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to evolve molecular
conformations from thermodynamic noise for
conformation generation†
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Generation of representative conformations for small molecules is a fundamental task in cheminformatics

and computer-aided drug discovery, but capturing the complex distribution of conformations that contains

multiple low energy minima is still a great challenge. Deep generative modeling, aiming to learn complex

data distributions, is a promising approach to tackle the conformation generation problem. Here,

inspired by stochastic dynamics and recent advances in generative modeling, we developed SDEGen,

a novel conformation generation model based on stochastic differential equations. Compared with

existing conformation generation methods, it enjoys the following advantages: (1) high model capacity to

capture multimodal conformation distribution, thereby searching for multiple low-energy conformations

of a molecule quickly, (2) higher conformation generation efficiency, almost ten times faster than the

state-of-the-art score-based model, ConfGF, and (3) a clear physical interpretation to learn how

a molecule evolves in a stochastic dynamics system starting from noise and eventually relaxing to the

conformation that falls in low energy minima. Extensive experiments demonstrate that SDEGen has

surpassed existing methods in different tasks for conformation generation, interatomic distance

distribution prediction, and thermodynamic property estimation, showing great potential for real-world

applications.
Introduction

The conformation of a molecule represents the 3D coordinates
of all the atoms in a molecule. It is well acknowledged that in
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statistical dynamics, we know everything about a macroscopic
system if we can search for all the corresponding microstates,
i.e., geometries. Therefore, it is quite essential to obtain all the
possible conformations for studied systems to solve compli-
cated biomolecule-involved problems such as structure-based
drug design. For example, the quality and diversity of the 3D
conformations of a molecule are crucial for various tasks in
drug discovery, such as three-dimensional quantitative struc-
ture–activity relationships (3D-QSAR),1 pharmacophore search-
ing,2 molecular docking,3 and thermodynamic calculations.4

Experimental techniques for 3D structure determination,
including X-ray crystallography, cryo-electron microscopy (Cryo-
EM) and nuclear magnetic resonance (NMR) spectroscopy, have
made continuing progress, but typically they can only provide
a single or several static snapshots for the studied system.5

Moreover, all these experiments are time-consuming and costly.
Therefore, economical computational methods are needed to
generate a series of conformations of molecules to study their
dynamical evolution. Existing computational approaches for
molecular conformation generation mainly rely on molecular
dynamics (MD)6 and distance geometry (DG).7,8 In MD, the
conformational state of a molecule is sequentially updated
based on the forces acting on each atom, starting from an initial
state and a chosen approach for force computation. There are
Chem. Sci., 2023, 14, 1557–1568 | 1557
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Fig. 1 Physical illustration of (A) conformation generation based on Stochastic Differential Equations (SDEGen) that evolves through the
dynamical system, and (B) the evolvement of the random noise to the thermodynamically stable arrangement of atoms.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
1/

10
/2

02
5 

1:
22

:0
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
three classes of approaches to calculating the forces on atoms
according to their theoretical principles: ab initio methods,9

density functional theory (DFT),10 and molecular mechanics
(MM) based on empirical force elds.11–13 Ab initiomethods and
DFT are challenging to be applied to large systems due to
extensive computational cost. MM based on empirical force
eld is much faster than the former two, but it has been
considered to give a crude approximation of molecular potential
energy.14 In DG, a randomly sampled set of atomic coordinates
is rened against distance constraints to generate rough 3D
conformations. However, the estimation of the distance matrix
obtained based on traditional triangular constraints is still too
coarse, resulting in low-quality conformations.15 Therefore,
generating more natural and diverse low-energy conformations
is still a long-standing challenge.

With the advances of articial intelligence (AI) technologies
in recent years, 3D deep generative models have been utilized
for conformation generation. In 2019, Mansimov and coworkers
reported the rst attempt to generate 3D conformations in
Cartesian coordinates using the Variational AutoEncoder (VAE)
architecture.17 Subsequently, researchers adopted the idea of
DG into conformation generation by changing the learning
objective from the distribution in Cartesian coordinates to the
distribution in the distance matrix representation, followed by
the reconstruction of the 3D conformations of molecules with
improved performance.18,19 Two contemporary works reported
by Ganea et al.20 and Xu et al.19 can generate conformations in
an end-to-end fashion via geometry elements assembly and bi-
level programming, respectively. The state-of-the-art (SOTA)
score-based method ConfGF21 reported by Shi et al. learns the
pseudo-force on each atom and obtains new conformations via
Langevin Markov chain Monte Carlo (MCMC) sampling. Its
performance on the GEOM-Drugs22 dataset is comparable to
that of the rule-based method called experimental-torsion-
knowledge distance geometry (ETKDG), which is the default
conformation generation model implemented in RDKit.23 Two
other methods that are developed more recently exhibit prom-
ising performances: one is DMCG,24 which directly manipulates
Cartesian coordinates, and the other is torsional diffusion,25

which searches the conformations in the torsional space. Except
the generative model framework, reinforcement learning has
1558 | Chem. Sci., 2023, 14, 1557–1568
been used to generate conformations by scanning all accessible
torsion angles.26,27 Furthermore, Luo and coworkers extended
the method of ConfGF named DGSM to enhance its perfor-
mance on the GEOM-Drugs dataset28 by randomly adding non-
bonded edges to graph structures. In conclusion, most of these
methods have better performance than the ETKDG approach on
the small molecule dataset GEOM-QM9 with the number of
atoms less than nine, but there is still a lot of room for
improvement in GEOM-Drugs, which is more closely related to
the application scenarios of drug design.

Here, inspired by recent advances in generative modeling29

and stochastic dynamics,30 we developed a conformation
generation model, SDEGen, based on stochastic differential
equations (SDE) using a deep generative model (Fig. 1).
Different from the regression scheme, our model can generate
not only one energetically favorable conformation but also
a series of locally optimal conformations, in consistent with the
real thermodynamic environment. Three benchmarks for
conformation generation, interatomic distance distribution
analysis and thermodynamic property prediction were designed
to evaluate the accuracy and diversity of the generated confor-
mations by using the metrics including Coverage (COV) and
Matching (MAT) of molecular geometry, Max Mean Discrepancy
(MMD) of interatomic distance distribution and Mean Absolute
Error (MAE) of energy. The results show that SDEGen beats
most competitive models on the GEOM-Drugs dataset across
almost every tested metric used for benchmarking. In partic-
ular, SDEGen outperforms all the competitors on both the COV
and MAT metrics to the GEOM-Drugs dataset aer force-eld
renement. For the interatomic distances, SDEGen beats the
other models on 4 out of 6 metrics and achieves comparable
results on the other one. Furthermore, with regards to the
prediction of thermodynamic properties, the ensemble prop-
erties of conformations generated by SDEGen are closest to the
results of the DFT calculation (∼2 kJ mol−1), which brings
benets to structure-based drug design with more accuracy and
effectiveness. By testing on the generated conformations of
a randomly selected molecule, we observed an excellent
coverage of almost all local minima on the energy landscape at
the DFT level, including but not limited to where the crystal
structure conformation falls in. Further tests on 12 more
© 2023 The Author(s). Published by the Royal Society of Chemistry
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molecules with diverse sizes (up to 12 rotatable bonds) are
conducted at the semi-empirical level, which also demonstrate
good coverage of most energetically favorable regions. Finally,
our model can sample conformations ten times faster than the
score-based SOTA method ConfGF, showing powerful applica-
tion prospects in the real world.
Results and discussion

As shown in Fig. 2, in SDEGen, aer randomly selecting a time
step, the thermodynamic noise at that time is added to the
initial interatomic distances, and then an embedding of the
high-dimensional space together with the edge information is
added to form the distance embedding conditional on the
topological features, i.e., (~djE). At the same time, the attributes
of atoms are also embedded and are sent to the Graph
Isomorphism Networks(GIN)31 combined with (~djE) for feature
extraction. Aer three iterations of graph message passing, the
nal distance features conditional on molecule Graph (~djG) are
formed. Finally, we map (~djG) into the vector of dimension one
and compute the L2 loss with the original noise. This process is
repeated many times at various molecules and time between
[0,1] until convergence. The empirical force eld-based energy
optimization is embedded in the last step to ne-tune the
Fig. 2 The framework of SDEGen. At training time, given the graphG and
and utilize the Gaussian random feature to encode the time information
perturbed distance to form the ~d (2) Map the edge(E) and atom(A) featur
slightly darker blue arrows) (3) utilize the GNN model to encode the gr
denoising score matching (dark blue arrows). The procedure amounts
dynamics system at the given time.

© 2023 The Author(s). Published by the Royal Society of Chemistry
conformations obtained by the stochastic dynamics system.
Through the well-trained SDEGen network, the random
samples can be evolved to thermodynamically stable confor-
mations. The Euler–Maruyama32 solver, predictor-corrector
scheme,33 and ODE-Solver can be used to generate conforma-
tions. The details of SDEGen are described in the Method
Section.
Physical illustration and model comparison

We schematically construct the physical intuition for the SDE-
Gen model (Fig. 1). The phase space of a molecule is approxi-
mately 3N dimensions, where N is the number of the atoms in
the molecule, and each point in the phase space represents
a conformation. Due to the energy constraints, molecular
conformations are not discrete and uniformly distributed in the
phase space. The possible conformations of a molecule are
distributed over the low-dimensional manifold in the high-
dimensional phase space. Our initial sampling is randomly
sampled in the high-dimensional phase space. It then evolves
through the dynamical system, represented by the stochastic
differential equation dx = f(x,t)dt + g(t)dw, to the low-
dimensional manifold of the original data distribution, form-
ing our nal molecular conformation (Fig. 1A). This map in the
phase space can be understood as a motion guided by the given
conformation R, we: (1) sample the time from [0,1] uniform distribution
to the model, then this temporal feature is mapped together with the
es from molecules to form corresponding embeddings (light blue and
aph structure to the model (~djG) and train the SDEGen network with
to learning the evolutionary state of the molecule in the stochastic

Chem. Sci., 2023, 14, 1557–1568 | 1559
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force eld, and our stochastic differential equation can be
viewed as a dynamically driven approach. As illustrated in
Fig. 1B, one can imagine scattering a handful of particles into
the water, and the positions of the particles obey a random
distribution at rst. As the particles continue to collide with the
water molecules, their nal position distribution will tend to be
thermodynamically stable. In the language of mapping, this
dynamics process can be understood as a diffeomorphism from
a D-dimensional hypersphere in 3N-dimensional space to
another D-dimensional complex manifold in 3-dimensional
space. Fig. S1 and S2† show some examples visually generated
by SDEGen and other methods.
Quality of generated conformations

The mean and median of COV and MAT scores were evaluated
on both the GEOM-QM9 and GEOM-Drugs datasets for SDEGen
and other competitive methods, implying that the comparison
was made between the conformations generated by the model
and the ensemble of the quantum-computed conformers. The
COV represents how much the set of quantum-computed
conformations can be covered by the set of generated confor-
mations for a given RMSD threshold: the higher, the better;
while the MAT measures how similar the generated and the
training QM-level conformations are: the lower, the better. The
specic denition and an illustrative example of the metrics
COV and MAT, standing for the diversity and accuracy of the
generated conformation cluster under a given RMSD threshold,
could be found in the ESI† (Part 0). The comparison of different
conformation generation models is hardly straightforward
because of the different training and evaluation settings used in
different work. Here we have done exhaustive experiments to
compare ve competitive models (i.e., ConfGF, RDKit, DMCG,
CGCF, and ConfGFDist) with the same dataset and settings, as
shown in Table 1. SDEGen shows excellent performance on all
four metrics on both datasets with force-eld renement, and
achieves SOTA results on the GEOM-Drugs dataset. All the
parameters were untuned. Interestingly, we observe that the
Table 1 COV and MAT scores of the different methods on the GEOM-
QM9 and GEOM-Drugs datasets with Merck molecular force field
refinement. The threshold d was set to 0.5 Å for QM9 and 1.25 Å for
Drugs

Dataset Method

COV(%) ([) MAT(Å) (Y)

Mean Median Mean Median

QM9 RDKit 81.82 85.98 0.3027 0.2564
CGCF 83.48 86.70 0.2984 0.2694
ConfGF 90.99 95.76 0.2648 0.2691
ConfFDist 83.80 86.72 0.2658 0.2618
DMCG 96.14 99.55 0.2035 0.2002
SDEGen 92.40 96.51 0.2034 0.1918

Drugs RDKit 70.47 77.08 1.2069 1.1080
CGCF 72.41 74.09 1.1198 1.1017
ConfGF 86.39 89.86 0.8554 0.8347
ConfFDist 81.08 88.37 0.9624 0.9368
DMCG 87.02 97.73 0.8794 0.8693
SDEGen 92.00 98.51 0.7892 0.7665

1560 | Chem. Sci., 2023, 14, 1557–1568
performance of DMCG decreases aer the force-eld rene-
ment, especially on GEOM-Drugs (dropping from 95.36 and
100.0 to 87.02 and 97.73 of mean and median COV). The
subsequent experiments on the bond distribution and ther-
modynamic properties also support this observation. That may
be because the DMCG model is designed to directly predict
Cartesian coordinates trained through data enhancement,
which does not meet the requirements of SE (3)-equivariance
originally and causes the overtting. At the same time, SDEGen
embeds the geometry constraints by modeling the three-hop
distance, contributing to more robust performance aer the
force-eld renement. We would like to suggest such rene-
ment as a standard step for conformation generation tasks, just
like how it serves in solving crystal or cryo-EM structures, to
ne-tune the generated conformations into the nearest
stationary point on the specied potential energy surface, and
to check the quality of the generated structures, which also ts
for the meet of the downstream tasks in real-world applications.
In contrast to ConfGF, SDEGen is a multiple-stage approach,
which is generally believed to be inferior to the end-to-end
model,34 but it still achieved an overall victory on the two
datasets with the force-eld renement settings. Additionally,
compared with DGSM that concerns long-range interactions by
adding non-bonded edges stochastically, our model achieved
better COV and MAT scores with consideration of three-hop
distances, which correspond to the truncation value for the
calculations of the direct interactions in MM methods.35
Distribution of interatomic distances

The interatomic distances contain not only the bond lengths
between atoms with covalent bonds but also auxiliary bonds,
i.e., two-hop and three-hop distances (1–3 bond and 1–4 torsion
interactions). As shown in Fig. 3B, the distribution of the
interatomic distances roughly shows three peaks corresponding
to the three hop bonds, which presents more structural infor-
mation (including bond angels and bond dihedrals) than the
trivial bond length distribution, without being too redundant
like the distance matrix evaluated in RDKit. The metric MMD
employed here is a kernel-base statistical test to determine
whether the given two distributions are the same. The lowMMD
value indicates similar interatomic distributions. As shown in
Table 2, although the 3D reconstruction process has compromised
Table 2 The mean and median MMD of the interatomic distances
distribution of different methods compared with the test set. Single:
individual distances p(dijjG), Pair: pairwise distances p(dij,duvjG), All: all
distances p(djG)

Method

Single Pair All

Mean Median Mean Median Mean Median

RDKit 3.4513 3.1602 3.8452 3.6827 4.0866 3.7519
DMCG 4.5088 5.0245 5.2494 5.8464 5.8464 6.3546
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
ConfGF 0.3684 0.2358 0.4582 0.3206 0.6091 0.4240
SDEGen 0.3943 0.1037 0.4518 0.1762 0.6249 0.2742

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the estimation of distance distribution, SDEGen still yielded
impressive results on all the metrics. In particular, SDEGen out-
performed ConfGF in Single-median, Pair-median, all-median,
and Pair-mean metrics, and still reached comparable results in
Single-mean (0.3943 vs. 0.3684) and all-mean (0.6249 vs. 0.6091)
metrics. It is noted that the performance of DMCG on this task
falls short of the SDEGen and ConfGF models despite its superior
performance on the above-mentioned conformation generation
evaluation task. The comparison of SDEGen with other DG-
inspired methods (i.e.,GraphDG and CGCF) indicates that SDE-
Gen could learn smooth distance distributions conditional on
different types of atoms and chemical bonds, demonstrating the
plausibility of the conformations generated by SDEGen from
another perspective.
Prediction of thermodynamic properties

Thermodynamic property prediction needs a comprehensive
understanding of the macroscopic states of a system. In this task,
each conformation corresponds to a microscopic thermodynamic
state, and these conformations are aggregated as an ensemble for
a specic molecule to represent a thermodynamic system. The
more comprehensive microstates considered in thermodynamic
calculations, the more accurate the prediction can be. Following
this principle, we evaluated the thermodynamic properties of the
conformation ensemble generated by SDEGen and its represen-
tative opponents (i.e., RDKit, CGCF, ConfGF, and DMCG). The
results in Table 3 show that the ensemble properties of the
conformations generated by SDEGen are closest (∼2 kJ mol−1) to
those obtained by DFT calculations. Among all the results, SDEGen
performed considerably better than the classical method RDKit
(∼50 kJ mol−1) on this task, implying that the stochastic dynamics
method we developed does learn the molecular thermodynamic
evolution process with quantum accuracy. In contrast, CGCF
performs poorly (50–2500 kJ mol−1) on this task due to its insuf-
cient capability to learn the multi-model conformational mani-
folds. ConfGF and DMCG perform much better than the above
two, but SDEGen still beats all the baselines in all the metrics and
achieves the accuracy of quantum chemistry for conformation
generation.
Searching for crystal and other thermodynamically stable
conformations

The conformations of small-molecule ligands in the bound
states suggested by their experimentally determined structures
deposited in Protein Data Bank (PDB36), are usually regarded as
the gold standard in structure-based drug design. Inmost cases,
Table 3 The MAE of ensemble thermodynamic properties among
different methods (units: kJ mol−1)

Method �E Emin D3� D3min D3max

RDKit 70.928 46.473 27.531 52.887 18.387
CGCF 2456.7 195.94 197.38 902.02 56.323
DMCG 8.0016 8.1336 13.355 16.262 17.188
ConfGF 3.6643 3.3657 5.5305 13.355 4.8476
SDEGen 2.6406 2.9219 4.4440 12.036 4.5742

© 2023 The Author(s). Published by the Royal Society of Chemistry
these near-native conformations fall in the vicinity of the local
minima, judging by the free-energy landscape of the molecule
in its free state. One of our expectations for the model is that the
multiple local minima could be captured so that the natural
crystal conformations determined experimentally would be
included in the generated conformation ensemble. To test this
capability, we treated the Platinum dataset37 as another external
test set. The platinum dataset contains 4626 structures extrac-
ted from a total of over 347 k co-crystallized ligand structures
stored in PDB by ltering out low-quality co-crystallized ligand
structures (resolution > 2.0 Å) according to a set of well-
designed criteria. We used the SDEGen model trained on
GEOM-Drugs to generate the molecular conformations in the
Platinum dataset and compared them with their original crystal
conformations. The superimposed structures as well as their
RMSDs of representative molecules including macrocyclic and
chiral ones are shown in Fig. 3A.

As shown in Fig. 3B, among over 85% cases, the conforma-
tions generated by our SDEGen can cover the crystal structures
in the Platinum dataset (with an RMSD threshold of 1.5 Å).
Moreover, the crystal conformation coverage did not increase
with the increase of the number of the generated conformations
in the ensemble, highlighting the model's good robustness. In
general, one can reach more than 75% probability of covering
the crystal conformations by generating 50 conformations for
a molecule, and ∼80% probability by generating 100
conformations.

To further illustrate the quality of the conformations
generated by SDEGen, we performed several case studies to test
the coverage of all low-energy conformations, probably
including but not limited to the crystal structures, for both
QM9-level and drugs-level molecules. Firstly, we selected
a molecule with two rotatable bonds from the ligand library of
PDB36 and scanned the potential energy values of each confor-
mation as the function of two rotation angles at the DFT level.
The orange dots on the potential energy surface in Fig. 3C and D
represented the conformations generated by SDEGen, and the
yellow dot represented the crystal conformations. It is found
that all the 50 conformations generated by SDEGen fall into
multiple wells on the potential energy landscape, and cover
almost all the captured local minima. It means that the gener-
ated 50 conformations can depict most of the potential wells for
the tested molecule; meanwhile, the crystal conformation also
fell into one of the potential wells covered by our generated
conformations, not surprisingly. More examples through semi-
empirical x-TB calculations can be found in the ESI† for addi-
tional illustration (Fig. S3†). Moreover, we also explored the
system of druglike molecules containing 12 rotatable bonds.
Fig. 4 shows that the distribution sampled by SDEGen (red dots)
allows adequate exploration of the conformational space of the
molecule, and most of the sampled points are concentrated
near the dominant conformation obtained by quantum chem-
istry computation (orange dots). Compared with the points
sampled by RDKit (pink dots), the sample points from SDEGen
are more uniformly distributed on the energy surface.
Combined with the more accurate prediction of thermody-
namic properties achieved by the previous experiment, we
Chem. Sci., 2023, 14, 1557–1568 | 1561
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Fig. 3 (A) Comparison of generated conformations with the crystal conformations of representative molecules including macrocyclic and chiral
ones; (B) the relationship between the crystal conformation coverage and the RMSD threshold within different numbers of the generated
conformation of all molecules. The potential energy surface with (C) 3D and (D) 2D presentations of a randomly selected molecule scanned at
DFT level. The yellow dot represents the crystal conformation and the orange dots represent the generated conformations.
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believe that the SDEGen could generate a representative and
uniformly sampled ensemble. Treating these generated
conformations as the inputs to downstream tasks can broaden
the representative of energetically favorable conformations,
Fig. 4 Free energy surfaces of the two Drugs-level molecules (A) and (B
and (B1) are the comparisons between SDEGen and CREST(GEOM-Drugs
samples. CV is the abbreviation of collective variable, which is the redu
appendix.†

1562 | Chem. Sci., 2023, 14, 1557–1568
thus fully expressing the molecule's druggability and reducing
the likelihood of missing potential active compounds in lead
discovery.
) with 12 rotatable bonds estimated by x-TB based metadynamics. (A1)
) samples; (A2) and (B2) are the comparisons between RDKit and CREST
ced coordinate used for visualization. The specific definition is in the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Coverage vs. number of rotatable bonds on the (A) Platinum and (B) GEOM-Drugs datasets. Notation Confs in (A) denotes the number of
the generated conformations of a molecule. (C) Comparison of conformation generation times for competitive models.
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Discussion about limitations

Although SDEGen achieved good results in the Platinum data-
set, the generated conformations for several molecules (about
16.0%) still did not cover the crystal conformations (RMSD
threshold 1.5 Å). We attribute the failure cases to the following
two reasons. Firstly, it is not easy for the model to handle large
systems due to the existence of high degrees of freedom.
According to Fig. 5A, the model's performance on Platinum
decreases with the increase of the number of rotatable bonds.
The same happens with GEOM-Drugs (Fig. 5B), implying that
the long-range interactions in these relatively large systems
(molecules with 8 or more rotatable bonds) need special
consideration. Secondly, the conformations in Platinum are
inuenced by other biomolecules, whereas SDEGen only counts
the internal interactions in molecules. To be specic, the Plat-
inum dataset comprises ligands with protein-bound ligand
conformations from the PDB. At the same time, the training set
is generated from the DFT calculations without any consider-
ation of the protein pocket environment. Given that protein
pockets would exert some kinds of non-bonded interactions on
the ligands, i.e., the probability distribution of the small
molecule conformation is changed by its binding with the
protein (or other effector molecules). Hence the more exible
the molecules, the greater the perturbation by the protein
pocket environment. Consequently, it is not surprising to
observe that the COV-threshold curve of Platinum falls a little
faster than that of GEOM-Drugs, owing to external interaction
exerted on Platinum's molecules. We summarize the possible
direction for boosting the limitations into two folds: (1)
embedding physical/chemical/biological constraints to help the
model learn the intrinsic physics behind a large amount of data.
(2) Considering multi-scale modeling to capture higher-level
interactions, as a famous saying goes, ‘More is Different’,38

which is applied to the phenomenon we met here.
Conformation generation speed

Sampling speed is another perspective we should focus on
beyond the quality of conformation ensembles. In real-world
applications, downstream tasks such as pharmacophore
mapping and conformational search require a large number of
conformers, i.e., 50 conformers per molecule. To prove the
potential application value of SDEGen, we conducted the time
cost experiment over Intel(R) Xeon(R) Gold 5218 CPU with 30
© 2023 The Author(s). Published by the Royal Society of Chemistry
CPU cores. We divided the molecules in GEOM-Drugs based on
different rotatable bonds and recorded the time used for
generating a single conformation by different methods. Fig. 5C
shows that SDEGen achieved comparable generation speed,
about ten times faster than the score-based SOTA model,
ConfGF. RDKit generates conformations at a rate of about 0.1 s
a piece; meanwhile, another VAE-based SOTA method, DMCG,
generates conformations at a rate of about 0.01 s a piece, which
is the fastest model in the baselines. However, considering the
quality of the generated conformations, the thermodynamic
properties of the conformational system and other factors, we
still believe that SDEGen is a competitive model.

Model comparison

The underlying math of SDEGen is dx = f(x,t)dt + g(t)dw. In fact,
if we made g(t) = 0, this stochastic dynamical system would
degenerate to an ordinary differential system dx = f(x,t)dt,
which is utilized for constructing the CGCFmodel. One possible
reason why our model works well is that the presence of the
stochastic term gives the model a better chance of jumping out
of the local optimum. To be specic, the score-based SOTA
method ConfGF performed annealing Langevin dynamics to
learn the gradient eld of molecular conformations, generating
samples through given different temperature scales. Neverthe-
less, since SDEGen learns theV log p (gradient of the probability
distribution of the evolution of the particle over time) for the
given interval, implying that one can use any classical integer
method or any given step size to evolve this dynamical proce-
dure from the beginning to the end. That is one of the reasons
why SDEGen generates samples faster. Compared with another
SOTA model, DMCG, which utilizes VAE as its backend, the
SDEGen enjoys a lower number of model's parameters (∼8 M vs.
1283M) and the ability to compute likelihoods through the ODE
solver, implying an additional application to the enhanced
importance sampling.

Conclusions

In this study, we exploit the physical intuition and the latest
generative model architecture to learn the stochastic dynamics
evolution of atoms starting from a random atomic distribution
and eventually relaxing to conformations near the energy
optimum. This model surpasses most AI-based conformation
Chem. Sci., 2023, 14, 1557–1568 | 1563
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generation models in terms of generated conformation quality
under real-world application settings, interatomic distance
distribution and thermodynamic property prediction. For
example, as to the conformation generation quality for drug-like
molecules, our model scores best on the COV and MAT metrics
with force-eld renement for the drug-like molecules. Besides,
our SDEGen model is about ten times faster than the closely
related model, ConfGF, which is crucial to generate a large
number of conformations for large-scale virtual screening in
real scenarios. In the application section, we found that SDE-
Gen can quickly search for the conformations in the crystal
structures of small molecules in the Platinum dataset with 80
percent probability. Furthermore, the energy surfaces for both
small and large molecules were explored to illustrate that
SDEGen could search for the local region which contains the
crystal structure and locate other energetically favorable
potential wells uniformly.
Method
Data representation

In this study, a molecular graph is represented as an undi-
rected G ¼ hV ;Ei, where V = {V1,V2,.,VjVj} is the set of atoms
of the molecule, and E ¼ feij

��ði; jÞ4V � Vg is the set of bonds
in the molecule. Each atom vi ˛ V is associated with some
atom's attributes, such as element type and atomic coordi-
nates. Each bond eij˛E is associated with a chemical bond type
and a scalar dij ¼

����vi � vj
����
2 denoting the Euclidean distance

between the atomic positions of vi and vj. As the chemical
bonds in a molecule would not suffice to characterize a mole-
cule conformation and cannot express the local interactions
within a molecule, we expand our molecule graph to an
extended graph by adding auxiliary bonds. The two-hop edges
and three-hop edges can be viewed as incorporating bond and
dihedral angles information into a 2D graph, i.e., the 1–3 angle
interaction and the 1–4 dihedral angle interaction. This tech-
nique helps the model capture neighboring features in
a molecule and conveys the chemical knowledge that covalent
bonds can transmit atomic interaction, where the cutoff
setting is always 3. Hereaer, we assume all molecular graphs
are extended unless stated.
Generative model based on stochastic differential equation

SDEGen is based on the generative model,29,39 which aims at
learning the process of perturbating a given data distribution to
random noise. We can smoothly mold random noise into data
for sample generation by reversing this process. This process of
perturbating data can be modeled as the solution to an Ito SDE:

dx = f(x,t)dt + g(t)dw (1)

where f ð$; tÞ : ℝd1ℝd is a vector valued function called the dri
coefficient of x(t), and gð$Þ : ℝd1ℝd is a scalar function known as
the diffusion coefficient of x(t). w is the brownian motion. This
formula represents the process of adding noise to the data distri-
bution to another complex distribution that contains no
1564 | Chem. Sci., 2023, 14, 1557–1568
information on data distribution, such as a Gaussian distribution.
The reverse process has been proved to satisfy a reverse-time SDE:32

dx = [f(x,t) − g(t)2Vx log Pt(x)]dt + g(t)dw� (2)

where w� is a standard Wiener process when time ows back
from T to 0. Once the gradient of each marginal distribution, Vx

log Pt(x), is known for all t, then we can derive the reverse
stochastic process and simulate it to sample from the data
distribution. So our goal is to train a network sqð$; tÞ : R d1R d

to approximate Vx log Pt(x).
To estimate Vx log Pt(x), we can train a time-dependent

model sq(x,t) by:

q* ¼ arg min
q
Et�U ð0;TÞ

�
lðtÞExð0Þ�p0ðxÞExðtÞ�p0tðxðtÞjxð0ÞÞ

�ksqðxðtÞ; tÞ
� VxðtÞlogp0tðxðtÞjxð0ÞÞ

��
(3)

where U ð0;TÞ is a uniform distribution over [0,T], pt(x) is the
probability density of x(t), p0t(x(t)rx(0)) denotes the transition kernel
from x(0) to x(t), and lðtÞ˛ℝ. 0 denotes a positive weighting
function. In the objective, the expectation over x(t) can be estimated
with empirical means over data samples from p0. The expectation
over x(t) can be estimated by sampling from p0t(x(t)jx(0)), which is
efficient when the dri coefficient f(x,t) is affine. The weight func-
tion l(t) is typically chosen to be inversely proportional to
E½kVxlogp0tðxðtÞrxð0ÞÞk22�. Aer the network sq(x,t) is trained,
samples could be generated by solving the reverse-time SDE equa-
tion with Euler–Maruyama sampler or predictor-corrector sampler.
Symmetry

Symmetry is ubiquitous in physics systems. Formally, a func-
tionF : X1Y being equivariant can be represented as follows:

F $r ¼ r$F (4)

where r is a transformation function, e.g., rotation. Eqn.(7) says
that applying the r on the input has the same effect as applying it
to the output. In our problem, we nd that molecular confor-
mations under Cartesian coordinate are not roto-translational
invariance. One approach to tackle this issue is to do normali-
zation;40 another approach is to redesign this task based on
physical intuition. Inspired by a traditional conformation
generation method, Distance Geometry(DG), the target can be
transformed from learning Pt(RijG) to learning Pt(dijG), we except:

sqðd; tÞzVdPtðdijGÞ (5)

where sq is the network, d is the distance between atoms in
a molecule, G is a molecule graph. For generalization and
elegant reasons, we explicitly embed such equivariance into the
model architecture.

Based on the above discussion, the framework of SDEGen
could be summarized in two stages. Firstly, it learns a condi-
tional probability distribution P(DjG,t) utilizing a generative
model scheme based on the SDE. Secondly, it reconstructs the
3D Cartesian conformations from the P(DjG,t) obtained in the
rst stage.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Specically, we chose the form of the stochastic differential
equation:

dx = st d�w, t ˛ [0,1] (6)

In this case, the transition kernel is

p0;tðxðtÞjxð0ÞÞ ¼ N
�
xðtÞ; xð0Þ; 1

2logs

�
s2
t � 1

��
(7)

and the weighting function is

lðtÞ ¼ 1

2logs

�
s2t � 1

�
(8)

when s is large, the prior distribution pi=1 can be approximated
in the following form:ð
p0ðyÞN

�
x; y;

1

2logs

�
s2t� 1

�
I

�
dyzN

�
x; 0;

1

2logs

�
s2t � 1

�
I

�
(9)

The eqn (9) indicates that the prior distribution to be chosen
is approximately independent of the data distribution and is
easy to sample from. Solving this SDE numerically, we can
smoothly transform the data x(0) to a simple white noise x(1).

dx = −s2tVx logPt(x)dt + st d�w (10)

In this setting, we aim to learn a conditional network to
jointly estimate the gradient of perturbed data on all-time steps,
which means sq(~d,t) z V~d log Pt(~djG). Since sqð$; tÞ : R d1R d,
we can formulate the rst stage of conformation generation as
an edge regression problem.

Given a molecule graph G and its corresponding set of
atomic distances d˛ℝjEj, we embed the atomic attributes and
the corresponding auxiliary bond attributes into a low-
dimensional space using a Multilayer Perceptron(MLP)

hi
0 ¼ MLPðViÞ;cvi˛V (11)

At the same time, in order to embed the time information so
that the network can condition on t, the Gaussian random
feature29 is used as an encoding for time step t. Specically, for
a given time step t, the corresponding Gaussian random
features are:

GRFðtÞ ¼ ½sinð2pwtÞjjcosð2pwtÞ�;w � N
�
0; s2I

�
(12)

where k denotes the vector concatenation operation and s is
a xed number. Using the method of adding Gaussian random
features to the embedding layer, we can encode time informa-
tion into our network.

heij ¼ MLP
�
eij
�� �MLP

�
dij
�þMLPðGRFðtÞÞ�;ceij˛E;cdij˛D

(13)

We then use a graph neural network to update atom
embeddings. We choose Graph Isomorphism Network (GIN)31

as the GNNmodule. Since GIN is a provably maximally powerful
© 2023 The Author(s). Published by the Royal Society of Chemistry
GNN under the neighborhood aggregating framework. At each
layer of GIN, atom embeddings are updated by aggregating
messages from neighboring atoms and bonds:

hi
l ¼ MLP

 
hi

l�1 þ
X
j˛NðiÞ

ReLU
�
hj

l�1 þ heij
�!

(14)

where N(i) denotes ith atom's neighbors. Aer 3 rounds of
message passing, we derive the nal bond embedding by
concatenating the corresponding atom embeddings for each
bond as follows:

h0eij ¼ hi
N
����hjN ����heij (15)

where h0eij denotes the nal embeddings of bond eij ˛ E. Finally,
we use an MLP function to parameterize the SDE network, i.e.

sq

	
~d; t


¼ MLP

	
h0eij



(16)

We can rescale the output of the SDE network by

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½����Vxlogp0tðxðtÞjxð0ÞÞ

����2
2�Þ

q
to help capture the norm of the

actual gradient. Based on the above discussion, the whole loss
function takes the form as follows

1

2L

XL
i¼1

Ex0�pð0ÞExðtÞ�p0tðxðtÞ�ð0ÞÞlðtÞ
"
ksq
	
~d; t


�
�

1

2logs
ðst � 1Þ

�

�
	
d � ~d



k
2

2

#
(17)

At this point, all expectations can be computed by Monte
Carlo estimation.

By the way, we also added the Exponential Moving Average
(EMA)41 algorithm to SDEGen and trained a better robust
model.

vt ¼ b$vt�1 þ ð1� bÞ$qt (18)

where qt is the model parameters at time t, vt is the average of
the model parameters, and b is the weighted weight value,
which is set to 0.999 in our model. The performance of the
SDEGen model with EMA algorithms was proved to be greatly
improved, especially on the small molecule dataset GEOM-
QM9. The probable reason for this improvement is that the
randomness introduced by the procedure of adding noise to
molecular conformations is averaged out by EMA, a temporal
ensembling method that allowed our nal model to incorporate
more historical states in the learning process. So more molec-
ular structures will be attached attention in the nal trained
model.
Conformation generation

SDE solver & Langevin dynamics. Given a molecule graph
and a well-trained SDE network, the generation process of
molecular conformations is performed by numerically solving
the stochastic differential eqn (2), i.e., reconstructing the
distribution of each atom's position from a noise distribution.
Chem. Sci., 2023, 14, 1557–1568 | 1565
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For the numerical solver, we use the predictor-corrector
scheme,29,42 which leverages the additional information, an
estimate of the gradient of px(x(t)) via the network, to reduce the
error of the numerical SDE solver and improve sample quality.
This solver is in two steps. Based on a simple discretization to
the SDE, the rst step is solving the Euler–Maruyama equation,
replacing dt with Dt and dw with z � N ð0; g2ðtÞDtIÞ. When
applied to our reverse-time SDE, we can obtain the following
equation:

xt�Dt ¼ xt þ s2tsqðxt; tÞDtþ st
ffiffiffiffiffi
Dt

p
zt; zt � N ð0; 1Þ (19)

Then, to improve the accuracy of the solution, n steps Lan-
gevin MCMC would be implemented as the second step.

xiþ1 ¼ xi þ eVxlogptðxiÞ þ
ffiffiffiffiffi
23

p
zi (20)

Finally, the conformation would be sampled from Gaussian
distribution, and then the PC solver would integrate the SDE in
the reverse time direction to obtain the reconstructed confor-
mation. This modied sampling scheme ensures that the
sample fully converges to the probability distribution under the
given time at each step of solving the SDE equation, reducing
the risk of a spatial clash of conformations.

ODE solver. For eqn (2), there exists an ordinary differential
equation

dx ¼
�
f ðx; tÞ � 1

2
gðtÞ2VxlogptðxÞ



dt (21)

which shares the same marginal probability density pt(x) with
eqn (2). Therefore, we can solve this differential equation
through classical integrated algorithms to sample the new
energetically favorable conformations and track how the prob-
ability evolves aer the sampling procedure.

We obtained the likelihood of conformation with the
following equation:

logp0ðxð0ÞÞ ¼ logp1ðxð1ÞÞ � 1

2

ð1
0

d½s2ðtÞ�
dt

div sqðx; tÞdt (22)

Through this by-product of the ODE sampler, the weights
of the samples generated by SDEGen are known. Furthermore,
combined with the energy function we dene, we can use the
SDEGen as an importance sampler to overcome the so-called
rare event problem in molecular simulation. But this section
is beyond conformation generation. We only provide a demo
version code to the interested readers and leave it for a future
adventure. The molecule conformations, aer evolving
through the stochastic system, will fall near the local optimal
point, and then we use deterministic optimization to make it
converge further.
Experiments

To thoroughly evaluate the performance of SDEGen, we
compare it with multiple competitive methods on multiple
benchmark datasets with the various tasks.
1566 | Chem. Sci., 2023, 14, 1557–1568
Tasks and metrics

Quality of generated conformations. In this task, we gener-
ated twice the number of conformations as its benchmark
conformations for each molecular graph in the test set
following conventions.19,21,43 We then computed the COV and
MAT between the generated and benchmark conformations. As
the fundamental metric for our conformation evaluation, we
used root mean square deviation (RMSD), a standard measure
of the difference between two conformations inMD simulations
analysis.

RMSD
	
~R;R



¼ min

q

 
1

n

Xn
i¼1

kF
	
~Ri



� Rik

2

!1
2

(23)

where n is the number of heavy (non-hydrogen) atoms and F is
an alignment function that aligns two conformations by rota-
tion and translation. Following,19 the COV and MAT used to
quantify the quality of conformations are dened as follows:

COV
�
Sg;Sr

� ¼ R˛Sr

���RMSD
	
R; R̂



\d; R̂˛Sg

���
jSrj (24)

MAT
�
Sg;Sr

� ¼ 1

jSrj
X

R˛Sr ;R̂˛Sg

min RMSD
	
R; R̂



(25)

where Sg and Sr are generated and reference molecular confor-
mation ensembles, respectively. d is a given RMSD threshold.
While COV is effective to assess the diversity and detect the
model-collapse phenomenon, MAT is a complement to measure
how close the generated conformations and the reference
conformations. In general, a higher COV score represents
greater diversity performance, while a lower MAT score repre-
sents better accuracy of the generated conformations. An
illustrative example is prepared in the appendix† for better
understanding.
Distribution of interatomic distances

Since the covalent bond lengths are insufficient to represent the
information of three-dimensional geometry, we consider the
interatomic distances measured in the second task, including
the bond lengths (1–2 connection) and 1–3 and 1–4 connec-
tions. This consideration amounts to measuring the direct local
interactions between atoms that drive the atoms to relax to the
real-world thermodynamic distribution from a random distri-
bution. In this task, we sampled 1000 conformations for each
test molecule as pseudo-trajectories, and then calculated the
MMD between the two distributions using a Gaussian kernel. In
specic, for each molecule in the test set, we evaluated distri-
butions of all distances p(djG) (All), pairwise distances p(dij,-
duvjG) (Pair), and individual distances p(dijjG) (Single).
Prediction of Thermodynamic Properties

As mentioned earlier, a macroscopic thermodynamic property
of an ensemble is obtained by weighting all accessible micro-
scopic states. For each molecule in the test set, we utilized
PyScf44 with DFT(M06-2X/def2-TZVPP) to calculate electron
© 2023 The Author(s). Published by the Royal Society of Chemistry
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energy and HOMO–LUMO for each generated and benchmark
conformation. We then computed the MAE metric for macro-
scopic thermodynamic properties by statistical averaging. The
ensemble properties considered here include average energy E�,
lowest energy Emin, highest energy Emax, average HOMO–LUMO
gap D3�, minimum gap D3min, maximum gap D3max. The mean
absolute error (MAE) was used for measuring the accuracy of
property prediction.
Datasets

Three well-known datasets, GEOM-QM9, GEOM-Drugs22 and
ISO17,45–47 were used. GEOM-QM9 is a small molecule dataset
containing neutral molecules with up to nine atoms, not
counting hydrogen. GEOM-Drugs is a drug-like molecule data-
set whose molecule species are accessed as part of AICures.48

These conformers were generated with the CREST49 program,
which adopts semi-empirical DFT to generate reliable and
accurate structures. Following the21 sampling scheme, the
resulting split is 40 000 molecules in the training set with 200
000 conformations and 200 molecules in the test set with 22 408
and 14 324 conformations for GEOM-QM9 and GEOM-Dugs,
respectively. The molecules in the ISO17 dataset were
randomly drawn from the largest set of isomers in the QM9
dataset, which consists of molecules with a xed composition of
atoms(C7O2H10). These conformers were generated with the
Fritz–Haber Institute ab initio simulation package (FHI-aims),50

reaching a higher level of accuracy than the DFT method. So
this dataset was assigned to evaluate the interatomic distance
distribution task. The default split results in the training set
with 357 621 conformations of 167 molecules and the test set
with 73 071 conformations of 30 molecules.
Baselines

We tested our model compared with a classical rule-based
method and other ML-based methods. The rule-based method
is ETKDG,8 the default program in RDKit for molecular
conformation generation. The other AI-based method go as
follows: CVGAE,16 GraphDG,18 CGCF,19 ConfGF,21 DMCG24 and
DGSM.18 Among these methods, we focus on the ConfGF since it
is the SOTA method built upon the score-based generative
model, achieving impressive results on both GEOM-QM9 and
GEOM-Drugs datasets. Although DGSM is an improved version
of ConfGF, we still have no access to its source code until now,
so the reported performance28 in its original paper was used in
our study. It is noted that the official codes of GraphDG and
CVGAE are utilized old versions of Tensorow,51 which does not
match the version of our machine. However, these two methods
are not our main competitors, so we just extract these results
from the ConfGF21 paper.
Data and code availability

The data and source code of this study is freely available at
GitHub (https://github.com/HaotianZhangAI4Science/SDEGen)
to allow replication of the results.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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