state of 1 can: (i)
cyclopropanate polyaromatic compounds, (ii) insert into unac-
tivated aromatic C-H bonds, and (iii) can insert into unac-
tivated sp® C-H bonds.

Compounds 2, 3, and 4 were fully characterized through 1D
and 2D NMR spectroscopic experiments and their single crystal
X-ray (compounds 2 and 3) and electron diffraction (compound
4) structures were determined to unequivocally verify their
identity. The formation of compound 2 revealed that norcar-
adiene intermediates in our previously reported Biichner ring
expansion reactions with DAC 1 could be obtained when
appropriate arene substrates are employed. Interestingly, the
photolysis of 1 in pyridine did not afford the anticipated
Biichner ring expansion product, but rather a double addition
product, 3. While the thermal insertion of carbenes, including
1, into pyridyl and pyridinium derivatives have been previously
demonstrated, DFT computations revealed that the formation
of 3 is only possible through a triplet pathway.

Finally, the insertion into unactivated sp®> C-H bonds marks
the first example of such reactivity with a singlet carbene. While
the photochemistry of DAC 1 is still an ongoing area of research
in our group, we envision that this novel C-H activation
chemistry, coupled with our previously reported reversible
Biichner ring expansion reactions, could pave the way for new
chemistry relevant to the functionalization of hydrocarbons.
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