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As organic chemistry becomes an increasingly data-rich field, there is a need for methods to rapidly

build and parameterize models for further development. We demonstrate the parameterization of

kinetic models for a catalytic reaction using three different experimental approaches: 1) steady state

experiments; 2) dynamic experiments altering residence time only; 3) multi-ramp experiments, where all

variables are altered simultaneously. The best agreement in a range of validation experiments was achieved

using the model parameterized in the multi-ramp experiment, which also required the shortest

experimental time. Further validation was then performed against a self-optimization experiment,

demonstrating this as an effective method for developing empirically accurate kinetic models. The validated

model could then be used for further in silico optimization and for guiding scale-up studies.

Introduction

In recent years, both industrial and academic research and
development groups have been undergoing a transition
toward data-rich laboratory environments.1 Significant
progress has been made in the field of batch high throughput
experimentation (HTE)2 and utilization of the resulting data
with machine learning and other algorithms.3 This has led to
marked acceleration in reaction development and
understanding, particularly for process chemistry applications
where an in-depth understanding of the reaction facilitates
compliance with regulatory frameworks, such as quality by
design (QbD) principles.4

By its nature, flow chemistry lends itself well to automation
and data-rich experimentation.5 The simple manipulation of
flow rates allows control to be asserted over reaction
parameters, such as reagent concentrations/stoichiometries.
This has allowed straightforward incorporation of closed-loop
experimentation, such as self-optimization.6 However, other

challenges present themselves, such as the placement of
process analytical technology (PAT) instruments,7 problematic
reaction mixtures and comparatively high material
consumption.

Flow chemistry is conceptually different to its batch
counterpart and requires an alternative mindset when
designing experiments. Most significantly, the distribution of
species in flow is constant over time, but varies in space
(Fig. 1a). This is fundamentally different to batch reactions,
where (assuming perfect mixing) the distribution of species
is constant over space, but varies in time. As a result, a PAT
instrument measuring at one position in a flow reactor will
only measure a single concentration (assuming the reaction
is at steady state), rather than a full reaction time-course.
However, with this fundamental difference come new
opportunities for reaction design.8

By changing input flow rates, the reaction stream can be
treated as a series of pseudo batch reactors, so long as there
is minimal influence of axial dispersion.9 Accordingly, when
well-designed, such experiments can provide a vast quantity
of information for reaction characterization in a short time
period, without user intervention. This concept has been
exploited by numerous groups in recent years, since the first
report in a flow chemistry setting in 2011.10

The group of Jensen reported the first organic chemistry-
focused examples9,11 including a recent contribution examining
complex non-linear ramps of three variables.12 Wyvratt,
McMullen and co-workers have presented the most refined
industrial examples, using a combination of FTIR and offline
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HPLC analysis to simultaneously ramp two parameters.13 They
recently also used this approach to optimize a complex objective
function for a process and to gain temperature-independent
kinetic understanding.14

Bourne used dynamic flow experiments, examining
changes in residence time within a single experiment, with a
focus on kinetic model generation.15 Recently, Hii reported
kinetic model determination for two related substrates at a
single temperature by simultaneously varying reagent ratio
and total flow rate.16 Numerous other contributions have
been made in various fields such as polymer chemistry,17

surfactant synthesis18 and related areas.19

Following on from our earlier foray into the field of
dynamic experimentation, which was focused on data
processing,20 we endeavored to increase the level of
complexity in such experiments. Reports thus far have
utilized a maximum of three simultaneous parameter
changes (Fig. 1b). In this work, we demonstrate the design of
dynamic experiments to rapidly cover a large design space (5
independent variables), and collect the necessary data to
build temperature-dependent kinetic models for a catalyzed
reaction with two regioisomeric products (Fig. 1c). More
complex utilization of this data, by means of flowsheet
modeling, is then discussed in the second part of this
publication.21

Results and discussion
Reaction of interest and experimental setup

The chemistry scrutinized in this data-driven campaign is a
seemingly straightforward Michael addition of 1,2,4-triazole 1
to acrylonitrile 3. It was found that the reaction could be

accelerated by base, therefore N,N-diisopropylethylamine
(DIPEA, 2) was used in catalytic quantities. As previously
reported, this reaction results in two separate products,22

which were found to be regioisomeric products 4 and 5. The
similarity of these two products was a key consideration in
the PAT strategy. For a scalable process with high
productivity, the use of flow chemistry to access high
temperature and pressure (high T/p) conditions is highly
advantageous.23

In order to rapidly perform the reaction in a flexible
manner, the flow setup (Fig. 2) consisted of four separate
pumps (Knauer, Azura P 4.1S) to deliver three concentrated
reagent solutions and a solvent stream. A small volume (2
mL) tubular reactor (Ehrfeld, Hastelloy Capillary Reactor) was
used to minimize axial dispersion whilst heating to
temperatures up to 140 °C. A back pressure regulator (Zaiput,
BPR-10) was set to 15 bar, enabling the reaction to take place
at temperatures above the boiling point of the solvent and
reagents.24

For analysis of the reaction, two different spectroscopic
PAT instruments were proposed: FTIR (Mettler Toledo,
ReactIR 15) and NMR25 (Magritek, Spinsolve Ultra 43 MHz).
Inline FTIR26 analysis was performed using a pressure-
resistant flow cell (SiComp, 50 μL flow cell volume, up to 35
bar), meaning that analysis could be performed before the
BPR. Hence, the effect of axial diffusion after the reactor
itself was minimal and the reaction progress could be
followed closely, with good time resolution for following
input changes.

The NMR flow cell (800 μL volume) was not pressure
resistant, so the instrument was positioned after the BPR.
Furthermore, the NMR measurements are known to be
influenced by the flow rate through the cell.25 Therefore, if
this instrument were to be used in an inline manner, the
range of accessible residence times would be very low
(maximum total flow rate ∼1.5 mL min−1). To obviate this
problem, a peristaltic pump (Ismatec, ISM834C) was used to
sub-sample the stream at a constant flow rate (0.5 mL min−1)
for online NMR analysis.

Although the inline FTIR provided a picture of the
reaction response to input parameters, it was more

Fig. 2 Reaction and PAT setup used to study the Michael addition of
interest.

Fig. 1 a) Fundamental differences between batch and flow processing
(reversal of space/time parameters), allowing complementary
experimental design. b) Summary of previously reported dynamic
experiments. Symbols from left to right: residence time, temperature,
catalyst loading, reaction concentration, reagent loading. c) Highlights
of the high level of experimental complexity examined in the present
study (symbols defined above).
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challenging to distinguish the different reaction components,
due to the similarity between the two isomeric products 4
and 5. However, based on training data (16 concentration
levels, with regioisomer ratio determined by benchtop NMR
analysis at steady state) a suitable Partial Least Squares (PLS)
regression model27 was built, to quantify species 1, 4 and 5
(see ESI† for details). DIPEA 2 and acrylonitrile 3 were
difficult to accurately quantify in this model, so were left out.

Conversely, in the online NMR spectra it was possible to
partially resolve the two sets of aromatic signals belonging to
the two regioisomers 4 and 5. Based on this it was possible
to build an Indirect Hard Model (IHM)24,27b to quantify all
five species present in the reaction. As previously noted, this
technique can be calibrated using only a single experimental
point, greatly decreasing the experimental calibration
burden. The quantifications from this single point
calibration were in good agreement with the FTIR model
(Fig. 3). A minor discrepancy in quantity was observed toward
the end of the experiment, where starting material 1 was
underestimated by the FTIR model. This is thought to be due
to the lack of characteristic FTIR signals, which led to poorer
quantification. The good agreement of these two
measurement techniques (which are at different points along
the reactor path) also suggests that the reaction is suitably
quenched by simply cooling to room temperature. Although
some extent of reaction may occur at room temperature, its
influence on the experimental results is expected to be
minimal.

Steady state kinetics in flow

As an initial approach to building a predictive model, a set of
sixteen experiments was performed. This was done using the
most common current approach for flow experiments,
wherein the operator waits for ∼3 residence times for steady
state prior to moving to the next experimental conditions.
This set comprised four different reaction conditions, each
with four residence time points (0.5, 1, 2, 3 min). The
resulting dataset required ∼3 h of experimental time and is
comparable to running four batch reactions, each with four
samples taken along its course.

In order to rapidly parameterize a predictive kinetic model,
a simplified approach was taken wherein the two reactions
(producing major product 4 and side product 5, Fig. 4.) were
modeled using the Arrhenius equation, considering all three
reaction components (1, 2 and 3). Since DIPEA 2 was not
required in stoichiometric quantities, it was treated as a
catalytic reagent, which was not consumed in the reaction.

d 4½ �
dt

¼ A1e
− Ea1
RT 1½ �a1 2½ �b1 3½ �c1 (1)

d 5½ �
dt

¼ A2e
− Ea2
RT 1½ �a2 2½ �b2 3½ �c2 (2)

At this point it should be stated that the fitted kinetic
equation does not aim to provide an accurate representation
of the elementary reaction steps in this reaction. To do so
would require more complex considerations and ideally data
regarding intermediate species, which were not observable
here. To simplify the process of building a predictive model,
the reactions were treated as single step trimolecular
reactions, where non-integer reactant orders between 0.1 and
2 were permitted. Whilst the likelihood of this reaction
proceeding via such a reaction pathway is extremely low, the
purpose of the model is simply to provide predictions that
can be used in future reaction development.

Overall, ten parameters were fitted simultaneously using the
software COPASI:28 activation energy, pre-exponential factor and
3× reaction orders for both the major product 4 and regioisomer
5 formation (see eqn (1) and (2)). The measured flow reactor
steady state concentrations were averaged over five NMR
measurements and treated as individual reaction time points.
The fitted model described the experimentally-observed
concentrations of species 1, 3, 4 and 5 well (Fig. 5). The
identified activation energy parameters were within a
reasonable range for both major product 4 and regioisomer 5
(Ea1 = 35.1 kJ mol−1; Ea2 = 38.4 kJ mol−1). Interestingly, the fitted
reaction orders (a, b, c) were below 1 for two of the three
reactants in each rate equation, but not for the same reactant
(b1 = 1.47, a2 = 1.12).

For this dataset, it is likely that the model is overfitted, due
to the high number of fitted parameters (10), compared to the
relatively small number of data points (16 data points from 4
different reaction conditions). Although this certainly represents
a limitation of such a model, employing an overfitted model for
comparison purposes within this study was not considered

Fig. 3 Representative experimental data showing the concentration
values of three reaction species, derived from PAT measurements:
FTIR measurements (PLS model, dotted lines) and NMR (IHM, solid
lines).

Fig. 4 Reaction scheme used for determination of predictive reaction
model using Arrhenius kinetics.
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problematic. Furthermore, the reaction model was later tested
with a wide range of reaction conditions, where it proved to
perform to a satisfactory level. Experimental error may also arise
in this approach, due to the slight fluctuations in steady state
and the averaging used to take a single value.

Dynamic experiments

To accelerate the process of gathering the necessary data, the
same set of experiments was performed again in flow, but
using a dynamic approach. Therein, the total flow rate was
ramped for each experiment over a period of 20 min
(Fig. 6a), providing residence times between 60 and 180 s.
Using the PAT strategy discussed previously (Fig. 2),
concentration measurements were obtained at regular
intervals, every ∼10 s. This allowed the experiments to be
carried out in a similar experimental time of ∼3 h but,
perhaps more importantly, provided a high data density of
∼120 points per set of conditions.

To fit a similar predictive model as in the steady state
experiments, a MatLab script was written in which the
reaction input was discretized into segments of ∼10 s
(aligned with NMR measurements). These segments were
approximated as individual batch reactors, and their
composition tracked by a standard batch kinetics approach,
using ordinary differential equations, as they progressed
through the reactor.19 This approach allowed each segment
to experience different temperatures whilst travelling through
the reactor, making it compatible with temperature ramps.
The composition at the measurement point was then
predicted and compared to the measured values. Dispersion
in the system was simulated using the lsim tool with a
continuous-time transfer function.

The model was parameterized using a bounded Nelder–
Mead optimizer in MatLab (fminsearchbnd), aiming to
minimize the normalized root mean square error (RMSE) of the
four measured components (with equal weighting). Due to the
large number of data points and parameters to fit, the
parameterization was relatively slow (duration ∼16 h), but
provided a low average RMSE of 5.17% for this experiment. As
can be observed in the concentration plot (Fig. 6c) there is

generally excellent agreement between the predicted and
measured values for the components. Where disparity is
observed, it appears to be characterized by a shift in time, rather
than a difference in the overall prediction. This implies that the
main downside of this model is its accounting for the reactor
dynamics, rather than the kinetic model itself.

Rapid kinetic modeling using multiple ramps

Finally, it was envisaged that a suitable predictive model could
be built using a single set of experimental ramps. An
experiment was planned in which all five parameters were
ramped in a linear manner over ∼2.3 h operating time (Fig. 7).
The adjusted parameters were: 1) reaction concentration (0.75–
1.5 M); 2) residence time (30–180 s); 3) reaction temperature
(100–140 °C); 4) acrylonitrile 3 loading (0.8–2.0 equiv.); 5) DIPEA
2 loading (0.01–0.10 equiv.). The variable ramps were designed
to be out of phase with one another to maximize the variation
and range of condition combinations accessed. Using the same
approach as described above, the reaction parameters were
fitted. The smaller quantity of data meant that this process was

Fig. 6 Data for the four kinetic experiments when conducted
dynamically in flow. a) Residence time and temperature as varied over
the experiment duration. b) Equivalents of 3 and 2 over the experiment
duration. c) Concentrations of reaction species measured over the
experiment duration (solid lines) and their corresponding predicted
values (dotted lines).

Fig. 5 Example of reaction progress predictions versus measured
values from flow steady state experiments. Solid diamonds show
measured values, dashed lines show predictions. For clarity,
acrylonitrile 3 is not shown.
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now substantially faster (∼8 h) and resulted in a similar RMSE
of 5.38%.

Reaction model comparison

To compare the effectiveness of each experimental approach,
a number of additional experiments were used as validation

data sets (Table 1). In each of the experiments different
combinations of parameter ramps were examined.
Experiment 1 comprises the four residence time ramps
(discussed above in the “Dynamic experiments” section).
Experiment 2 contained only temperature ramps, with the
other parameters held constant at 3 different levels. In
experiment 3 one reagent concentration was ramped at a
time, then combined with a temperature ramp. From
experiment 4 onwards multiple parameters were ramped
simultaneously: two, three, four or five parameters in
experiments 4, 5, 6 and 7, respectively. Full details for each
experiment are available in the ESI.†

When comparing the performance of the differently
parameterized models, the “multi-ramp” variant (trained
using experiment 7) was superior for all validation
experiments (with the exception of experiment 2). It should
be expected that the model's own parameterization
experiment provides the lowest RMSE, therefore the observed
performance in experiment 1 is unsurprising.

There are numerous potential sources of error that likely
contribute to these RMSE values. First and foremost, the
model does not take into account reactor dynamics, meaning
that the trace for measured vs. predicted results are often
misaligned. Additionally, small variations in reaction solution
concentrations and pump flow rates may contribute to overall
errors. Finally, the chemometric model (IHM) inherently has
error associated, particularly at low concentrations, which
has an influence in both model fitting experiments and
validation experiments.

Reaction model validation

In order to validate the kinetic model on an entirely different
data set, a self-optimization experiment was carried out using
the same reactor system. The Thompson Sampling Efficient
Multi-objective Optimization (TSEMO) algorithm, pioneered
in a chemistry environment by Schweidtmann, Bourne and
Lapkin,29 was used to optimize three objectives: conversion,
space–time yield and E-factor. These objectives were chosen
to provide a spread of experimental setpoints, focused toward
high extent of reaction, high throughput and low waste,
respectively.

Fig. 7 Data for the multi-ramp experiments in flow. a) Residence time
and temperature as varied over the experiment duration. b)
Concentration of 1, equivalents of 2 and 3 over the experiment
duration. c) Concentrations of reaction species measured over the
experiment duration (solid lines) and their corresponding predicted
values (dotted lines).

Table 1 Summary of average error in predictions of 7 different experimental runs for each of the three models, parameterized using different data sets

Experiment Steady state RMSE [1]a Dynamic RMSE [1]a Multi-ramp RMSE [7]a

1 6.30% 5.17% 7.77%
2 10.08% 9.24% 10.10%
3 8.09% 8.60% 7.15%
4 11.83% 12.74% 8.74%
5 10.16% 10.92% 7.60%
6 9.14% 9.13% 6.58%
7 6.27% 6.74% 5.38%
Mean 8.83% 8.93% 7.62%

RMSE is calculated as a relative value, normalized versus the maximum observed concentration for each species. The value presented is the
mean RMSE for all species 1, 3, 4 and 5. a The experiment set that was used to parameterize each model is shown in square brackets and
highlighted in bold.
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All five variables that were ramped in the initial
experiments were included as optimizable variables: 1)
reaction concentration; 2) residence time; 3) reaction
temperature; 4) acrylonitrile 3 loading; 5) DIPEA 2 loading.
The experiments were, however, carried out as steady state
reactions, by setting initial parameters and waiting for steady
state to be reached (i.e. not as dynamic experiments). The
self-optimization was initiated with a Latin hypercube (LHC)
set of 10 experiments (2n, where n is the number of
optimizable variables). Thereafter, 28 optimization
experiments were performed, providing a dataset of 38
experiments.

After the initial LHC experiments, the TSEMO algorithm
rapidly began to define a pareto front at complete conversion
(Fig. 8a), which was relatively straightforward to achieve.
Maximizing the space–time yield was then explored, where
higher values were achieved at incomplete conversion. A
maximum space–time yield of 7.37 kg L−1 h−1 was observed,
where the reaction operated at only 82% conversion.

The measured values from these steady state experiments
were then compared with the predictions from the simple
kinetic model, parameterized using MatLab. Gratifyingly,
there was excellent agreement between the predicted and
measured values for triazole 1, acrylonitrile 3 and main
product 4. The relative RMSE for these were 3.8%, 5.7% and
5.2%, respectively.

The measured and predicted values for main product 4
(Fig. 8b) are of particular interest, showing good parity
between all points, aside from two outliers (consecutive
experiments 31 and 32, where product is significantly over-
predicted).

The relative RMSE for the side product 5 was far poorer
than the other three components, at 27.9%. However, this
was likely, in part, due to the lower concentrations involved
(up to 0.13 M, c.f. ∼1.4 M for main product 4). The absolute
RMSE is 38 mM (c.f. 72 mM for main product 4), which will
be influenced by compound error in the chemometric model,
pump flow rates and other factors.

With this validated model in hand, it should be noted that
further in silico optimization can be performed, without
experimental effort. For example, the same TSEMO multi-
objective algorithm can be carried out with a far larger
experiment set, allowing the pareto front to be fully defined
in a short time period (see ESI†).

As previously discussed, the reactor dynamics are poorly
accounted for using this modeling approach. Therefore, more
complex corrections or alternative methods may be
advantageous. In the accompanying manuscript, a flowsheet
modeling approach with dispersion correction is presented
and discussed in detail for the same reaction.21

Conclusions

We have described a workflow for rapidly exploring a reaction
in flow, making use of the possibility to screen numerous
different reaction parameters within a single experiment. A
kinetic model parameterized using a multi-ramp flow
experiment (5 variables altered simultaneously) proved to
provide more effective predictions than simpler experiments
and required a shorter experimental time. External validation
against a self-optimization experiment was also successful,
thereby the resulting model could be used for in silico
optimization as well as further development and scale-up.

Data availability

The experimental data generated during this study can be
found online at: https://doi.org/10.5281/zenodo.7829130.
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Fig. 8 Results of self-optimization experiment: a) experimental results
showing the outcomes for two objectives. b) Measured product 4
concentration for each iteration at steady state, compared with its
value predicted by the developed reaction model. Graph of residuals
(observed minus predicted) for each data point.
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