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In this paper, we describe the development of a digital twin for a Michael addition continuous-flow process

using data generated from dynamic flow experimentation. We commenced our investigation by creating a

virtual flowsheet representation of the “real-life” continuous-flow system. The residence time distribution

(RTD) within the system was assessed using an automated step change protocol which examined the

performance at different flow rates. The RTD study generated an understanding of the influence of

dispersion on the intrinsic reaction kinetics. The dynamic flow experiments were fitted to a parallel reaction

network for the reaction of 1,2,4-triazole with acrylonitrile in the presence of base to form the desired

product and a regioisomer. The reaction network comprised of four kinetic parameters (A1, Ea1, A2 and Ea2).

The fitted model closely corresponded to the experimental data, with R2 = 0.974. The model was then

further validated with additional dynamic flow experiments and a self-optimization study. The established

digital twin was then used to explore the influence of disturbances within the system.

Introduction

The pharmaceutical industry is placing more focus on data-
rich experimentation and the generation of in-depth reaction
understanding through process modeling.1 Furthermore,
regulatory authorities are encouraging a greater emphasis on
quality by design (QbD) principles, whereby quality is built-in
by having a thorough understanding of processes.2 Pharma
4.0 is a framework devised for developing digital approaches
in the context of pharmaceutical manufacturing.3

One technological tool that remains underdeveloped in
the pharmaceutical industry is the application of digital
twins.4,5 A digital twin is a virtual model of a physical system,
where the conditions, properties and characteristics are
represented by digital information (Fig. 1). The creation of
digital twins will help to accelerate pharmaceutical
development workflows, enable better control over quality, as
well as improve efficiency and sustainability. In particular,
digital twins would be of great utility for the in silico
investigation of different manufacturing scenarios, thus
reducing experimental costs and improving efficiency. A

digital twin can also be implemented to simulate process
disturbances, therefore supporting the development of
process control strategies.6–9 Subsequently, experimental
validation can be restricted to only a small selection of
experiments, thus reducing the experimental burden.

As reported in part 1 of this contribution, autonomous
dynamic flow experimentation, also referred to as transient
or non-steady state experimentation, can be used to collect
data in less time and save on material use.10 Autonomous
dynamic flow methods enable the entirety of the design
space to be explored within a single experiment.11,12 In recent
years, a number of different research groups have established
different dynamic flow approaches to explore different model
structures and for kinetic parameter estimation.10–12

However, this data has not yet been utilized for the
development of a digital twin.13 In alignment with the
framework of Pharma 4.0, we were interested in the extension
of this type of data-rich approach for the creation of a digital
twin.
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There are only a limited number of reports that provide a
full virtual representation of a flow system as a digital twin for
pharmaceutically-relevant organic chemistry examples. Jolliffe
and Gerogiorgis created a digital twin for the multistep
continuous manufacture of ibuprofen using a series of three
plug flow reactors.14 Previously, we reported the development
of a digital twin for a gas–liquid aerobic oxidation.15 In this
instance, a hybrid modeling approach was implemented,
whereby a combination of data-driven and physics-driven
approaches were applied to obtain parameter values for the
creation of a digital twin. Another interesting contribution was
made in a series of papers from researchers working at
Amgen, who discussed the development of a virtual plant for
integrated continuous manufacturing.16–18 The team used the
digital twin to assess the impact of process disturbances and
model uncertainties on critical quality attributes (CQAs), which
then supported their process control strategy.

A shortcoming of the previous reports is the limited
connection between efficient experimental design and the
modeling aspects to create a digital twin. There are certain
limitations that hinder the development of digital twins: i)
limited data availability over a wide range of operating
conditions, including across the time domain; ii) missing
knowledge for reliable representation; iii) limited model
fidelity across the entirety of the design space; and iv) the
high level of mathematical and computational expertise
deemed necessary to create the process models. We propose
that the implementation of dynamic experiments will
facilitate the rapid and efficient exploration of the design
space for this purpose. Furthermore, by using off-the-shelf
software with pre-defined reactor models, we believe that this
lowers the barrier of entry for the creation of a digital twin,
thus making it accessible to process chemists and engineers.
In this paper, we discuss our efforts in the creation of a
digital twin using the transient experimental flow data. We
outline the stages in our workflow: i) model discrimination,
ii) kinetic parameter estimation, iii) model validation, and iv)
utilization for in silico optimization and disturbance analysis.

Results and discussion
Chemistry

A parallel reaction network was defined for the system, see
Scheme 1, comprising of the reaction of 1,2,4-triazole (1), in

the presence of N,N-diisopropylethylamine (DIPEA, 2),
reacting with acrylonitrile (3) to give either the desired
product 4 or the regioisomer 5.

Flowsheet

A flowsheet, see Scheme 2, was created as a representation of
the physical system within gPROMS (PSE/Siemens,
FormulatedProducts 2.3.1). This software uses equation-
oriented flowsheeting.19–21 A one-dimensional tubular one-
phase plug flow reactor model was selected (see ESI,† section
S4). The physical properties (molecular weight, density,
physical states) for all the chemical species were inputted
into a database (gPROMS FormulatedProducts Utilities
1.0.020190705). The system was simulated in dynamic mode.
The flow ramps and step intervals were defined using the
piecewise constant setting in the software. Isothermal
temperature control was assumed: the high heat transfer
provided a consistent temperature across the reactor. The
concentration of 1, 3, 4 and 5 were measured by inline FTIR
and online NMR. The mass balance of the system for the
experiments is based on the measured concentration of
species 1, 3, 4 and 5. More details regarding the analytical
setup are described in part 1 of this contribution.10

Dispersion

We performed an automated step experiment at the
maximum, midpoint and minimum total flow rates (4 mL

Scheme 1 Parallel reaction network for the reaction of 1,2,4-triazole
(1) with acrylonitrile (3) in the presence of DIPEA (2) as catalytic base.
The scheme also shows the species stoichiometry and the fitted
kinetic parameters for the reaction network.

Scheme 2 a) Physical flow system configuration for a Michael
addition reaction; b) digital twin flowsheet in gPROMS
FormulatedProducts.
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min−1, 1.33 mL min−1 and 0.67 mL min−1) to understand the
residence time distribution (RTD) within the system. These
flow rates correspond to the range of residence times used in
our study (30 s, 90 s and 180 s). The RTD was investigated to
assess the effect of dispersion within the system, especially
related to its impact on the kinetic analysis. The RTD was
investigated by introducing 1 in MeOH through one pump
and MeOH through a second pump. The step change
experiment was performed by switching from the substrate
pump to the solvent pump and the concentration of 1 was
measured by NMR. It is important to note that the measured
values assume a perfect pulse input, since no measurements
were made before the reactor. The concentration data were
then used to calculate the Bodenstein number (Bo) (see Fig. 2
and ESI,† section S3).22 Due to the analytics displaying a limit
of detection (LOD) > 0 M, the F-curves were only fitted using
normalized data from the step ups. A Bodenstein number
close to 20 was obtained at the lowest flow rate, indicating
more CSTR-type behavior. Whereas, for 1.33 mL min−1 and
4.00 mL min−1 Bo numbers of >40 were calculated. Based on
this analysis, moderate axial dispersion and some small
deviations from plug flow were expected, with further
deviation expected for shorter reactor residence times closer
to 30 s. An axial dispersion coefficient, Dax, of 5.10 × 10−3 m2

s−1 was obtained at a flow rate of 4 mL min−1. This value for
Dax was fixed within the flowsheet. We were also interested in
comparing the online NMR dispersion results to the inline
FTIR measurements (see also ESI,† Fig. S1). In this case,
Bodenstein numbers above 100 were obtained, indicating
that ideal plug flow could be assumed. The results from
measuring the RTD using FTIR demonstrate that there is
minimal axial dispersion within the reactor itself and that
under all flow rates the reactor displays ideal plug flow
behavior. These results highlight the difference between
using an inline and an online analytical method. The inline

FTIR displayed performance across the range of flow rates. It
is the additional volume and subsampling system for the
NMR which is the cause for the difference in the
performance. Analysis should be performed as close to the
reactor as possible for it to be most representative of the
reaction itself. The difference in the results between the FTIR
and NMR shows that scientists should be careful to consider
the point of analysis and the acquisition time when
configuring PAT, as this can sometimes be overlooked.

We used an upwind discretization method for our reactor
model. However, upwind differences can result in “numerical
diffusion”, therefore we looked at the influence of different
grid points on the numerical diffusion.23 As can be expected,
using a higher number of finite volume compartments
resulted in less numerical diffusion, see Fig. 3a, but the
computational time to simulate was also noticeably longer
without a significant change in the numerical diffusion. We
selected 10 finite volumes for the reactor as a compromise
between accuracy and computational requirements. The
trajectory of the experimental concentration for 1,2,4-triazole
(1) determined by NMR was compared to the simulated
concentration (Fig. 3b). At moderate and high flow rates (1.33
mL min−1 and 4 mL min−1) the simulated trajectory closely
corresponded to the experimental data. However, a larger
deviation was observed at the lowest flow rate, probably due
to the subsampling routine for the online NMR.

Fig. 2 RTD study: measurement of F curves within the reactor system
using NMR data, and Bo and Dax values calculated at different flow
rates using NMR and FTIR. Reactor temperature at 100 °C.

Fig. 3 a) Comparison of the different axial grid points on the
numerical diffusion; b) simulated trajectory using 10 axial grid points
and experimental data. Grey line shows concentration steps; grey line
shows simulated concentration; points show experimental data.
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Flow ramp

1,2,4-Triazole (1) (0.75 to 1.5 M), DIPEA (2) equiv. (0–0.1 eq.),
acrylonitrile (3) equiv. (0.8 to 2 eq.) and temperature (100 to
140 °C) were all varied as part of the flow ramp (Fig. 5a).
Different residence times (70 to 120 s) were explored by using
step changes. Longer residence times were not explored in
the ramp used for kinetic fitting due to the higher dispersion
observed during the RTD study at shorter residence times.

Kinetic fitting

There are two key components to kinetic modelling: model
discrimination and kinetic parameter estimation. Model
discrimination is the selection of the best fitting rate
expression from a set of a priori rate expressions, and kinetic
parameter estimation is the fitting of parameters to a priori
rate expressions to estimate values of rate parameters. The
mass balance for the species within the competitive reaction
model was based on the following derived rate laws for the
species generation and consumption:

dC1

dt
¼ dC3

dt
¼ −k1Cl

1C
m
2 C

n
3 − k2Cl

1C
m
2 C

n
3 (1)

dC4

dt
¼ k1Cl

1C
m
2 C

n
3 (2)

dC5

dt
¼ k2Cl

1C
m
2 C

n
3 (3)

Model discrimination

An Arrhenius expression modified for parameter estimation
and optimization with reference temperature was used for
the simultaneous fitting of the product 4 and regioisomer 5
formation (see ESI,† eqn (S11)). Parameter estimation within
gPROMS was carried out by solving a maximum likelihood
model validation problem, the formulation (see ESI,† eqn
(S13)) Seven candidate model structures were considered for
the reaction system. The dynamic experiment given in Fig. 5a

was used to fit the parameters to the data for each model in
turn by minimizing Chi-squared (χ)2 (Fig. 4). The order with
respect to components 1, 2 and 3 were investigated by using
fixed interval values for the orders (l, m, n = 0 or 1). A higher
χ2 value indicates higher lack-of-fit, the best fit was achieved
for model 011. This corresponds to first order with respect to
DIPEA (2), first order with respect to the acrylonitrile (3) and
zero order in 1,2,4-triazole (1) displaying the best fit.

Parameter estimation

The parameter estimates for the logarithmic form of the pre-
exponential factors, A1 and A2, and the activation energies,

Fig. 4 Lack-of-fit plot for the different candidate models considered.
A small value of χ2 indicates a better fit. The orders on the figure are
written in the order of: 1,2,4-triazole (1), DIPEA (2), acrylonitrile (3).

Fig. 5 a) Conditions explored in the dynamic experiment used for
fitting; b) fitted model and measured data for dynamic experiment
using parameter values obtained in Table 1. Lines show fitted
concentration; points show experimental data.

Table 1 Kinetic parameter estimates and standard errors (SE) based on
95% confidence level. Logarithmic form of the pre-exponential factors,
log(AT0

), are given at T0 = 120 °C

log(AT0
) ± SE (mol−1 m3 s−1) Ea ± SE (kJ mol−1)

Formation of 4 −9.27 ± 0.001 70.6 ± 0.1
Formation of 5 −11.4 ± 0.002 68.5 ± 0.2
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Ea1 and Ea2, are shown in Table 1. A1 and A2 are re-
parameterized pre-exponential factors at the reference
temperature (T0 = 120 °C). All of the kinetic parameters were
fitted with very good precision. The model predicted
concentration values closely corresponded to the
experimental values, with a R2 of 0.974 for species 1, 4 and 5
(see Fig. 5b and ESI,† Fig. S4 for parity plots). The activation
energies for Ea1 and Ea2 were determined to be very similar,
70.6 kJ mol−1 and 68.5 kJ mol−1, respectively. To further
validate the optimality of the parameter estimates a
multistart solver, #MINLPSolver, was utilized with a
maximum number of 10 initial guess points to ensure a local
optimum had not been identified. The multistart solver was
used to sample a wider range of initial guesses (±20% of the
first set of initial guesses) to check the solution is a global
rather than local optimum. In all cases the same optimum
parameters were estimated, suggesting that the global
optimum had been identified. Furthermore, almost the same
parameter values were obtained when including the
concentration values for acrylonitrile (3) as without
acrylonitrile (see ESI,† Table S2 vs. Table 1), therefore further
calculations were performed without using the values
obtained for acrylonitrile.

The results show that higher conversion is achieved at
higher temperatures, but also that favorable selectivity
towards a particular product cannot be achieved by
temperature manipulation due to the similar activation
energies. The results also showed that the base concentration
highly influences the conversion and reaction rate.

Model validation

A number of additional experimental automated flow ramps
were then performed for model validation. The simulated
trajectories closely correspond to the experimentally-
measured data (see ESI,† Fig. S5–S7). Although the model
appears to fit to all the data well, slight deviations were
observed at lower concentrations of starting material 1 and
also when less than 1 equivalent of acrylonitrile 3 were used.

Optimization

The digital twin was used to visualize the design space, with
both increasing equivalents of acrylonitrile 3 and a longer

residence time increasing the yield of 4 (Fig. 6). A shorter
residence time could be used to achieve the same yield of 4
through increasing the temperature, thus enabling a higher
productivity.

Automated self-optimizing continuous-flow systems based
on optimization algorithms have been reported for the
identification of optimal operating conditions.24,25 We were
interested in comparing the predictive capability of our
digital twin to the experimental data obtained from a self-
optimization campaign (Fig. 7 and ESI,† Fig. S8). Product 4
displayed a small difference between the experimental and
simulated values, but the same general trend could be
observed. However, in the case of isomer 5 the model showed
very close agreement with the experimental data. Even
though there is some discrepancy between the predicted and
experimental values for product 4, the in silico experiments
still serve as a method for pre-screening experiments to
identify those that would be the most valuable to run in the
laboratory, such as those on the pareto front.26 The benefit of
using a kinetic-based approach is that a clear understanding
regarding the relative rates between the two parallel reactions
is obtained, thus enabling better control over selectivity.27

The digital twin can be used to explore outside of the
experimental design space. Although, it is important to note
that any predictions will not include the impact of new
mechanisms (e.g., a new reaction pathway) that were not
considered as part of the fitted kinetic model, therefore any
extrapolation should be done with caution. Typically, kinetic
models should not be used to extrapolate far outside the
experimentally explored space.

Fig. 6 Simulated response surface for product 4 yield using parameter
values obtained in Table 1. Fixed conditions: 1 conc. = 1.5 M and 2
equiv. = 0.1 eq.

Fig. 7 Experimental data and simulated trajectories using parameter
values obtained in Table 1 for self-optimization campaign for: a)
product 4 and b) isomer 5. Lines show simulated concentration;
orange points show experimental data and purple points show steady
state values for the self-optimization algorithm.
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Disturbance simulation

We were also interested in the predictive capability of our
model for when the system experienced disturbances.28,29

Thus, we simulated the influence of switching off the
acrylonitrile pump at set intervals, which decreased the
consumption of starting material (1). The simulated results
for 1,2,4-triazole (1) are compared to the experimentally-
measured values in Fig. 8 (see also ESI,† Fig. S9). The change
in the simulated concentration values closely matched the
measured values. The NMR needed longer to settle its
baseline when compared to the FTIR which immediately
returned. This result shows an advantage of having multiple
complementary process analytical techniques (PAT)
approaches (both inline and online) within a single system,30

whereby NMR can be used to generate a kinetic model, but a
process monitoring and control strategy could afterwards be
devised with FTIR due to its faster response time.

Conclusions and outlook

The implementation of automated dynamic experimentation
facilitated the efficient exploration of a wide range of
experimental conditions within a single experiment (<8 h of
operating time). The data were then used to establish a
kinetic model and for the fitting of parameter estimates,
which resulted in a model that closely described the
experimental data (R2 = 0.974). The model was successfully
validated with additional automated flow ramps. This then
led to the creation of a digital twin which could be used to

investigate the system using in silico experimentation. The
comparison of simulated experiments to a self-optimization
routine showed the ability to use a digital twin for pre-
screening experiments before entering the laboratory.

One consideration in the design our combined approaches
in part 1 and 2 was to reflect the constraints placed on
process development within the pharmaceutical industry. In
general, the chemistry is developed first, which is followed by
the development of a deeper understanding of the reactor
system dynamics. Therefore, firstly a rough model was
developed for the system in part 1, prior to developing more
refined models for the reactor system dynamics and
parameter estimation for the creation of a digital twin in this
second contribution. Our approach allows process models to
be generated much earlier in reaction optimization, allowing
early estimation of the sensitivity of product quality to input
parameter changes. This type of approach will reduce the
experimental burden in the lab, where optimization is
performed in silico and then only the most important
experiments are validated experimentally. We demonstrated
that the digital twin could be used to reliably evaluate
potential disturbances through in silico experimentation. The
ability to perform in silico disturbance analysis and visualize
the design space will support in the establishment of
advanced control strategies in API manufacture. The
combined dynamic experimentation and digital twin
approach can be extended to new reaction chemistries. This
work is ongoing in our laboratories. Future work will focus
on the development of a platform whereby the physical and
digital systems can interact in a closed-loop fashion in real-
time, and provide “on-the-fly” learning to the digital twin.
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