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es of interfacial water predict the
hydrophobicity of chemically heterogeneous
surfaces†

Bradley C. Dallin, Atharva S. Kelkar and Reid C. Van Lehn *

The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that drive

numerous biological and industrial processes. Chemically heterogeneous interfaces are abundant in

these contexts; examples include the surfaces of proteins, functionalized nanomaterials, and polymeric

materials. While the hydrophobicity of nonpolar solutes can be predicted and related to the structure of

interfacial water molecules, predicting the hydrophobicity of chemically heterogeneous interfaces

remains a challenge because of the complex, non-additive contributions to hydrophobicity that depend

on the chemical identity and nanoscale spatial arrangements of polar and nonpolar groups. In this work,

we utilize atomistic molecular dynamics simulations in conjunction with enhanced sampling and data-

centric analysis techniques to quantitatively relate changes in interfacial water structure to the hydration

free energy (a thermodynamically well-defined descriptor of hydrophobicity) of chemically

heterogeneous interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs)

composed of ligands with nonpolar and polar end groups of different chemical identity (amine, amide,

and hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that

only five features of interfacial water structure are required to accurately predict hydration free energies.

Examination of these features reveals mechanistic insights into the interfacial hydrogen bonding

behaviors that distinguish different surface compositions and patterns. This analysis also identifies the

probability of highly coordinated water structures as a unique signature of hydrophobicity. These insights

provide a physical basis to understand the hydrophobicity of chemically heterogeneous interfaces and

connect hydrophobicity to experimentally accessible perturbations of interfacial water structure.
Introduction

The hydrophobicity of an interface reects its thermodynamic
tendency to minimize contact with surrounding water mole-
cules and determines the magnitude of water-mediated hydro-
phobic interactions. Hydrophobic interactions between
homogeneous nonpolar solutes in water have been extensively
studied and the relationship between interfacial hydrophobicity
and the scale-dependent structuring of water near nonpolar
domains has been validated by experiment and simulation.1–5 In
contrast, the hydrophobicity of interfaces that are chemically
heterogeneous at the nanoscale—i.e., interfaces with nonpolar
and polar groups in close (∼nm) proximity—is poorly under-
stood and difficult to predict.6–10 This knowledge gap is signif-
icant because hydrophobic interactions with chemically
heterogeneous interfaces are central to wide-ranging industrial
Engineering, University of Wisconsin –

, WI, 53706, USA. E-mail: vanlehn@wisc.

tion (ESI) available. See DOI:

9

and biological processes, such as polypeptide folding,11,12

protein interactions,13–16 non-specic protein adsorption,17–19

cellular uptake,20,21 and chromatographic separations.22,23 As
a result, substantial experimental, theoretical, and computa-
tional efforts have sought to understand how polar groups,
when placed adjacent to nonpolar domains, impact interfacial
hydrophobicity and the associated structure of water.24–31

Approaches to quantify the hydrophobicity of chemically
heterogeneous interfaces typically assume that contributions to
hydrophobicity are additive. For example, metrics to quantity
interfacial hydrophobicity, such as water contact angles, are
oen estimated based on area-weighted sums of the contact
angles of polar and nonpolar surface regions (i.e., the Cassie
equation),32,33 the amount of nonpolar solvent-accessible
surface area,34–38 or by group-specic parameters such as
hydrophobicity scale values39 or octanol–water partition coeffi-
cients.20,40,41 However, these methods neglect perturbations to
water structure by polar groups near nonpolar domains that
lead to cooperative, non-additive contributions to
hydrophobicity,25–27,42 as highlighted by recent experimental
measurements of hydrophobic forces with chemically hetero-
geneous interfaces.28–30 In these experiments, adhesion forces
© 2023 The Author(s). Published by the Royal Society of Chemistry
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were measured between an atomic force microscope (AFM) tip
functionalized with a nonpolar self-assembled monolayer
(SAM) and planar gold substrates functionalized with mixed
SAMs containing both nonpolar and polar ligand end groups.
The difference between adhesion forces measured in water and
in methanol was identied as the hydrophobic force.28–30

Comparing hydrophobic forces for different mixed SAM
compositions indicated that replacing amine end groups that
are adjacent to a nanoscale nonpolar domain with amide
groups can weaken and even eliminate hydrophobic forces.29

Related experimental measurements similarly revealed that
hydrophobic forces between a nonpolar AFM tip and b-peptide
oligomers containing well-dened nonpolar and polar domains
were modulated by the chemical identity of the polar group and
followed similar trends as for the mixed SAMs.28,29 Conversely,
hydrophobic forces were eliminated for structural isomers of
the same b-peptide oligomers in which polar and nonpolar
groups were interspersed without a well-dened nonpolar
domain. These ndings underscore that both the chemical
identity of polar groups and the nanoscale spatial arrangement
(i.e., patterning) of polar and nonpolar groups at chemically
heterogeneous interfaces substantially inuence interfacial
hydrophobicity.29

To complement experimental studies, atomistic molecular
dynamics (MD) simulations have been utilized to study rela-
tionships between interfacial water structure and the thermo-
dynamic driving forces underlying hydrophobic assembly,3,24,43

enabling effective predictions of protein–ligand binding,14,44

protein–protein interactions,31 and biomolecule aggregation.45

Similar simulations have found that patterning inuences the
thermodynamics of the hydration layer near chemically
heterogeneous surfaces.46,47 To compare the hydrophobicity of
different surfaces, simulation studies have also identied the
magnitude of water density uctuations as a descriptor of
interfacial hydrophobicity.48–52 Water density uctuations are
enhanced near hydrophobic surfaces, increasing the probability
that a cavity near the interface spontaneously dewets. This
probability can be quantied as a corresponding hydration free
energy48–52 which captures correlations between interfacial
water molecules and has been shown to effectively predict
binding interactions on proteins.31,53 By calculating hydration
free energies, we previously determined that molecular-level
order modulates the hydrophobicity of uniformly nonpolar
SAMs by perturbing interfacial water structure, in agreement
with similar trends identied through experimental hydro-
phobic force measurements.30,54,55 This accumulated research
establishes strong connections between interfacial hydropho-
bicity, variations in the properties of homogeneous and chem-
ically heterogeneous interfaces, and interfacial water structure.
However, these connections remain largely qualitative, and
systematic studies to relate perturbations to interfacial water
structure to the hydrophobicity of chemically heterogeneous
interfaces are lacking.

In this work, we hypothesize that descriptors of interfacial
water structure alone can be quantitatively related to the
hydrophobicity of chemically heterogeneous interfaces. To test
this hypothesis, we utilize atomistic MD simulations to
© 2023 The Author(s). Published by the Royal Society of Chemistry
calculate water structural order parameters and hydration free
energies for a large set of SAMs containing amine, amide, and
hydroxyl polar groups in various surface compositions and
patterns. Using a feature selection workow, we nd that only
ve water structural features are important to accurately predict
SAM hydration free energies. Analysis of these ve features
provides a physical basis for understanding how surface prop-
erties modulate the hydration free energy – and thus hydro-
phobicity – by altering the hydrogen bond network and
orientation of interfacial water molecules. These results
produce new understanding of perturbations to water structure
at chemically heterogeneous surfaces which can be extrapolated
to more complex materials like proteins and peptides.

Results and discussion
Hydration free energy calculations capture experimental
trends

To understand how polar end groups modulate interfacial
hydrophobicity, we rst simulated the set of alkanethiol SAMs
that were shown in ref. 29 to exhibit substantially different
hydrophobic interactions in prior AFM experiments. This set
includes single-component homogeneous SAMs in which
ligands were functionalized with either nonpolar (methyl) or
polar (amine or amide) end groups and mixed chemically
heterogeneous SAMs in which 40% of the ligands were func-
tionalized with polar end groups and 60% of the ligands were
functionalized with nonpolar end groups (Fig. 1A).29 While the
end group pattern is unknown in the experiments, we modeled
fully separated SAM patterns because analogous experiments
have shown that b-peptide oligomers only exhibit large devia-
tions in hydrophobicity when they have well-dened separated
polar and nonpolar domains.28,29 This data set permits initial
simulation interrogation of homogeneous and chemically
heterogeneous surfaces for comparison to experimental trends.

For each SAM, we performed Indirect Umbrella Sampling
(INDUS) to compute the hydration free energy (mn), or excess
chemical potential, of a 2.0 × 2.0 × 0.3 nm3 cuboidal cavity
(denoted by the subscript n) near the SAM–water interface (see
Methods). mn reports on the magnitude of water density uc-
tuations within the cavity that emerge from the collective
interactions of water molecules with each other and with the
SAM. Smaller values of mn (corresponding to enhanced uctua-
tions) indicate a more hydrophobic interface. Although mn will
depend on the size and placement of the cavity, mn can be used
as a thermodynamically well-dened descriptor to compare the
interfacial hydrophobicity of different surfaces if the cavity is
consistently dened.56 Past studies of SAMs have shown that mn
correlates with equilibrium water contact angles48,57 and
experimentally measured hydrophobic forces.54 Similarly,
Fig. 1B illustrates that mn values computed for this set of SAMs
are negatively correlated with hydrophobic forces measured
experimentally in ref. 29, conrming that smaller values of mn
correspond to SAMs that appear more hydrophobic in experi-
ments. In particular, the simulations reproduce the nding that
chemically heterogeneous SAMs with amide-functionalized
ligands are less hydrophobic than chemically heterogeneous
Chem. Sci., 2023, 14, 1308–1319 | 1309
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Fig. 1 (A) Chemical structures and top-down simulation snapshots of SAMs with amine, amide, and hydroxyl polar end groups in checkered and
separated patterns and with the mole fraction of polar end groups (fP) equal to 0.25, 0.50, and 0.75. (B) Comparison between hydration free
energies (mn) measured by INDUS (black squares) and hydrophobic forces measured by AFM experiments (red columns). Experimental hydro-
phobic force data are adapted fromWang et al.29 – mn is plotted to illustrate the trend relative to the experimental values. (C) mn as a function of fP
for the checkered (solid squares) and separated (hollow circles) patterned SAMs. Dashed lines indicate predictions from three linear regression
models that were separately fit between values of mn computed by INDUS and fP for each polar end group. RMSEs for thesemodels are 3.81, 9.75,
and 6.46 kBT for SAMs containing amine, amide, and hydroxyl groups, respectively.
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SAMs with amine-functionalized ligands. This result demon-
strates that our simulation model qualitatively reproduces the
effects of polar end group chemistry on SAM hydrophobicity,
supporting further investigation into the origin of these effects.

We next investigated whether values of mn for chemically
heterogeneous SAMs could be approximated by assuming that
contributions to mn from polar and nonpolar groups are addi-
tive. We expanded the set of simulated SAMs to include mixed
SAMs with amine-, amide-, and hydroxyl-functionalized ligands
with six different mole fractions of polar end groups (fP) and two
different patterns (“checkered” and “separated”). Fig. 1A shows
representative SAMs for each chemistry, composition, and
pattern, with additional details included in Section S1 of the
ESI.† Fig. 1C shows values of mn computed using INDUS as
a function of fP. Dashed lines indicate predictions from linear
regression models that were separately t between values of mn
computed by INDUS and fP for each polar group (including
a purely nonpolar surface corresponding to fp = 0); these
1310 | Chem. Sci., 2023, 14, 1308–1319
models represent predictions from an additive approximation
based on the fraction of polar surface area alone. For all three
polar groups, values of mn for the 24 chemically heterogeneous
SAMs (with 0.0 < fP < 1.0) lie off the linear regression line. As
expected based on the results of prior studies,27,46,47 large
differences in mn between the checkered and separated patterns
are observed at xed fP. These results conrm that an additive
approximation is inaccurate for these chemically heterogeneous
surfaces.

We further used the linear regression lines in Fig. 1C to
quantify the accuracy of additive models (akin to the Cassie
model) that predict mn for a chemically heterogeneous SAM
based on the value of fP and chemical identity of the polar group
alone (the latter captured by separately tting three models for
SAMs containing each type of polar group). The root-mean-
squared error (RMSE) between values of mn predicted by the
additive models and values computed by INDUS (i.e., the
average difference between the interpolation line and the points
© 2023 The Author(s). Published by the Royal Society of Chemistry
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in Fig. 1C) is 3.81, 9.75, and 6.46 kBT for the chemically
heterogeneous SAMs containing amine, amide, and hydroxyl
groups, respectively. For comparison, INDUS calculations have
a replica error of about 2 kBT, indicating that predictions of the
additive models are quantitatively inaccurate (particularly for
the amide and hydroxyl SAMs which demonstrate a more
substantial dependence on SAM patterning) and provide
a baseline for further numerical comparisons of the data-centric
models described below. Fig. 1C thus highlights two challenges
with predicting hydrophobicity based on an additive approxi-
mation: mn depends on the spatial pattern of polar and nonpolar
groups and hence cannot be predicted accurately by fP alone,
and an additive approximation requires the value of fP and
specication of the polar group, which limits generalizability to
surfaces of arbitrary composition.

To overcome these challenges, we hypothesized that a model
based on analysis of interfacial water structure could be trained
to accurately predict the hydrophobicity of surfaces with diverse
surface chemistries and patterns without requiring surface-
specic information (e.g., the value of fP or the type of polar
group). To generate a larger data set for model training, we
simulated homogeneous SAMs in which the end group partial
charges were scaled while maintaining charge neutrality (ESI
Fig. S1†).24,58 These charge-scaled SAMs are not meant to model
physically realistic surfaces, but rather are included to ensure
that corresponding mn values fully span the range of possible mn
values for each end group in Fig. 1A (as shown in Fig. S20†).
Along with the prior patterned chemically heterogeneous SAMs,
the total training data set included 58 SAMs for further analysis.
For each SAM, we computed mn using INDUS to quantify inter-
facial hydrophobicity and computed a set of water order
parameters from a complementary unbiased MD simulation to
quantify the structure of interfacial water molecules (dened as
water molecules within 0.3 nm of the SAM–water interface).
These order parameters include information on SAM–SAM,
SAM–water, and water–water hydrogen bonds, water orienta-
tions relative to the SAM, and the water triplet angle (i.e., the
angle formed between an interfacial water molecule and two
neighboring water molecules).59–61 ESI Section S2† provides
a full description for each parameter and ESI Fig. S7–S12† show
variations in these parameters for different SAMs. Subsets of
these parameters have been used previously to understand how
peptide side chain chemistry affects binding,60 surface polarity
alters interfacial water orientation,24 and SAM order affects
hydrophobic interactions.55 However, quantifying which order
parameters are most important for predicting hydrophobicity
across a broad range of SAMs is challenging through traditional
approaches that investigate single parameters independently.
Data-centric analysis identies important water structural
features

We implemented a data-centric workow to relate interfacial
water order parameters to interfacial hydrophobicity quantita-
tively. We dened a set of 152 features that were each related to
a particular value of an order parameter; for example, the
probability of observing zero water–water hydrogen bonds is
© 2023 The Author(s). Published by the Royal Society of Chemistry
a feature. Each of the 58 SAMs was associated with a feature
vector containing standardized numerical values for all features
(determined from the unbiased MD simulation) and a single
value of mn. We then developed a three-step workow to select
the minimum set of features required to accurately predict mn,
and, thus, interfacial hydrophobicity (Fig. 2A). In the rst step,
we reduced the number of features by computing the Pearson's
correlation coefficient between all pairs of features and
removing features that were above a correlation threshold (ESI
Section S2†). In the second step, we performed Lasso regression
using the 45 remaining features (ESI Table S2†) for each SAM as
input to predict corresponding values of mn. In the nal step, we
performed 5-fold cross validation using multiple linear regres-
sion to relate the minimum set of features identied from Lasso
regression to mn, thereby determining the overall accuracy of our
approach (ESI Section S2†). This entire approach (including
INDUS and unbiased simulations) was repeated three times for
independent sample sets to ensure robustness and estimate
simulation error.

Strikingly, we found that only ve features of interfacial
water structure are required to accurately predict the full range
of SAM hydration free energies even though the SAM data set
contains both homogeneous and chemically heterogeneous
SAMs with different compositions, patterns, and end group
chemistries, and contains SAMs with scaled end group partial
charge (ESI Section S2†), suggesting that the selected features
may be universally relevant to SAM hydrophobicity. The ve
features, and their importance to model predictions, are dis-
cussed below. Fig. 2B shows a parity plot comparing mn values
predicted by the nal linear regression model to those
computed by INDUS. Each reported mn value is based on the
model prediction for the corresponding SAM when it is
included in the validation set, rather than training set, during 5-
fold cross validation; that is, reported values are for SAMs not
included during model training and hence capture the ability of
the model to generalize to unseen SAMs. The linear regression
model has an RMSE of 3.97 ± 0.19 kBT and predicted mn values
are strongly correlated with INDUS values with a Pearson's r of
0.98 (a value of 1.0 indicates perfect linear correlation). This
RMSE compares favorably to the replica error of INDUS (2 kBT as
noted above), indicating that the predictions are quite accurate.

The overall RMSE reported above and in Fig. 2B includes
predictions for homogeneous SAMs; if considering only the
chemically heterogeneous SAMs (i.e., the 24 SAMs with 0.0 < fP <
1.0 shown in Fig. 1C, including SAMs with two different
patterns and three different end groups) the RMSE is instead
4.57 ± 0.25 kBT. This slightly higher value reects the greater
challenge in predicting mn for chemically heterogeneous as
opposed to homogeneous SAMs, but is notably still lower than
the RMSE of the additive models for the amide and hydroxyl
SAMs and comparable to the RMSE of the additive model for the
amine SAMs (Fig. 1C) even though the linear regression model
includes no features describing properties of the SAM itself
(e.g., fP or the type of polar end group). The accuracy of the
linear regression model was further tested on an additional set
of 153 chemically heterogeneous SAMs, obtained from ref. 62,
that were unseen during model training. These SAMs included
Chem. Sci., 2023, 14, 1308–1319 | 1311
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Fig. 2 (A) Schematic of feature selection workflow. (B) Parity plot comparing hydration free energies (mn) predicted from multivariate linear
regression to those calculated by INDUS. Each point is the prediction for the SAM when it is included in the validation set during 5-fold cross
validation, such that the SAM is not included in model training. Error bars are smaller than the symbols. (C) Comparison of feature weights for the
linear regressionmodel. Error bars were calculated as the standard deviation of the weights from three independent repetitions of the simulation
and feature selection workflow.
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three sets of 51 mixed SAMs with each set including ligands
functionalized with nonpolar end groups and either amine,
amide, or hydroxyl end groups (as with the SAMs in Fig. 1A) in
varying mole fractions and random patterns. mn values for these
SAMs were predicted using the trained linear regression model
with a resulting RMSE of 5.21 kBT (parity plot shown in
Fig. S21†), which is comparable to the RMSE for cross-validation
predictions of the 24 chemically heterogeneous SAMs with
separated or checkered patterns despite the much larger size of
this data set. Together, these results showcase the ability of the
linear regression model to accurately predict mn for a range of
chemically heterogeneous SAMs utilizing only features of
interfacial water structure.

Given the accuracy of the linear regression model, we next
investigate the ve features important to model predictions.
These features are the probability that an interfacial water
molecule forms zero SAM–water hydrogen bonds, p(NSAM–water

= 0), the probability that an interfacial water molecule forms
a triplet angle of 48°, p(q = 48°), the average total number of
1312 | Chem. Sci., 2023, 14, 1308–1319
hydrogen bonds per molecule (ligand with a polar end group or
water), Ntotal, the average number of SAM–water hydrogen
bonds, NSAM–water, and the probability that an interfacial water
molecule forms a triplet angle of 90°, p(q = 90°). No features
describing properties of the SAM are included, indicating the
potential for the regression model to generalize to surfaces
beyond the SAMs considered here. Similarly, the ve identied
features are not correlated with fP and thus are not capturing
a simple descriptor of surface hydrophobicity (ESI Table S3†).
We further performed 5-fold cross validation using Lasso
regression and separately utilized a nonlinear Random Forest
model with recursive feature elimination to select features for
the same data set (ESI Section S2†). Both approaches identied
similar features, indicating the robustness of model ndings.
Fig. 2C compares the weights of the coefficients from the linear
regression model to quantify their relative importance. These
results show that p(NSAM–water= 0) is the most important feature
in the model, followed by p(q = 48°). Ntotal and NSAM–water are of
comparable importance and p(q= 90°) is least important. These
© 2023 The Author(s). Published by the Royal Society of Chemistry
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ve features, and their physical signicance, are described in
detail in the sections below.
SAM–water hydrogen bonding strongly correlates with
hydrophobicity

Two of the features identied as strong predictors of hydro-
phobicity, p(NSAM–water = 0) and NSAM–water, quantify the
formation of hydrogen bonds between the SAM and interfacial
water molecules. The feature that has the highest weight in the
linear regression model (and hence contributes most substan-
tially to model predictions) is p(NSAM–water = 0); large values of
p(NSAM–water = 0) indicate that water molecules are unlikely to
form hydrogen bonds with the SAM and that the SAM is
accordingly more hydrophobic. This feature is thus a simple,
intuitive descriptor for SAM hydrophobicity that is conceptually
related to water density uctuations because the enhancement
of such uctuations near more hydrophobic surfaces is due to
weak surface–water interactions.48,50

To determine if this feature alone can capture trends in SAM
hydrophobicity, Fig. 3A plots mn versus p(NSAM–water = 0) for the
SAM data set. For this comparison (and the comparisons in the
following sections), only the chemically heterogeneous SAMs
from Fig. 1 are considered when determining how features
correlate with the hydrophobicity of chemically heterogeneous
SAMs with different ligand end groups because these SAMs are
physically realistic and have well-dened values of fP and
patterns; homogeneous charge-scaled SAMs and the chemically
heterogeneous SAMs with random patterns and compositions
are omitted. mn and p(NSAM–water = 0) are highly correlated with
a Pearson's r of −0.95; the negative correlation is expected
because larger values of p(NSAM–water = 0) indicate a more
hydrophobic surface with lower mn. Linear regression with only
this feature predicts mn with an RMSE of 5.86 ± 0.07 kBT,
demonstrating that this feature alone provides reasonable
prediction accuracy but including the other four features
reduces the prediction RMSE by approximately 1.3 kBT. Notably,
Fig. 3 Values of features (prior to standardization) related to interfacial
checkered (solid squares) and separated (hollow circles) SAMs. Values fo
groups are plotted separately. (A) Probability density for zero SAM–wate
dotted line is a linear fit to all data. (B) Number of hydrogen bonds betw
number of hydrogen bonds formed by an interfacial water molecule. Eac
time. The dotted lines are linear fits for each end group (including both

© 2023 The Author(s). Published by the Royal Society of Chemistry
the RMSE of a linear regression model with only p(NSAM–water =

0) is substantially lower than the RMSEs of additive models for
chemically heterogeneous SAMs with amide or hydroxyl groups
(Fig. 1C) despite including no SAM-specic information, again
highlighting the value of analyzing interfacial water structure.

The other important feature based on SAM–water hydrogen
bonds is NSAM–water. Fig. 3B shows that this feature also has
a linear correlation with hydration free energy and a Pearson's r
of 0.95. In contrast to p(NSAM–water = 0), this feature quanties
favorable interactions between interfacial water molecules and
the SAM, with larger values indicating more water molecules on
average bound to the SAM. These two features provide
complementary information on SAM–water interactions and
demonstrate that analysis of hydrogen bonding can serve as
a baseline prediction of trends in mn. However, Fig. 3A also
shows systematic deviations in predictions for different end
groups and patterns: for example, mn is underpredicted for SAMs
with amine end groups and overpredicted for separated
patterns compared to checkered patterns. Accordingly, we
investigated the physical origin of the other important features
identied by our workow to determine why they lead to the
more accurate predictions shown in Fig. 2.
Total interfacial hydrogen bonds vary with polar group
chemistry

Another important feature that depends on hydrogen bonds is
Ntotal, which quanties the total number of SAM–water, water–
water, and SAM–SAM hydrogen bonds per molecule. Increased
SAM–water hydrogen bonds, as described in the previous
section, indicate strong SAM–water interactions that decrease
interfacial hydrophobicity. Increased interfacial water–water
hydrogen bonds signify a more connected hydrogen bond
network, or a more ordered interfacial water structure, which
has been linked to decreased hydrophobicity for idealized
nonpolar solutes3 and SAMs.55 Increased SAM–SAM hydrogen
bonds could indicate fewer hydrogen bonding donor or
hydrogen bonding plotted versus hydration free energies (mn) for the
r SAMs with amine (purple), amide (green), and hydroxyl (orange) end
r hydrogen bonds formed by an interfacial water molecule. The black
een SAM polar end groups and interfacial water molecules. (C) Total
h value is averaged over all interfacial water molecules and simulation
checkered and separated patterns).
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acceptor sites available for SAM–water hydrogen bonding,
consequently increasing interfacial hydrophobicity. Thus, this
feature encodes information on a range of possible behaviors
with distinct contributions to interfacial hydrophobicity that
could vary for different SAM properties.

Fig. 3C plots mn versus Ntotal following the previous approach
in Fig. 3A and B. Different trends are observed for each polar
end group; notably, mn scales approximately linearly with Ntotal

for each polar end group separately but with substantially
different slopes. The difference in scaling suggests that Ntotal

can distinguish between polar end group chemistries in the
linear regression model (Fig. 2B); that is, the relative contribu-
tion of this feature to the predicted value of mn differs between
polar end groups. Fig. 4 shows variations in the average number
of SAM–SAM, SAM–water, and water–water hydrogen bonds that
contribute to Ntotal. For all three end groups, variations in Ntotal

reect the competition between increased SAM–water and
decreased water–water hydrogen bonds as fP increases (leading
to an increase in mn). These general trends can be interpreted in
terms of the disruption of water structure near a uniformly
nonpolar surface (for the lowest value of mn) by the presence of
polar groups that can interact favorably with interfacial water
molecules. For the SAMs containing amine end groups, SAM–

water hydrogen bonding is relatively weak and consequently the
increase in SAM–water hydrogen bonds is insufficient to
compensate for the decrease in water–water hydrogen bonds,
leading to a decrease in Ntotal as mn increases. Conversely, Ntotal

is nearly constant with mn for SAMs containing hydroxyl end
groups because the increase in the number of favorable SAM–
Fig. 4 Average number of hydrogen bonds per molecule (excluding liga
hydrogen bonds (Ntotal), SAM–SAM hydrogen bonds, SAM–water hydroge
for checkered SAMs. Bottom row: hydrogen bonds for separated SAMs.

1314 | Chem. Sci., 2023, 14, 1308–1319
water hydrogen bonds compensates for the decrease in number
the water–water hydrogen bonds.

The SAMs containing amide end groups exhibit similar
trends as the SAMs containing amine end groups. However,
these SAMs are unique because only the amide end groups form
a signicant number of SAM–SAM hydrogen bonds (Fig. 4)
which increases with increasing fP and contributes to an overall
increase in Ntotal with mn (for SAMs in the checkered pattern;
because the total number of hydrogen bonds is normalized by
the number of polar end groups, SAM–SAM hydrogen bonds
remain relatively constant for the amide-containing SAMs in the
separated pattern since the local chemical environment does
not change with fP). Intra-surface hydrogen bonding has been
shown to reduce surface hydrophilicity in prior simulation
studies of model surfaces,63 which explains why amide end
groups contribute to lower values of mn than hydroxyl end
groups (on average) despite larger values of Ntotal. This behavior
may also explain why mn for the checkered SAM with 75 mol%
amide end groups is larger than mn for a homogeneous SAMwith
only amide end groups.

Together, this analysis indicates that Ntotal captures varia-
tions in hydrogen bonding behavior that depend on the
chemical identity of SAM polar end groups and points to
physical mechanisms underlying variations in SAM hydropho-
bicity. Incorporation of this feature into the linear regression
model provides information to distinguish the inuence of end
group chemistry in predictions of mn. Moreover, the ability to
identify a single feature (rather than a subset of additional
features related to the variation of each type of hydrogen bond
nds with methyl end groups that cannot form hydrogen bonds) for all
n bonds, and water–water hydrogen bonds. Top row: hydrogen bonds

© 2023 The Author(s). Published by the Royal Society of Chemistry
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separately) that quantitatively relates these complex behaviors
to mn is a benet of our data-centric workow.
Orientational features encode information on crowded water
coordination shells

The feature with the largest positive weight in the nal linear
regression model (Fig. 2C) is p(q = 48°), which is the probability
that an interfacial water molecule forms a triplet angle of 48°.
The triplet angle is calculated by measuring the angle between
an interfacial water molecule and its two nearest neighbors
within a 0.33 nm radius. Fig. 5A illustrates differences in the
triplet angle distribution for SAMs with varying fractions of
polar end groups, hinting at the ability of this distribution to
distinguish surfaces with varying values of mn. While these
distributions vary substantially, the importance of variations to
p(q = 48°) identied by the feature section workow indicates
that this probability provides unique information not directly
quantied by features associated with hydrogen bonding and
thus merits further analysis. Fig. 5B plots mn versus p(q = 48°).
LikeNtotal, p(q= 48°) exhibits different variations with respect to
mn for different polar end groups and thus provides information
to the regression model to distinguish between SAMs with
different end groups. p(q = 48°) increases with mn for SAMs
containing amide and hydroxyl end groups and decreases with
mn for SAMs containing amine end groups, which follows
a similar pattern as Ntotal. While trends in the formation of
hydrogen bonds have a clear physical interpretation, the phys-
ical signicance of this feature is less clear. Monroe and Shell
have suggested that a small peak in the triplet angle distribu-
tion at around 50° arises due to a h neighbor in the coordi-
nation shell of bulk water.61 However, it is unclear how
interfaces and surface properties affect this feature.

To investigate the origin of the p(q = 48°) feature, we calcu-
lated the water coordination number, CN, by counting the
number of heavy atoms within 0.33 nm of the oxygen atom of an
interfacial water molecule. Fig. 6A compares the probability
distribution of the coordination number, p(CN), when
Fig. 5 (A) Schematic of the calculation of the water triplet angle and e
a function of the fraction or polar end groups (fP). Distributions show the
corresponds to fP = 0.00. (B) Probability density for an interfacial wate
squares) and separated (hollow circles) SAMs versus hydration free energ
a triplet angle of 90°. The dashed lines and dotted lines are linear fits for

© 2023 The Author(s). Published by the Royal Society of Chemistry
calculated separately for all water molecules (i.e., all possible
triplet angles) and for only those water molecules with a triplet
angle of 48°. Results are presented for bulk water and for the
checkered SAMs as a function of fP; the separated SAMs follow
approximately the same trend (ESI Fig. S22†). As previously
suggested,61 p(CN) for water molecules with a triplet angle of 48°
is shied toward larger values of CN, with a maximum at CN= 5,
for all SAMs and for bulk water. This nding indicates that p(q=
48°) captures information on the likelihood of observing highly
coordinated water structures. We note that p(q = 48°) is very
small for bulk water, so the observation of these highly coor-
dinated structures is rare. Compared to bulk water, all p(CN)
distributions are shied toward small values of CN when fP is
low, reecting the vapor-like arrangement of water molecules
near more hydrophobic surfaces.64 Increasing fP shis all
distributions toward those of bulk water, which is consistent
with an increase in the hydrophilicity of the surface. These
shis are less pronounced for SAMs with amine end groups due
to the general decrease in hydrogen bonds for SAMs with amine
end groups (Fig. 3B). The difference in these shis between
different polar groups highlights that p(q = 48°) hence contains
information on end group contributions to the formation of
highly coordinated water structures.

The shi toward higher coordination numbers suggests that
the polar end groups either interact directly with water mole-
cules at the interface (thereby increasing their coordination
numbers) or nucleate highly coordinated water structures near
more polar SAMs. We tested both possibilities by separately
calculating water–water and SAM–water contributions to p(CN =

6) because the p(CN) distributions for the SAMs containing
amide and hydroxyl groups have a shoulder at CN = 6 when fP is
large. Fig. 6B shows that the increase in p(CN= 6) as fP increases
is largely driven by the water–water contribution for all check-
ered SAMs. This result indicates that the polar groups nucleate
highly coordinated water structures at the interface. As
a secondary effect, we also nd a substantial SAM–water
contribution to p(CN = 6) for the SAMs containing amide and
xample distributions for “checkered” SAMs with amine end groups as
difference relative to a SAM containing only methyl end groups, which
r molecule forming a triplet angle, q, of 48° for the checkered (solid
ies (mn). (C) Probability density for an interfacial water molecule forming
the checkered and separated SAMs, respectively, for each end group.
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Fig. 6 (A) Water coordination number (CN) probability density functions for all interfacial water molecules (blue lines) and only interfacial water
molecules with a triplet angle of 48° (red lines). Bulk water probability density functions for all water molecules (dotted line) and water molecules
with a triplet angle of 48° (dashed line) are included for reference. Shifts with increasing fP are indicated by the purple arrows. (B) Probability
density function values for CN = 6. Stacked columns indicate the contributions from water–water coordination (blue columns) and SAM–water
coordination (red columns). (A) and (B) both consider only checkered SAMs.
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hydroxyl end groups, indicating that the strong interactions
between these polar end groups and interfacial water molecules
lead to crowded coordination shells that are rarely observed in
bulk water. Together, this analysis reveals that p(q = 48°)
encodes information on the formation of highly coordinated
water structures that are nucleated near more hydrophilic SAMs
and are thus signatures of hydrophilic surfaces.
Disordered arrangements of molecules differentiate SAM
patterns

The p(q = 90°) feature has the smallest weight of the important
features (Fig. 2C) but plays an important role in distinguishing
SAMs with different patterns. Fig. 5C plots p(q = 90°) versus mn
and reveals that SAMs with checkered and separated patterns
exhibit substantially different variations in the scaling of p(q =

90°) with mn. The physical signicance of this feature can be
inferred from the peak at 90° in the triplet angle distribution of
an ideal gas (ESI Section S3†), which indicates that large values
of p(q = 90°) are characteristic of disordered, gas-like arrange-
ments of water molecules. Prior simulation studies have shown
that water structure near hydrophobic surfaces exhibits simi-
larities to the water–vapor interface,64 which is consistent with
our nding that more hydrophobic SAMs (smaller mn) have
1316 | Chem. Sci., 2023, 14, 1308–1319
larger values of p(q = 90°). The differences in behavior between
checkered and separated SAMs can be attributed to the larger
hydrophobic domains associated with separated patterns. ESI
Fig. S21† shows that p(q = 90°) increases near these hydro-
phobic domains but is lower on average for checkered surfaces
with the same value of fP, reecting the pinning of the water–
vapor interface when polar groups are uniformly distributed
across the SAM. This nding is consistent with prior simulation
studies27,54 and indicates that p(q = 90°) quanties the forma-
tion of large hydrophobic domains found in certain SAM
patterns.

Conclusions

We computed hydration free energies (as quantitative descrip-
tors of interfacial hydrophobicity) and water structural param-
eters for 58 SAMs, encompassing variations in polar group
chemistries, compositions, and spatial patterns, using MD
simulations. Lasso regression revealed that only ve water
structural features were needed to quantitatively predict SAM
hydration free energies with an accuracy comparable to that of
rigorous enhanced sampling calculations, and with comparable
or greater accuracy than additive models that approximate the
hydration free energy of a chemically heterogeneous SAM based
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc02856e


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 7
/2

5/
20

25
 2

:1
1:

31
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
on the mole fraction of polar groups alone. We investigated the
physical signicance of the ve features identied and their
importance in distinguishing different SAM properties. Two
features—the probability that an interfacial water molecule
forms zero SAM–water hydrogen bonds and the average total
number of SAM–water hydrogen bonds—correlated strongly
with SAM hydrophobicity and contribute substantially to the
regression model. Consequently, analysis of SAM–water
hydrogen bonding alone provides a baseline prediction for
hydrophobicity that can be intuitively understood as quanti-
fying the strength of SAM–water interactions. Two additional
features—the average total number of hydrogen bonds per
molecule and the probability that an interfacial water molecule
forms a triplet angle of 48°—were necessary to distinguish
contributions to hydrophobicity from different polar groups.
The average total number of hydrogen bonds per molecule
captured variations in SAM–water, SAM–SAM, and water–water
hydrogen bonding in analogy to the restructuring of hydrogen
bond networks that underlies the hydrophobicity of nonpolar
solutes. The probability that an interfacial water molecule
forms a triplet angle of 48° quanties the formation of highly
coordinated interfacial water structures as a unique, previously
unreported signature of hydrophilic surfaces. The last feature,
the probability that an interfacial water molecule forms a triplet
angle of 90°, distinguishes nanoscale spatial patterns by
capturing disordered arrangements of water molecules near
large nonpolar domains.

These ndings establish a link between variations in water
structure and hydrophobicity for chemically heterogeneous
interfaces. Typical experimental approaches can directly quan-
tify hydrophobic interactions for simple systems (e.g. planar
interfaces29,30,65) or approximate interfacial hydrophobicity
based on additive approximations (e.g. hydropathy scales66,67).
The nding that surprisingly few water structural features are
needed to predict interfacial hydrophobicity with high accuracy
provides opportunities to quantify the hydrophobicity of
complex interfaces (e.g., proteins, colloids, or amphiphile
membranes) via more readily accessible experimental
measurements of interfacial water structure.68–70 Our ndings
further provide a framework to understand how polar group
chemistry and patterning modulate hydrophobicity, which
could be applied to materials design for the many applications
involving water-mediated interactions. No features specic to
the surface (e.g., the fraction of polar groups or the chemical
properties of those groups) are used to predict interfacial
hydrophobicity in this work, suggesting that analysis of inter-
facial water structure could generalize to guide the design of
diverse synthetic and biological surfaces. However, additional
features may be necessary to predict hydrophobicity for more
complex surfaces as the model developed in this work is
parameterized using a limited number of polar end groups and
only planar surfaces. Finally, we note that the regression model
predicts hydration free energies using water structural features
obtained with substantially reduced simulation time compared
to INDUS simulations yet achieves comparable accuracy. This
computational efficiency indicates that structure–property
models based upon water structural features could be utilized
© 2023 The Author(s). Published by the Royal Society of Chemistry
as screening tools to rationally ne-tune hydrophobicity, com-
plementing recently developed machine learning tech-
niques58,62 by permitting analysis of the importance of water
structural features.
Methods
SAM models

Two sets of SAMs were modeled as part of the data set used to
train the linear regression model developed in this study:
single-component charge-scaled SAMs and mixed SAMs with
ligands arranged in either a “checkered” or “separated” pattern.
Charge-scaled SAMs contained ligands where the partial
charges of the end groups were multiplied by a scaling factor, k,
to modify the hydrophobicity of the surface while maintaining
charge neutrality.24,58 The two SAM patterns were selected to
capture the extremes of possible ligand arrangements. SAMs in
the checkered pattern contained ligands with polar and
nonpolar end groups arranged such that the polar end groups
were most dispersed on the SAMs. SAMs in the “separated”
pattern contained ligands with polar and nonpolar end groups
arranged in distinct groups resembling a 2D phase-separated
system. All SAMs contained 144 ligands arranged on a 12 ×

12 hexagonal lattice to be consistent with a graing density of
21.6 Å per ligand to be consistent with experimental measure-
ments for the Au(111) lattice.71,72 SAMs were then solvated and
periodic boundary conditions were applied to the resulting 5.2
× 6.0 × 11.7 nm3 SAM–water systems. A third set of SAMs, ob-
tained from ref. 62, was used to test the trained linear regres-
sion model. These SAMs contained 64 ligands arranged in an 8
× 8 hexagonal lattice with a central 4 × 4 patch of polar and
nonpolar ligands surrounded by an additional 48 nonpolar
ligands. The relative fraction of polar and nonpolar ligands and
their spatial positions within the patch were randomly selected
to generate distinct SAM compositions and patterns. For all
three sets of SAMs, ligand atoms were modeled using the
CHARMM36 General Force Field (CGenFF-jul2017).73 Water
atoms were modeled using the TIP4P/2005 force eld.74 Addi-
tional details of the SAM models are included in ESI Section
S1.†
Hydration free energy and water order parameter calculations

Two different types of MD simulations were performed for each
of the 58 SAMs used for feature selection and linear regression
model training. INDUS simulations were implemented to
calculate the hydration free energies (mn) and unbiased simu-
lations were performed to compute water order parameters.
Detailed descriptions of both simulation types are provided in
ESI Section S1.† INDUS was used to quantify the relative
hydrophobicity of the SAMs by calculating mn for a 2.0 × 2.0 ×

0.3 nm3 cuboidal cavity at the SAM–water interface. The prob-
ability of observing N water molecules within this cavity, pn(N),
follows a Gaussian distribution near the mean value of N and
near hydrophilic surfaces but exhibits a non-Gaussian tail for
small values of N as a signature of interfacial
hydrophobicity.50–52 INDUS applies a biasing harmonic
Chem. Sci., 2023, 14, 1308–1319 | 1317
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potential to the positions of water molecules in the cavity so that
N can be sampled continuously to determine the pn(N) distri-
bution. We biased the number of water molecules inside the
cavity using 16 independent simulation windows, each per-
formed for 5 ns (80 ns total). The weighted histogram analysis
method (WHAM) was used to compute the unbiased probability
distribution of N in the cavity75 and mn was obtained via eqn (1):

mn = −kBT ln pn(0) (1)

kB is the Boltzmann constant, T is the temperature, and pn(0) is
the probability that zero water molecules are within the cavity.
mn is a quantitative indicator of hydrophobicity that captures
non-Gaussian tails in the pn(N) distribution (Fig. S6†).

Unbiased simulations were performed for 10 ns and used to
compute water order parameters as described in the Results
section. Descriptions of the parameters and details about their
calculation are include in the ESI Section S2.† Water order
parameters were only computed for interfacial water molecules,
which were dened as all water molecules with a center of mass
position within 0.3 nm of the SAM–water interface. Three
replicas for both the INDUS and unbiased simulations were
used to compute error bars and ensure the robustness of the
data-centric feature selection workow. Unbiased simulations
following this same procedure were also performed for each of
the 153 chemically heterogeneous SAMs used to test the trained
linear regression model in order to compute water order
parameters. Values of mn for these SAMs were obtained from ref.
62, in which they were calculated following the same INDUS
protocol described above.

Data availability

Additional information on simulation methods, analysis, and
data are provided in the ESI.† Scripts used for simulation
analysis and model training are available on GitHub: https://
github.com/atharva-kelkar/hydrophobicity-features. Raw and
processed data, along with corresponding scripts, are
available at DOI: https://doi.org/10.5281/zenodo.7526254.
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