


 Cite this: *RSC Adv.*, 2023, **13**, 35920

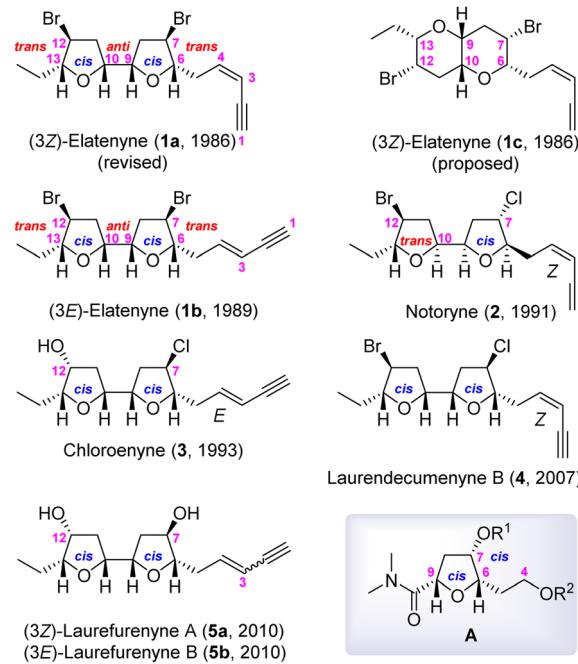
## Stereoselective total synthesis of (3Z)- and (3E)-elatenynes†

 Soo Yeon Kwak, Iljin Shin, Hongjun Jang, Youngjik Park, Seongju Lim, Dongjoo Lee, <sup>a</sup> Hyoungsu Kim <sup>a</sup> and Deukjoon Kim <sup>b</sup>

We describe here the highly stereoselective total synthesis of the *Laurencia* C<sub>15</sub> acetogenins (3Z)- and (3E)-elatenynes having a 7,12-dibromo-6,9-*cis*-10,13-*cis* adjacent bis-tetrahydrofuran (THF) core. The present synthesis features a highly stereoselective, protecting group-dependent, chelate-controlled intramolecular amide enolate alkylation (IAEA) for the synthesis of key intermediate 7-hydroxy-6,7-*cis*-6,9-*cis*-THF intermediate **10**, deployment of the sequential ate complex (*n*-BuLi/DIBAL-H) reduction/Keck allylation/cross metathesis (CM) protocol for the stereoselective introduction of the C(10)-C(15) unit, a sequential Sharpless asymmetric dihydroxylation (SAD)/intramolecular Williamson etherification for the construction of the 10,13-*cis*-THF ring, and a modified Nakata chloromethanesulfonate-mediated S<sub>N</sub>2 displacement for the 7,12-dibromo functionality. Furthermore, our strategy based on chelate-controlled IAEA methodology would provide access to any member of the C<sub>15</sub> adjacent bis-THF acetogenin class.

Received 13th November 2023

Accepted 4th December 2023


DOI: 10.1039/d3ra07741a

[rsc.li/rsc-advances](http://rsc.li/rsc-advances)

Marine algae produce a diverse set of oxacyclic C<sub>15</sub> acetogenins, among which some, as shown in Fig. 1, have a 2,2'-bifuranyl (adjacent bis-THF) core structure.<sup>1</sup> (3Z)-Elatenyne (**1a**) was first isolated from the marine algae *Laurencia elata* by Hall and Reiss in 1986,<sup>2a</sup> and Erickson reported isolating (3E)-elatenyne (**1b**) from the marine alga *Laurencia majuscule* in 1989.<sup>2b</sup> Later, **1a** was re-isolated from *Laurencia decumbens* by Wang in 2007 (ref. 2c) and from *Laurencia elata* by Urban in 2011.<sup>2d</sup> The isolation of several closely related *Laurencia* C<sub>15</sub> acetogenins has been reported, including notoryne (**2**),<sup>3</sup> chloroenyne (**3**) from *L. majuscule*,<sup>4</sup> laurendecumene B (**4**),<sup>5</sup> and laurefurenynes A (**5a**) and B (**5b**).<sup>6</sup> It is worth mentioning at this point that the structures depicted in Fig. 1 have been revised or confirmed by total synthesis.<sup>2h,3c-e,6b,c</sup>

Based on extensive <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic analyses, the structure of (3Z)-elatenyne (**1a**) was initially proposed by Hall and Reiss to have a pyrano[3,2-*b*]pyran core (fused bis-THP), as depicted in **1c**.<sup>2a</sup> However, the **1c** structure was shown by Burton, *et al.*, to be incorrect through the total synthesis thereof.<sup>2e,f</sup> The Burton and the Goodman groups collaborated to predict the correct 2,2'-bifuranyl skeleton (adjacent bis-THF) structure and relative stereochemistry of **1a** through comparison of the <sup>13</sup>C NMR chemical shifts of **1a** with

the Boltzmann-weighted GIAO <sup>13</sup>C NMR chemical shifts determined through DFT methods.<sup>2g</sup> Later, a collaborative effort by the Kim and Burton groups achieved the total synthesis of **1a** and *ent*-**1a** utilizing a modular and biomimetic approach, respectively.<sup>2h</sup> Despite the collaborative effort, the unequivocal

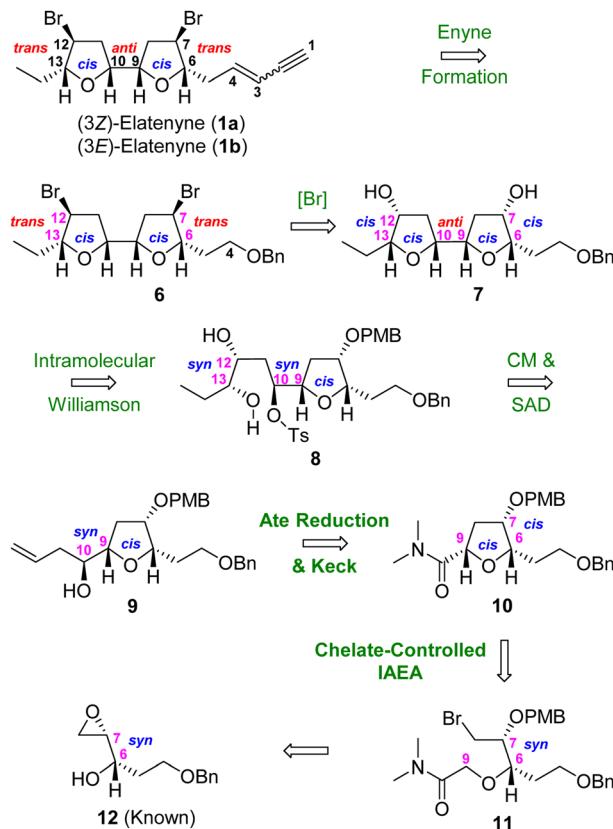

 Fig. 1 *Laurencia* adjacent bis-tetrahydrofuranoid natural products.

<sup>a</sup>College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea. E-mail: [hhkimajou@ajou.ac.kr](mailto:hhkimajou@ajou.ac.kr)

<sup>b</sup>College of Pharmacy, Seoul National University, Seoul 08826, Korea

† Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3ra07741a>

‡ These authors contributed equally to this work.

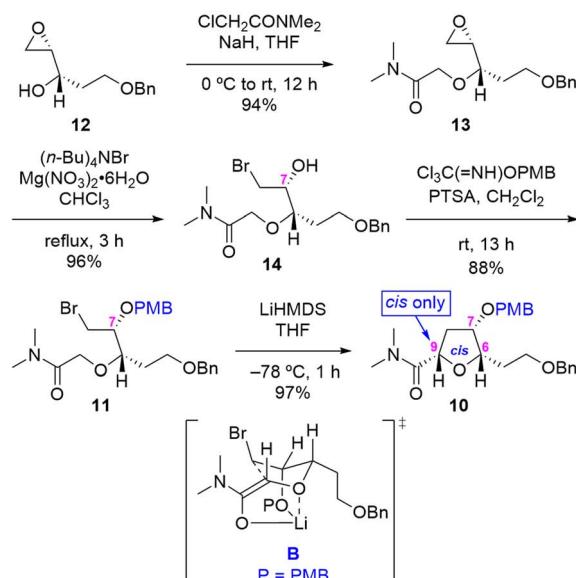



assignment of the absolute stereochemistry of **1a** was still not possible. Eventually, Urban and Fujita confirmed the absolute stereochemistry of **1a** as that shown in Fig. 1 using the crystal-line sponge method.<sup>2i</sup>

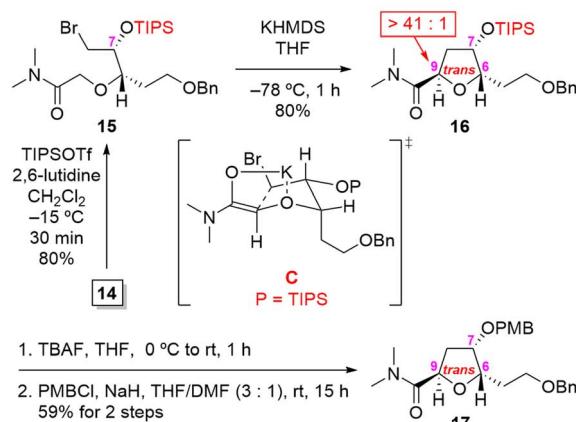
The structural features of these  $C_{15}$  adjacent bis-THF acetogenins have received considerable attention from organic chemistry community, culminating to several total syntheses: the modular synthesis on the basis of analysis  $^{13}C$  NMR chemical shifts,<sup>2h,e,3e,6b</sup> biomimetic approach,<sup>2e,h,3c,e</sup> the cyclization of chlorohydrin derived from anti-aldol reaction,<sup>6c</sup> the Sharpless asymmetric dihydroxylation (SAD)/Williamson cyclization sequence,<sup>4b</sup> and the bromo-etherification.<sup>3d</sup>

Based on the insights garnered from our highly stereoselective syntheses of oxylipids<sup>7a</sup> and asimitrin,<sup>7b</sup> we formulated a synthetic strategy which provides access to any member of this  $C_{15}$  adjacent bis-THF acetogenin class through a highly stereoselective construction of the 2,5-disubstituted-3-oxygenated tetrahydrofuran moiety **A** (Fig. 1) *via* intramolecular amide enolate alkylation (IAEA).<sup>7</sup> In addition, our strategy utilizes Marshall's protocol [cross metathesis (CM)/SAD/Williamson cyclization]<sup>8</sup> for the efficient construction of 2nd THF skeleton in the adjacent bis-THF unit.

To demonstrate the synthetic potential of this strategy, we describe herein the asymmetric total synthesis of (3*Z*)-elatenyne (**1a**) and (3*E*)-elatenyne (**1b**) featuring a highly stereoselective and chelate-controlled IAEA for constructing key intermediate 7-hydroxy-6,7-*cis*-6,9-*cis*-THF **10**. This is followed by a sequential




Scheme 1 Retrosynthetic plan.


ate complex (*n*-BuLi/DIBAL-H) reduction/Keck allylation/cross metathesis (CM) protocol for stereoselective introduction of the C(10)-C(15) unit.

As shown in our retrosynthetic plan (Scheme 1), we envisioned that respective total syntheses of (3*Z*)-elatenyne (**1a**) and (3*E*)-elatenyne (**1b**) could be readily accomplished through stereoselective incorporation of the (*Z*)- and (*E*)-enye units into 7,12-dibromo-adjacent bis-THF **6**. This intermediate could be accessed by bis-bromination of the adjacent 7,12-dihydroxy-bis-THF **7**, which in turn could be constructed from the tetrahydrofuranyl *syn*-diol **8** through an intramolecular Williamson etherification. We planned to synthesize **8** from homoallylic alcohol **9** by employing cross metathesis (CM) and Sharpless asymmetric dihydroxylation (SAD) as key steps. By this route, (10*S*)-9,10-*syn* homoallylic alcohol **9** could be stereoselectively prepared through application of ate complex (*n*-BuLi/DIBAL-H) reduction/Keck allylation protocols to yield  $\alpha$ -alkoxy amide **10**

Scheme 2a. Preparation of 6,7-*cis*-6,9-*cis*-THF **10**



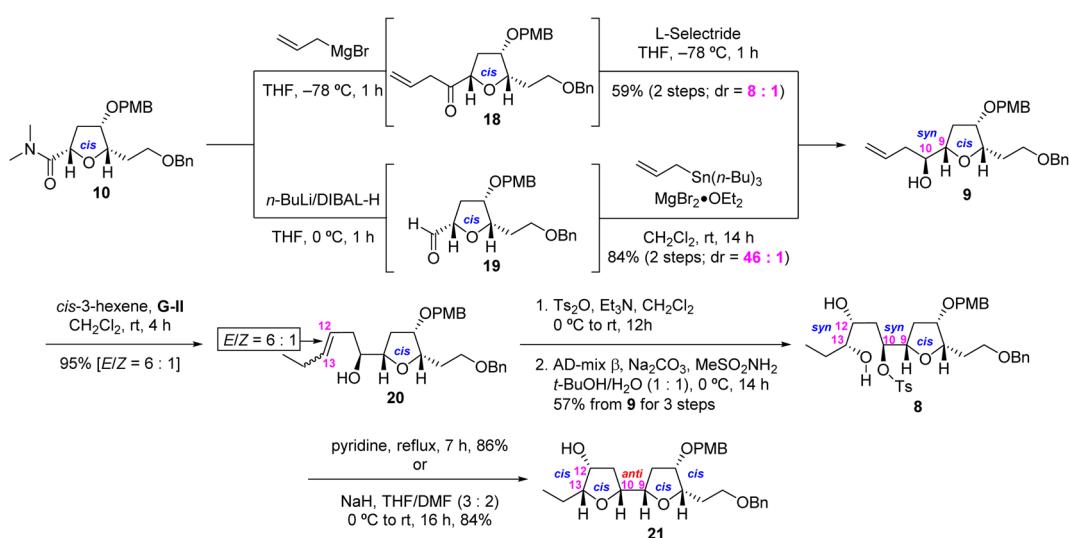
Scheme 2b. Preparation of 6,7-*cis*-6,9-*trans*-THF **17** for comparison



Scheme 2 Stereoselective synthesis of 6,9-*cis*-THF **10** and 6,9-*trans*-THF **17** *via* IAEA.

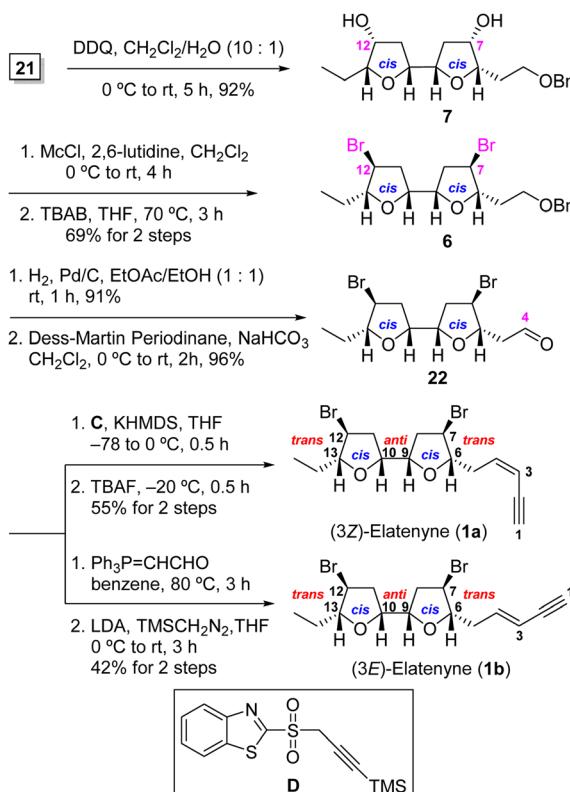
(*vide infra*). Based on our previous work,<sup>7</sup> we were confident that key 6,7-*cis*-6,9-*cis*-THF intermediate **10** could be accessed by subjecting 6,7-*syn*- $\omega$ -bromo- $\alpha$ -alkoxy amide **11** to our stereoselective chelate-controlled IAEA reaction. Finally, we imagined that IAEA substrate **11** could be prepared in a straightforward manner from the known 6,7-*syn* epoxy alcohol **12**.

Our synthesis began with the preparation of IAEA substrate **11**, as outlined in Scheme 2. Thus, known epoxy alcohol **12** (ref. 9) was subjected to *O*-alkylation with *N,N*-dimethyl chloroacetamide to afford the desired epoxy  $\alpha$ -alkoxy amide **13** in 94% yield. The regioselective opening of the terminal epoxide **13** was achieved through the action of *(n*-Bu)<sub>4</sub>NBr in the presence of Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O to furnish the 6,7-*syn*-bromoamide **14** with an excellent 96% yield.<sup>10</sup> Protection of the hydroxyl group in **14** as the PMB ether with 4-methoxybenzyl 2,2,2-trichloroacetimidate in the presence of a catalytic amount of *p*-toluenesulfonic acid (PTSA)<sup>11</sup> gave rise to key IAEA substrate **11** in good yield (88%).


With IAEA substrate **11** in hand, we proceeded to address the pivotal stereoselective IAEA reaction of PMB-protected bromo  $\alpha$ -alkoxy amide **11** for the construction of key intermediate **10**. Treatment of **11** with LiHMDS in THF at -78 °C for 1 h led to the desired 6,7-*cis*-6,9-*cis*-THF **10** in 97% yield as a single stereoisomer (by <sup>1</sup>H NMR analysis, see ESI† for details), presumably *via* chelated transition state geometry **B**. The NOE interaction between protons on [C(6) and C(7)] and [C(6) and C(9)] in **10** was supportive of the assigned *cis* relative stereochemistry.

To establish the diastereoselectivity of the IAEA reaction in a rigorous manner, we decided to synthesize the corresponding 6,9-*trans* isomer **17** for comparison purposes as shown at the bottom of Scheme 2. To this end, subjection of TIPS-protected bromo  $\alpha$ -alkoxy amide **15** (prepared by TIPS protection of alcohol **14**) to KHMDS in THF at -78 °C for 1 h gave rise to the desired 6,9-*trans*-THF **16** in 80% yield as the major isomer (dr > 41:1 by <sup>1</sup>H NMR analysis), presumably *via* transition state **C**. Deprotection of the TIPS protecting group in **16** by exposure to TBAF and subsequent protection of the resultant alcohol as the

PMB ether provided the 6,9-*trans*-THF **17** in 59% yield (two steps).


Having accomplished a highly stereoselective synthesis of the desired 6,9-*cis*-THF **10**, we turned our attention to the construction of the crucial adjacent bis-THF **21** as shown in Scheme 3. This requires the stereoselective synthesis of 9,10-*syn* homoallylic alcohol **9** from  $\alpha$ -alkoxy amide **10** through application of our direct ketone synthesis/L-Selectride protocol.<sup>7</sup> Thus, the Grignard reaction of **10** with CH<sub>2</sub>=CHCH<sub>2</sub>MgBr, and the subsequent L-Selectride reduction of the resulting ketone **18**, afforded the desired 9,10-*syn*-homoallylic alcohol **9** in moderate yield (59% for two steps) and good selectivity (dr = 8:1 by <sup>1</sup>H NMR analysis). In an alternative approach, **10** was reduced using the ate complex derived from *n*-BuLi and DIBAL-H<sup>12</sup> and subjected to Keck allylation<sup>13</sup> to afford homoallylic alcohol **9** in improved yield (75% for two steps) and improved selectivity (dr = 46:1 by <sup>1</sup>H NMR analysis)<sup>14</sup> CM reaction of the alcohol **9** with *cis*-3-hexene in the presence of Grubbs second-generation catalyst [G-II, (H<sub>2</sub>IMes)(Cy<sub>3</sub>P)Cl<sub>2</sub>Ru=CHPh]<sup>15</sup> afforded alkene **20** as an inseparable mixture of stereoisomers (95% total yield, *E/Z* = 6:1 by <sup>1</sup>H NMR analysis). Tosylation of alkene **20** (*E/Z* = 6:1) and subsequent AD-mix  $\beta$ -mediated SAD reaction<sup>16</sup> of the resulting tosylate afforded the pure *syn*-diol **8** in 57% overall yield from **9** (three steps) after separation. Internal Williamson cyclization of **8** in refluxing pyridine or NaH in THF/DMF (3:2) furnished the desired adjacent bis-THF **21** in 86% or 84% yield, respectively.

Having acquired adjacent bis-THF **21**, we proceeded to introduce the bis-bromide functionality to both the C(7) and C(12) positions utilizing the two-step modified Nakata chloromethanesulfonate-mediated S<sub>N</sub>2 displacement protocol<sup>2b,7b,17</sup> (Scheme 4). To this end, treatment of bis secondary alcohol **7**, obtained from **21** after PMB deprotection (92%), with chloromethanesulfonyl chloride (McCl) in the presence of 2,6-lutidine and subsequent exposure of the resulting sulfonate to *(n*-Bu)<sub>4</sub>NBr in refluxing THF furnished the desired 7,12-dibromo-bis-THF **6** in an overall yield of 63% from **21** in two



Scheme 3 Construction of 7,12-dihydroxy adjacent bis-THF **21**.



Scheme 4 Completion of total synthesis of **1a** and **1b**.

steps. It is of note that the two-step Nakata protocol was superior to Hooz bromination in term of yield and purification in our hands [69% vs. 58%; see ESI† for details].<sup>18</sup>

Having successfully installed both the C(7) and C(12) bromide atoms in **1a** and **1b**, the remaining task was attaching the C(4) enyne appendages. Catalytic hydrogenolysis of benzyl ether **6**, followed by Dess–Martin oxidation<sup>19</sup> of the resultant primary alcohol gave rise to aldehyde **22**. The stereoselective Julia–Kocienski olefination<sup>20</sup> of aldehyde **22** with benzothiazole sulfone **C** by treatment with KHMDS in THF at -78 to 0 °C for 0.5 h gave rise to the (3Z)-TMS-ynye (*Z/E* = 31:1 by <sup>1</sup>H NMR analysis), which was desilylated with TBAF to afford (3Z)-elatenyne (**1a**) in 55% overall yield for the two steps from **22**. For the second target, Wittig olefination of aldehyde **22** with Ph<sub>3</sub>P=CHCHO [(triphenylphosphoranylidene)acetaldehyde] gave exclusively the (*E*)- $\alpha$ , $\beta$ -unsaturated aldehyde, which was then subjected to the condition of Colvin–Ohira homologation<sup>21</sup> using trimethylsilyldiazomethane and LDA to afford (3E)-elatenyne (**1b**) in 42% overall yield for two steps. The spectral characteristics of our synthetic material **1a** and **1b** were in good agreement with those reported for both the natural and synthetic (3Z)<sup>2a,d,h</sup> and (3E)<sup>2b,h</sup>-elatenynes, respectively.

## Conclusions

In summary, we have accomplished the total synthesis of both (3Z)-elatenyne (**1a**) and (3E)-elatenyne (**1b**), featuring the protecting group-dependent chelate-controlled IAEA methodology

for a highly stereoselective construction of key intermediate 6,7-*cis*-6,9-*cis*-THF **10**. Other key features of the synthesis include the sequential ate complex reduction/Keck allylation for stereoselective establishment of 9,10-*syn* configuration, the CM/SAD/Williamson cyclization sequence for the efficient construction of the bis-THF moiety, and the chloromethanesulfonate-mediated S<sub>N</sub>2 displacement for installation of the 7,12-dibromo functionality. Application of our strategy on the basis of chelate-controlled IAEA and the Marshall's protocol to the synthesis of other members of the adjacent C<sub>15</sub> bis-THF acetogenin class in Fig. 1 is currently under investigation in our laboratories.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C2010329) and a grant (21153MFDS602 & 21163MFDS369) from the Ministry of Food and Drug Safety.

## Notes and references

- (a) B.-G. Wang, J. B. Gloer, N.-Y. Ji and J.-C. Zhao, Halogenated Organic Molecules of Rhodomelaceae Origin: Chemistry and Biology, *Chem. Rev.*, 2013, **113**, 3632–3685; (b) T. Wanke, A. C. Philippus, G. A. Zatelli, L. F. O. Vieira, C. Lhullier and M. Falkenberg, C15 Acetogenins from the Laurencia Complex: 50 Years of Research–An Overview, *Rev. Bras. Farmacogn.*, 2015, **25**, 569–587; (c) Z. F. Zhou, M. Menna, Y.-S. Cai and Y. W. Guo, Polyacetylenes of Marine Origin: Chemistry and Bioactivity, *Chem. Rev.*, 2015, **115**, 1543–1596; (d) M. Harizani, E. Ioannou and V. Roussis, The Laurencia paradox: An endless source of chemodiversity, in *Progress in the Chemistry of Organic Natural Products*, ed. A. D. Kinghorn, H. Galk, S. Gibbons and J. Kobayashi, Springer, Berlin, 2016, vol. 102, pp. 91–252.
- (a) J. G. Hall and J. A. Reiss, Elatenyne – a Pyrano[3,2-B] Pyranyl Vinyl Acetylene from the Red Alga Laurencia elata, *Aust. J. Chem.*, 1986, **39**, 1401–1409; (b) The absolute configuration of natural (*E*)-elatenyne was not determined because no optical rotation data were reported in the original isolation paper; see, K. Kim, M. R. Brennan and K. L. Erickson, Laureanolanes from the marine alga Laurencia majuscula, *Tetrahedron Lett.*, 1989, **30**, 1757–1760; (c) N. Y. Ji, X. M. Li, K. Li and B. G. Wang, Laurendecumallenes A–B and Laurendecumenes A–B, Halogenated Nonterpenoid C15-Acetogenins from the Marine Red Alga Laurencia decumbens, *J. Nat. Prod.*, 2007, **70**, 1499–1502; (d) D. A. Dias and S. Urban, Phytochemical studies of the southern Australian marine alga, Laurencia elata, *Phytochemistry*, 2011, **72**, 2081–2089; (e) H. M. Sheldrake, C. Jamieson and J. W. Burton, The Changing Faces of Halogenated Marine Natural Products:



Total Synthesis of the Reported Structures of Elatenyne and an Enyne from Laurencia majuscule, *Angew. Chem., Int. Ed.*, 2006, **45**, 7199–7202; (f) H. M. Sheldrake, C. Jamieson, S. I. Pascu and J. W. Burton, Synthesis of the Originally Proposed Structures of Elatenyne and an Enyne from Laurencia Majuscule, *Org. Biomol. Chem.*, 2009, **7**, 238–252; (g) S. G. Smith, R. S. Paton, J. W. Burton and J. M. Goodman, Stereostructure Assignment of Flexible Five-Membered Rings by GIAO  $^{13}\text{C}$  NMR Calculations: Prediction of the Stereochemistry of Elatenyne, *J. Org. Chem.*, 2008, **73**, 4053–4062; (h) B. S. Dyson, J. W. Burton, T. I. Sohn, B. Kim, H. Bae and D. Kim, Total Synthesis and Structure Confirmation of Elatenyne: Success of Computational Methods for NMR Prediction with Highly Flexible Diastereomers, *J. Am. Chem. Soc.*, 2012, **134**, 11781–11790; (i) S. Urban, R. Brkljača, M. Hoshino, S. Lee and M. Fujita, Determination of the Absolute Configuration of the Pseudo-Symmetric Natural Product Elatenyne by the Crystalline Sponge Method, *Angew. Chem., Int. Ed.*, 2016, **55**, 2678–2682.

3 (a) For the isolation and structure determination of notoryne see: H. Kikuchi, T. Suzuki, E. Kurosawa and M. Suzuki, The Structure of Notoryne, a Halogenated C15 Nonterpinoid with a Novel Carbon Skeleton from the Red Alga Laurencia Nipponica Yamada, *Bull. Chem. Soc. Jpn.*, 1991, **64**, 1763–1775; (b) 3(E)-Notoryne has also been reported as a natural product, see: A. Fukuzawa, M. Aye, M. Nakamura, M. Tanura and A. Murai, Structure elucidation of laureoxanyne, a new nonisoprenoid C-15-ene, using lactoperoxidase, *Tetrahedron Lett.*, 1990, **31**, 4895–4898; For total synthesis of 3, see: (c) M. Lee, First Asymmetric Total Synthesis of (Z)-and (E)-Notorynes, *M.S. thesis*, Seoul National University, Seoul, Korea, 2009; (d) S. Senapati, S. Das and C. V. Ramana, Total Synthesis of Notoryne, *J. Org. Chem.*, 2018, **83**, 12863–12868; (e) E. D. Shepherd, B. S. Dyson, W. E. Hak, Q. N. N. Nguyen, M. Lee, M. J. Kim, T. I. Sohn, D. Kim, J. W. Burton and R. S. Paton, Structure Determination of a Chloroenyne from Laurencia majuscula Using Computational Methods and Total Synthesis, *J. Org. Chem.*, 2019, **84**, 4971–4991.

4 (a) A. D. Wright, G. M. Konig, R. Denys and O. Sticher, Seven New Metabolites From The Marine Red Alga Laurencia Majuscula, *J. Nat. Prod.*, 1993, **56**, 394–401; (b) For total synthesis of 3, see: S. Senapati, N. A. Unmesh, M. N. Shet, I. Ahmad, N. Ajikumar and C. V. Ramana, Unified Approach for the Total Synthesis of Bis-THF C15 Acetogenins: A Chloroenyne from Laurencia majuscula, Laurendecumene B and Laurefurenynes A/B, *Synthesis*, 2021, **53**, 2903–2910; and also see: ref. 3e.

5 (a) For isolation of 4, see: ref. 2c; (b) For total synthesis of 4, see: ref. 2h and 4b.

6 (a) W. M. Abdel-Mageed, R. Ebel, F. A. Valeriote and M. Jaspars, Laurefurenynes A–F, new Cyclic Ether Acetogenins from a Marine Red Alga, Laurencia sp, *Tetrahedron*, 2010, **66**, 2855–2862; For total synthesis of 5a and 5b, see: (b) D. J. Shepherd, P. A. Broadwith, B. S. Dyson, R. S. Paton and J. W. Burton, Structure

Reassignment of Laurefurenynes A and B by Computation and Total Synthesis, *Chem. – Eur. J.*, 2013, **19**, 12644–12648; (c) M. T. Holmes and R. A. Britton, Total Synthesis and Structural Revision of Laurefurenynes A and B, *Chem. – Eur. J.*, 2013, **19**, 12649–12652.

7 (a) H. Jang, I. Shin, D. Lee, H. Kim and D. Kim, Stereoselective Substrate-Controlled Asymmetric Syntheses of both 2,5-cis- and 2,5-trans-Tetrahydrofuranoid Oxylipids: Stereodivergent Intramolecular Amide Enolate Alkylation, *Angew. Chem., Int. Ed.*, 2016, **55**, 6497–6501; (b) S. Y. Kwak, Y. Park, S. Lim, H. Jang, D. Lee, H. Kim and D. Kim, Total Synthesis and Structure Confirmation of (–)-Asimitrin, a  $\text{C}_{37}$  Annonaceous Acetogenin with a Hydroxylated Adjacent Bis-Tetrahydrofuran Core, *Org. Lett.*, 2023, **25**, 6659–6664; (c) I. Shin, D. Lee and H. Kim, Substrate-Controlled Asymmetric Total Synthesis and Structure Revision of (–)-Bisezakyne A, *Org. Lett.*, 2016, **18**, 4420–4423; (d) I. Shin, H. Jang, S. Y. Kwak, Y. Park, D. Lee, H. Kim and D. Kim, Highly Stereodivergent Construction of  $\text{C}_2$ -Symmetric cis,cis- and trans,trans-2,6-dioxabicyclo[3.3.0]octane Framework by Double Intramolecular Amide Enolate Alkylation: Total Synthesis of (+)-Laurenidifolin and (+)-Aplysiallene, *Org. Lett.*, 2022, **24**, 8780–8785.

8 J. A. Marshall and J. J. Sabatini, Synthesis of cis- and trans-2,5-Disubstituted Tetrahydrofurans by a Tandem Dihydroxylation-SN2 Cyclization Sequence, *Org. Lett.*, 2005, **7**, 4819–4822.

9 (a) H. Lee, H. Kim, S. Baek, S. Kim and D. Kim, Total Synthesis and Determination of the Absolute Configuration of (+)-Neoisoprelaurefucin, *Tetrahedron Lett.*, 2003, **44**, 6609–6612; (b) The *ee* value of known epoxy alcohol **12** was determined as >86.9% by analysis of the  $^1\text{H}$  NMR spectrum of the corresponding Mosher esters, see the ESI† for the details.

10 Y.-G. Suh, B.-A. Koo, J.-A. Ko and Y.-S. Cho, A Facile and Highly Regioselective of Epoxides to Bromohydrins Using Tetrabutylammonium Bromide and Magnesium Nitrate, *Chem. Lett.*, 1993, **22**, 1907–1910.

11 T. Iversen and D. R. Bundle, Benzyl trichloroacetimidate, a versatile reagent for acid-catalysed benzylation of hydroxy-groups, *J. Chem. Soc. Chem. Commun.*, 1981, 1240–1241.

12 S. Kim and K. H. Ahn, Ate complex from diisobutylaluminum hydride and n-butyllithium as a powerful and selective reducing agent for the reduction of selected organic compounds containing various functional groups, *J. Org. Chem.*, 1984, **49**, 1717–1724.

13 G. E. Keck and E. P. Boden, Stereocontrolled additions of allyltri(n-butyl)stannane to a-hydroxyaldehyde derivatives. A useful route to monoprotected erythro or threo diols, *Tetrahedron Lett.*, 1984, **25**, 265–268.

14 The stereochemistry of C(10) in **9** was confirmed unambiguously utilizing Mosher ester analysis. (a) I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, High-Field FT NMR Application of Mosher's Method. The Absolute Configuration of Marine Terpenoids, *J. Am. Chem. Soc.*, 1991, **113**, 4092–4096; (b) J. A. Dale and H. S. Mosher,



Nuclear Magnetic Resonance Enantiomer Regents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and  $\alpha$ -Methoxy- $\alpha$ -trifluoromethylphenylacetate (MTPA) Esters, *J. Am. Chem. Soc.*, 1973, **95**, 512–519.

15 A. K. Chatterjee, T. L. Choi, D. P. Sanders and R. H. Grubbs, A General Model for Selectivity in Olefin Cross Metathesis, *J. Am. Chem. Soc.*, 2003, **125**, 11360–11370.

16 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Catalytic Asymmetric Dihydroxylation, *Chem. Rev.*, 1994, **94**, 2483–2547.

17 T. Shimizu, S. Hiranuma and T. Nakata, Efficient Method for Inversion of Secondary Alcohols by Reaction of Chloromethanesulfonates with Cesium Acetate, *Tetrahedron Lett.*, 1996, **37**, 6145–6148.

18 The five-step bromination of **21** utilizing modified Nakata chloromethanesulfonate-mediated  $S_N2$  displacement afforded bis-bromide **6** in 41% yield over five steps, see ESI† for details.

19 D. B. Dess and J. C. Martin, A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species, *J. Am. Chem. Soc.*, 1991, **113**, 7277–7287.

20 (a) C. Bonini, L. Chiummiento and V. Videtta, Direct Preparation of Z-1,3-Enyne Systems with a TMS-Propargylic Sulfone: Application of a One-Pot Julia Olefination, *Synlett*, 2006, 2079–2082; (b) G. Kim, T. I. Sohn, D. Kim and R. S. Paton, Asymmetric Total Synthesis of (+)-Bermudenynol, a C15 Laurencia Metabolite with a Vinyl Chloride Containing Oxocene Skeleton, through Intramolecular Amide Enolate Alkylation, *Angew. Chem., Int. Ed.*, 2014, **53**, 272–276.

21 (a) E. W. Colvin and B. J. Hamill, One-Step Conversion of Carbonyl Compounds into Acetylenes, *J. Chem. Soc., Chem. Commun.*, 1973, 151–152; (b) E. W. Colvin and B. J. Hamill, A Simple Procedure for the Elaboration of Carbonyl Compounds into Homologous Alkynes, *J. Chem. Soc., Perkin Trans. 1*, 1977, 869–874; (c) S. Ohira, K. Okai and T. Moritani, Generation of Alkyldenecarbenes by the Alkenation of Carbonyl Compounds with Lithiotrimethylsilyldiazomethane, *J. Chem. Soc., Chem. Commun.*, 1992, 721–722; (d) K. Miwa, T. Aoyama and T. Shioiri, Extension of the Colvin rearrangement using trimethylsilyldiazomethane. A new synthesis of alkynes, *Synlett*, 1994, 107–108.

