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High-efficiency energy transfer (ET) from Sm** to Eu®* leads to dominant red emission in Sm**, Eu®* co-
doped single-phase cubic CeO, phosphors. In this work, a series of Sm3* singly and Sm3*/Eu®* co-doped
CeO, cubic phosphors was successfully synthesized by solution combustion followed by heat treatment at
800 °C in air. The crystal structure, morphology, chemical element composition, and luminescence
properties of the obtained phosphors were investigated using X-ray diffraction, scanning electron
microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence analysis. Under 360 nm
excitation, the Sm®* singly doped CeO, phosphor emitted strong yellow-red light at 573 nm (*Gs;»—°Hs,
o) and 615 nm (*Gs2—°H52). Meanwhile, the CeO,:Sm>", Eu®* phosphors showed the emission
characteristic of both Sm®* and Eu®*, with the highest emission intensity at 631 nm. The emission
intensity of Sm>" decreased with increasing Eu** content, suggesting the ET from Sm®* to Eu®* in the
Ce0,:Sm>*, Eu®* phosphors. The decay kinetics of the *Gs/»—°Hs)» transition of Sm>* in the CeO,:Sm>*,
Eu®* phosphors were investigated, confirming the high-efficiency ET from Sm>* to Eu®* (reached 84%).
The critical distance of energy transfer (Rc = 13.7 A) and the Dexter theory analysis confirmed the ET
mechanism corresponding to the quadrupole—quadrupole interaction. These results indicate that the
high-efficiency ET from Sm®* to Eu®* in CeO,:Sm>*, Eu®* phosphors is an excellent strategy to improve
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1. Introduction

White-light emitting diodes (WLEDs) have been extensively
used in many fields of application, such as in solid lighting,
display devices, and optoelectronic devices, because of their
high luminous efficiency, long lifetime, energy saving, and
environment friendliness.”® A popular method for
manufacturing WLEDs is combining tricolor phosphor powder
(blue, green, and red phosphors) with an ultraviolet (UV) InGaN
chip.*® However, these WLEDs present a high correlated color
temperature and low color rendering index due to the lack of
a red component.*” To overcome these drawbacks, scholars
should explore new red phosphors for WLED applications.
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The europium trivalent ion (Eu®") is an important rare-earth
(RE) ion that has been widely used as an activator in red-
emitting phosphors for WLEDs.* The red emission of Eu’*
is originally from electric dipole transitions. Notably, Eu®'-
doped phosphors typically exhibit relatively narrow absorption
in UV and near-UV regions because of the spin-forbidden
transition of Eu®, resulting in low emission efficiency.'*"?
This defect can be compensated by introducing sensitizing
ions, such as Tb*", Bi**, Gd*", and Sm®*,**** which can absorb
excitation energy efficiently and transfer it to Eu®*. Sm®' is
a popular sensitizer for improving the efficiency emission of
Eu’" ion due to the small energy difference between the *Gs,
level of Sm*" and the °D, level of Eu®* (about 600 cm ™), leading
to easy phonon-assisted energy transfer (ET)."* Hence, the
energy transfer between Sm*" and Eu®" ions was widely inves-
tigated in a variety of host lattices."”**"” J. Wu et al.*® found that
the ET efficiency from Sm*" to Eu®" up to 65% in YPO,:Sm*",
Eu®" phosphor corresponds to the electric dipole-electric dipole
interaction mechanism. Y. Li et al."” reported that ET efficiency
from Sm>" to Eu®*" was 13.7% in La,CaB,,04:Sm>*, Eu*" phos-
phor, further confirmed by Judd-Ofelt theory. Meanwhile, X.
Zhang et al.*? developed Ca,GdNbOg:Sm>", Eu** phosphor with
high quantum yield (82.7%), excellent thermal stability, and up
to 28.6% ET efficiency. In addition, the LED device fabricated

© 2023 The Author(s). Published by the Royal Society of Chemistry
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based on this phosphor emits bright white light, and CCT =
5400 K, R, = 92.8. Clearly, the addition of two or more RE ions
into a luminescent material can effectively control multi-color
luminescence and achieve ET, thereby improving the lumi-
nous efficiency of the phosphors.”*****® Besides, several
parameters, including the degree of crystallinity, the dopant
concentration, and the host material, influence the emission
efficiency of the phosphors. In this case, the host lattice selec-
tion is important since it influences the luminescent efficiency
and the application potential of the material.

Cerium oxide (CeO,) host lattice exhibits low phonon energy,
high thermal stability, low toxicity, and excellent physico-
chemical properties.”>" It is an attractive UV-excited host
material due to its strong light absorption through the 0> -Ce**
charge transfer band. Therefore, RE-doped CeO, was widely
investigated for many applications, such as catalysis, sensors,
optoelectronic devices, and UV-LEDs.”*** The small difference
between the ionic radius of Ce*" and RE** suggests that it can
provide favorable sites for introducing RE ions into the CeO,
host lattice. Furthermore, the spectral overlap of the CeO, host's
charge transfer band and the 4f-4f transitions of the RE ions
leads to highly efficient energy transfer from host to RE ions.>***
G. Vimal et al.*® have observed the energy transfer from the CeO,
host to Eu®" in Ce0,:Sm**, Eu** phosphor leading to improved
efficiency emission of the systems. Meanwhile, an intense red
emission of Eu®' was achieved in CeO,:Eu®', Bi*'** and
CeO,:Eu*", M* (M: Na, K, Li)*® phosphors through change the
symmetry of the host and charge compensation mechanism,
respectively. However, achieving a high-efficiency energy
transfer in orange-red-emitting phosphor CeO,:Sm*‘, Eu**
synthesized by solution combustion and its energy transfer
mechanism investigation have not been well documented.

In this work, a series of Sm** singly and Sm**/Eu®" co-doped
CeO, phosphors was prepared using solution combustion
method. The crystal structure and chemical element composi-
tion were explored using X-ray diffraction and energy-dispersive
X-ray spectroscopy analyses. The luminescence properties and
ET mechanisms were systematically investigated. The phos-
phors emitted orange to red emissions with an enhancement of
Eu®" doping because the efficiency of ET from Sm** to Eu®*
reached 84%. Furthermore, the ET mechanism between Sm**
and Eu®" was discussed in detail.

2. Experimental procedure

A series of CeOy:xSm®" (x = 0.02, 0.04, 0.06, 0.08, 0.10, and
0.12 mol%), Ce0,:0.04Eu, and Ce0,:0.04Sm>", yEu*" (y = 0, 0.02,
0.04, 0.06, 0.08, and 0.10 mol%) phosphors was prepared using
solution combustion followed by heat treatment at 800 °C for 4 h
in air. Ce(NO3);-6H,O (Sigma-Aldrich, 99.9%), Sm(NOs);-6H,0
(Sigma-Aldrich, 99.99%), urea, and Eu,O; (Sigma-Aldrich, 99.99%)
were used as raw materials. These materials were exactly weighed
and dissolved in deionized water and HNO; solution (Eu,O3)
under magnet-stirred conditions to obtain aqueous solutions Ce**
(0.5 M), Sm** (0.5 M), and Eu®* (0.5 M), respectively. The stoi-
chiometric amounts of the solutions Ce**, Sm*", and Eu®*" were
added together to get 0.5 M aqueous solution and stirred for
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30 min at room temperature. After that, the 20 mol% urea
(compared with the Ce®*" content) was added to the system under
magnetic stirring for 3 h at 80 °C. Next, the system was transferred
to a corundum crucible (200 ml) for combustion reaction at 400 °C
for 4 h. Then, the powder was heat-treated at 800 °C for 4 h in air,
with a heating rate of 3 °C per minute. Finally, obtained phosphor
powder was naturally cooled to room temperature and charac-
terized. The crystal structure and chemical element composition
of the phosphors were determined by X-ray diffraction (Bruker D8
Advance) and energy-dispersive X-ray spectroscopy (JEM 1010,
JEOL Technique, Tokyo, Japan) analyses. The luminescence
properties, lifetime, and ET mechanisms were investigated using
a NANOLOG spectrophotometer (Horiba, USA). Decay curves of
the investigated phosphors were also evaluated.

3. Results and discussion

3.1. XRD analysis

Fig. 1a presents the XRD patterns of Ce0,:0.04Sm>" phosphors
without and co-doped with Eu®". All the diffraction peaks are
consistent with the standard card (PDF # 01-075-8371), con-
firming the formation of single-phase cubic fluorite-type CeO,
with space group Fm3m and no impurity phase is present. The
crystal structure of CeO, includes Ce*" sites with eight coordi-
nates (including eight nearest-neighbor oxygen anions) and 0>~
sites with four coordinates (surrounded by four nearest-
neighbor cerium cations).”® High-intensity diffraction peaks
were observed corresponding to typical planes of cubic phase
CeO, including (111), (200), (220), (311), (222), and (400).
Significantly, the diffraction peaks shifted toward a lower 26
angle (Fig. 1b) after being doped with a larger ionic radius Eu**
(1.06 A) since the ionic radius of Ce*" is 0.97 A, leading to
a lattice expansion,'® confirming that Eu®*" ions have been
incorporated in the Ce*" cites of the CeO, host. Furthermore,
the crystallite size of all investigated phosphors was determined
using the Scherrer equation:*”

0.94

8 cos(6) (1)

where D is crystallite size (nm), 0.9 is Scherrer constant, A is the
wavelength of the X-ray sources (0.15406 nm), § (radians) and 6
(radians) are full width at half maximum (FWHM) and peak
position, respectively. The diffraction peak corresponding to the
(111) plane of CeO, was chosen to calculate crystallite size, as
shown in Table 1. Notably, the crystallite size slightly increases
with increasing Eu®" doping, suggesting a successful introduc-
tion of Eu®* in the systems. These results confirm that the
presence of Eu®" in the systems leads to enhanced crystallinity
and crystallite size, which could improve the emission efficiency
of the phosphors.

3.2. Morphology and chemical element composition
analysis

Fig. 2a and b show the SEM images of CeQ,:0.04Sm>" and
Ce0,:0.04Sm>", 0.04Eu’", respectively. The un-doped sample
(Ce0,:0.04Sm>") shows the agglomeration of spherical-like
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Fig.1 (a) XRD patterns of the investigated samples CeQ,:0.04Sm>*, yEu®* (y = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10), and (b) XRD patterns at 26

angle of 27.5° to 29.5° of all samples.

Table 1 The crystallite size of samples with different Eu*" doping
content

Crystal size

Ce0,:0.04Sm>*, yEu®*  FWHM 20° Cos(f) (nm)
y = 0.00 0.005655  28.60  0.969016  25.3
y =0.02 0.005498  28.58  0.969059  26.1
y =0.04 0.005236  28.54  0.969145  27.3
y =0.06 0.004992  28.52  0.969188  28.6
y=0.08 0.004817  28.52  0.969209  29.7
y=0.10 0.004643  28.50  0.969231  30.8

nanoparticles with an average size of approximately 40.5 nm
(inset of Fig. 2a). Meanwhile, the doped sample (Ce0,:0.04Sm>",
0.04Eu*®") shows uniform grains, with boundary distribution
and an average particle size of about 46.5 nm (inset of Fig. 2b).
This finding suggests the high crystallinity of the obtained
phosphors. However, the morphology of the samples did not
significantly change, indicating that it is not a main parameter
that can influence luminescent properties. Chemical element
composition was analyzed using EDS to confirm the presence of
ions doped into the CeO, host. Fig. 2c shows the presence of Ce,
O, and Sm, which are attributed to the host lattice and doping
ion. Meanwhile, Fig. 2d indicates the presence of Ce, O, Eu, and
Sm with percent composition shown in the inset of Fig. 2d.
Impurity elements were not observed, thereby confirming the
high purity of the obtained phosphors.

3.3. Luminescence properties

3.3.1. Luminescence properties of CeO,:Sm and CeO,:Sm,
Eu phosphors. Fig. 3a shows the photoluminescence excitation
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(PLE) spectra of Ce0,:0.02Sm*" with monitoring emission
wavelengths of 573 and 615 nm. The absorption band from
250 nm to 300 nm is attributed to the charge transfer band from
0’ to Ce"". The highest band absorption with a peak at 360 nm
corresponds to the overlap between the °Hs,,~*D5), transition of
Sm>" and the charge transfer band 0* -Ce**/Sm**. The weak
peak absorption at 405 nm corresponds to the °Hs;,~'F,,
transition of Sm®>". The band absorption with 573 nm emission
is higher than that with 615 nm, indicating the dominant
orange emission of the phosphors. Meanwhile, Fig. 3b presents
the emission spectra of all investigated samples of CeO,:xSm>*
(x = 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12 mol%) monitoring at
excited wavelength of 360 nm. Under 360 nm excitation, the
obtained phosphor showed characteristic emission of Sm?®"
such as at 573 (“Gs;-"Hs)n), 631 (*Gs/,—Hg), and 660 nm (*Gs,
»—°Hyy,). The emission intensity of the samples reached the
maximum value of 0.04 mol% Sm>" doping and then decreased
with increasing Sm>®" content due to the concentration
quenching effect. The sample Ce0,:0.04 Sm®" showed the
highest emission intensity and was selected for synthesis of
Ce0,:0.04Sm>", yEu’* phosphor.

Fig. 4a presents the PLE spectra of samples CeO,:0.04Eu*"
and Ce0,:0.04Sm>", 0.04Eu®" with monitoring emission wave-
length at 631 nm. In the typical two samples, the absorption
bands from 250 nm to 300 are attributed to the charge transfer
band from O* to Ce®, similar to the PLE spectra of
Ce0,:0.04Sm>". The highest absorption band around at 360 nm
corresponds to the overlap between the ®*H;,,~*D5), transition of
Sm’"?® and the charge transfer band (0>~ to Ce*"/Sm*'/Eu*") of
the host lattice (sample Ce0,:0.04Sm>", 0.04Eu*"). Fig. 4a shows
typical absorption peaks at 405 nm corresponding to the °Hj,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 SEM image of Ce0,:0.04Sm*" (a) and Ce0,:0.045m>*, 0.04Eu** (b); and EDS spectra of CeQ,:0.04Sm>* (c) and CeO,:0.045m>*,
0.04Eu" (d).
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Fig. 3 (a) PLE spectra of Ce0,:0.04Sm>" and (b) PL spectra of CeO,:xSm>* (x = 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12 mol%).
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Fig. 4 (a) PLE spectra of samples Ce02:0.04Eu3+ and Ce02:0.045m3+, 0.04Eu®*: (b) emission spectra of CeOz:Sm3+, CeOz:Eu3+, and
Ce0,:Sm>*, Eu®* phosphors; (c) PL emission spectra of samples Ce0,:0.04Sm>*, yEu®* (y = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10); (d)

dependence of the 4Ggp—
ratios of investigated samples as Eu®*
0.04, 0.06, 0.08, and 0.10).

0.04Eu”" was much higher than the Ce0,:0.04Eu’’. Fig. 4b
shows the difference in emission spectra between three phos-
phors (Ce0,:0.04Sm>*", Ce0,:0.04Eu®* and Ce0,:0.04Sm*",
0.04Eu®") under 360 nm excitation. Notably, the Ce0,:0.04Sm**
phosphor emits a dominant peak of yellow light (573 nm), and
the Ce0,:0.04Eu”" phosphor emits an orange light (590 nm);
however, the 0.04Sm*'/0.04Eu®" co-doped CeO, exhibited
a dominant peak red emission (631 nm). The

34514 | RSC Adv, 2023, 13, 34510-34519

6H5/2 (Sm**) and 5D0—7F1/7F2 (Eu®*) transitions on the Eu®* doping content; (e) red/orange (R/O) emission intensity
content increased; (f) CIE coordinate chromaticity of Ce05:0.045Sm**, yEu®* phosphors (y = 0.00, 0.02,

photoluminescence spectra of all investigated samples are
shown in Fig. 4c. Under 360 nm excitation wavelengths, the
Ce0,:0.04Sm>", yEu®* (y = 0, 0.02, 0.04, 0.06, 0.08, and 0.10)
phosphors emitted strong orange-red band at 590 nm (*Dy-"F,)
and 610-631 nm (°Dy-"F,) of Eu®'. Notably, the emission
intensities at 573 nm corresponding to the *Gs/,~°Hjy), transi-
tion of Sm** decreased with increasing Eu®*" doping content. By
contrast, the emission intensities at 631 nm depended on Eu®*

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 CIE chromaticity coordinates, color purity, and CCT values of all investigated samples

Chromaticity coordinates Color purity

Samples (x,¥) (%) CCT (K)
Ce0,:0.04Sm (0.565, 0.425) 77.60 1847
Ce0,:0.04Sm, 0.02Eu (0.614, 0.383) 86.93 1790.8
Ce0,:0.04Sm, 0.04Eu (0.622, 0.375) 88.95 1885.8
Ce0,:0.04Sm, 0.06Eu (0.624, 0.371) 89.36 1936.2
Ce0,:0.04Sm, 0.08Eu (0.626, 0.370) 89.74 1974.8
Ce0,:0.04Sm, 0.10Eu (0.621, 0.366) 88.10 1973.1

content and reached the maximum value at 0.04 mol% Eu®"
doping (Fig. 4d). Hence, the red-emitting phosphors
(Ce0,:0.04Sm**, 0.04Eu’*) could be excited by 360 nm
commercial LED chip, making it suitable for solid lighting
applications. Furthermore, the red/orange (R/O) emission
intensity ratios of the Ce0,:0.045Sm**, yEu®" (y = 0, 0.02, 0.04,
0.06, 0.08, and 0.10) phosphors can estimate the asymmetry
around the Eu®" sites in the host lattice,?® which was calculated
as shown in Fig. 4e. The R/O ratio increases with the enhance-
ment of Eu®" content, confirming the asymmetry of the crystal
field increased. These results supported increasing the electric-
dipole transition probability of the Eu**, resulting in dominant
red emissions. In addition, the Commission Internationale de
I'Eclairage (CIE) chromaticity coordinates of resulted phos-
phors (Fig. 4f) were calculated from their emission spectra, as
shown in Table 2. Ce0,:0.04Sm**, 0.04Eu*" shows CIE coordi-
nates (0.622, 0.375) close to pure red."* Furthermore, these CIE
coordinates were used for calculating the color purity of the
investigated phosphors, which can be described as eqn (2):*

\/(X - x) (- n)

(xg = xi)° + (va =)’

x 100%

Color purity =

(2)

where (x, y) and (x; = 0.3333, y; = 0.3333) are the color coordi-
nates of the investigated samples and the white light source,
respectively; (xq, yq) corresponds to the color coordinates of the
dominant wavelength.** These values (x, y), (xi, ¥i), and (x4, Ya)
were plugged into eqn (2), and the color purity of the resulting

~
o
—

Xcm =573 nm
A, . =360 nm

5

Ce0,:0.04Sm, yEu

—e—y=0.00
y=0.02
y=0.04

——y=0.06

1.701 ms
0.788 ms
0.653 ms
0.512 ms

phosphors is displayed in Table 2. The color purity of the
samples increased with enhancing Eu®*" doping content and
reached a maximum value of 89.74% (Table 2). The findings
confirm the high efficiency ET from Sm>®" to Eu®* in the systems
developed. Furthermore, the correlation of phosphors with
color temperature (CCT) was calculated to explore the nature of
the emitted light by using McCammys' equation:*

CCT = 5520.33 — 6823n + 35251n% — 4491° 3)
where (x, y) is the CIE coordinates of all samples; (x. = 0.338, ye
= 0.186) is the chromaticity epicenter; n = (x — x.)/(y — ye). The
resulting CCT values are shown in Table 2. The values increased
from 1790.8 K to 1973 K with increasing Eu®*" doping content.

3.3.2. Decay curves and ET efficiency of all obtained
phosphors. The decay curve of Sm** in Ce0,:0.04Sm**, yEu**

Table 3 Fitting decay curves for Ce0,:0.045m>", xEu®* (x = 0, 0.02,
0.04, 0.06, 0.08 and 0.10 mol%)

Taverage

Ce0,:0.04Sm, yEu A, Ty A, T, (ms)

y = 0.00 82.25 1.11 227 0.23 1.701
y = 0.02 319.7 1.12 926 0.23 0.788
y = 0.04 932 0.21 260 0.99 0.653
y = 0.06 131 0.7 743 0.17 0.512
y =0.08 166.9 0.85 746 0.2 0.319
y =0.10 653.6 0.15 76.76 0.62 0.309

Intensity (a.u.)
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(a) Decay curve of samples monitored at the excitation wavelength of 360 nm and the emission wavelength of 573 nm. (b) Lifetime of all
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Table 4 Comparison of ET efficiency from Sm** to Eu®* on the proposed phosphor and other existing phosphors

y 9
Phosphors Content of Eu*" (mol%) ET efficiency (%) References
CeO,:Sm*", Eu®* 0.04 84.00 This work
La,MgTiOg:Sm*", Eu* 0.20 73.50 35
YPO,:Sm**, Eu** 0.08 65.00 16
Ca,GdNbOg:Sm**, Eu** 0.30 28.60 12
Sr,Sb,0;,:Sm**, Eu** 0.09 42.40 7
Sr3In,WO,:Sm*", Eu®* 0.02 62.69 18
Sr;Y(BO;)3:Sm*", Eu®* 0.07 55.69 33

phosphor (y = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) can be used
to study the emission mechanism and confirm the efficiency of
ET from Sm®* to Eu®". The luminescence decay curves associ-
ated with the transition *Gs/,~-°Hs/, of Sm*" of all samples were
monitored at the emission wavelength of 573 nm and the
excitation wavelength of 360 nm (Fig. 5a). The radiative lifetime
(1) of the samples well fitted by bi-exponential function:*

¥y =Y + Alefr/rl + A2€7t/r2 (4)

where y is the emission intensity at time ¢; y, is the initial
emission intensity; A; and A, are constants; 7, and 7, are decay
times. 7, is the decay component attributed to Sm*" on the
surface or near defect sites. By contrast, 1, is the decay
component associated with Sm*" sites substituted for Ce*" ions
on the CeO, host lattice.*® The average lifetimes () can be
described as eqn (5):**

_ A1+ Arty?
AT+ AT

(5)

The 7 values are 1.701, 0.788, 0.653, 0.512, 0.319, and 0.303 ms,
corresponding to Ce0,:0.04Sm>", yEu®* phosphors (y = 0, 0.02,
0.04, 0.06, 0.08, and 0.10 mol%, respectively), as shown in Table
3. The average lifetime decreased with increasing Eu®*" doping
content, thereby confirming the ET from Sm*" to Eu’®*.'>3%
Furthermore, ET efficiency was estimated using eqn (6):*
nr =1 Tso (6)
where 75 and g are the lifetimes of Sm*" with and without Eu®*,
respectively. The calculated ET efficiency values are shown in
Fig. 5b. The ET efficiency from Sm*" to Eu’" increased with
increasing doping content of Eu** and reached the maximum
value of 84% with 0.10 mol% Eu®". The ET efficiency in this
work is significantly higher than in other previous works (Table
4). These results indicated that the phosphor conferred it as
a suitable red-emitting phosphor for WLEDs.
3.3.3. ET mechanism. The exchange interaction or multi-
polar interaction is responsible for the main ET mechanism in
the Ce0,:Sm>", Eu**, which is estimated by the average critical

501 » Experimental ©
Fitting curve

40-
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Fig. 6 Dependence of the /so/ls intensity ratio of Sm** on C®3, C83, and C!° in Ce0,:0.045Sm>*, yEu®* phosphors (y = 0.00, 0.02, 0.04, 0.06,

0.08, and 0.10).
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Fig. 7 (a) Schematic energy-level diagram of Ce0,:0.045m>*, yEu®* phosphors with excitation, emission, and energy transfer; (b) the overlap
between the excitation spectra of sample CeO,:0.04Eu®* and the emission spectra of sample CeO,:0.045m>*.

distance (Rc) between Sm** and Eu®". Notably, the multipolar
interaction is attributed to the Rc value higher 5 A and when the
Rc is about 5 A corresponding to exchange interaction.?” The R
value can be determined by eqn (7):*

6V 173
Re = chc N} @)

here, the cell volume V is 430.32 A%; the critical doping content
Xc is 0.08; N is the available host cations in the cell.*® Putting all
these values in the eqn (7), the R¢ value in Ce0,:0.04Sm*",
0.04Eu®" was observed to be ~13.7 A, thus, the ET mechanism
from Sm*" to Eu®" occurs by multipolar interaction. In this case,
the Dexter theory was explored to evaluate the multipolar
interaction between Sm>" and Eu®'.* Therefore, the rate of ET
from Sm®* to Eu®** against the concentration of Eu*" can be
estimated as follows:*

5o o e (®)
Is

where C is the total doping ion content (Sm*" and Eu*"). Ig, and
Is are the emission intensity of Sm*" without and with Eu®*
doping. The n is an electric multipolar character equal to 6, 8,
and 10, corresponding to dipole-dipole, dipole-quadrupole,
and quadrupole-quadrupole interactions.* Fig. 6 shows the
relationship between C™? and I/Is, including the values of the
fitting factor R®. Previous works'®*3>% indicate that the R’
highest value (close to 1) determines the ET mechanism in the
system. Therefore, the R* highest value in this work is 0.986,
indicating the ET mechanism in CeO,:Sm**, Eu*" correspond-
ing to quadrupole-quadrupole interaction.

3.3.4. Energy level diagram of the phosphors. Furthermore,
the ET process from Sm** to Eu*" can be explained using an
energy level diagram (Fig. 7a). Under 360 nm wavelength exci-
tation, the electron at the °Hj, state of Sm®*" absorption
photons move to the “D;, level. In addition, the population of
the “Ds, level is enhanced by absorption due to the charge
transfer from 0>~ to Ce** of the host lattice. The electrons in the

© 2023 The Author(s). Published by the Royal Society of Chemistry

Dy, level relax to the “Gs, state through non-radiation tran-
sition. Finally, the electrons at the *Gs/, of Sm*" transfer energy
to the °Dj state of Eu®" and then go back to the ground state 'F;
(j = 0, 1, 2, and 4), thereby producing intense red emission
band. The ET was confirmed by the spectral overlap between the
excitation of Eu** and the emission of Sm®", as shown in Fig. 7b.

4. Conclusion

Ce0,:Sm*" and Ce0,:Sm**, Eu*" phosphors were successfully
synthesized using solution combustion. The XRD analysis
confirmed the formation of single-phase cubic CeO, with space
group Fm3m. Under 360 nm excitation, CeO,:Sm** phosphors
emitted strong yellow-red band at 573 and 615 nm, corre-
sponding to the *Gs/,-°H; (j = 5/2, and 6/2) transitions of Sm®".
Meanwhile, CeO,:Sm>", Eu*" showed the emission characteris-
tics of Sm*" (573 nm) and Eu®** at 590/610-631 nm. The pho-
toluminescence spectra showed the ET from Sm®*' to Eu®*
because of the small energy difference between the *Gs/, level of
Sm®" and the D, level of Eu’* ions. Significantly, the decay
kinetics of the *Gs/,~°Hj), transition (Sm**) in Ce0,:Sm**, Eu**
confirmed the high-efficiency ET from Sm** to Eu*" (up to 84%).
The quadrupole-quadrupole interaction between Sm*" and
Eu®" was responsible for the ET mechanism. These results
indicate that the high-efficiency ET from Sm*" to Eu®*" in
Ce0,:Sm**, Eu®" phosphors are an excellent strategy to improve
the emission efficiency of Eu*".
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