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The level of free bilirubin is a considerable index for the characterization of jaundice-related diseases.

Herein, a biosensor was fabricated via the immobilization of bilirubin oxidase (BOx) on graphene oxide

(GO) and polyaniline (PANI) that were electrochemically co-precipitated on indium tin oxide (ITO)

conductive glass. The structural enzyme electrode was characterized by FTIR, XRD, and Raman

spectroscopy, while the spectral and thermal properties were investigated by UV-vis and

thermogravimetric analysis (TGA). Owing to the activity of the fabricated BOx/GO@PANI/ITO biosensor,

it could detect free bilirubin with good selectivity and sensitivity in a low response time. The

electrochemical response was studied using electrochemical impedance spectroscopy (EIS) and cyclic

voltammetry (CV). At polarization potential 0.2 V vs. Ag/AgCl, the fabricated sensor illustrated a response

in only 2 s at 30 °C and pH 7.5. The LOD and LOQ for the BOx/GO@PANI/ITO biosensor were calculated

and found to be 0.15 nM and 2.8 nM, respectively. The electrochemical signal showed a linear response

in the concentration range 0.01–250 mM. At 5 °C, the biosensor demonstrated a half-time of 120 days,

through which it could be utilized 100 times at this temperature conditions. By using a common

colorimetric method, the data on bilirubin levels in serum showed a determination coefficient (R2) of 0.97.
1. Introduction

Most of the bilirubin synthesized comes from the metabolic
breakdown of hemoglobin, and it is classied into two kinds:
direct bilirubin and free bilirubin.1–3 The latter is a substantial
index for determining the toxicity of bilirubin and an concen-
tration above 50 mM may cause hemolysis, hepatitis, or
jaundice-related cirrhosis.4–7 Moreover, newborn livers, partic-
ularly those of preterm babies, are not developed enough to
remove or get rid of free bilirubin, and therefore neonatal
jaundice is considerably common. The high concentration of
free bilirubin can cause brain damage risk in newborns or even
death.8–11 Advanced instrumentation with a high precision, fast
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response, low-cost, and ease of operation is required for
studying the biological and characteristic importance of free
bilirubin.12–14 Spectroscopic measurements using a diazo reac-
tion is the most commonly utilized free-bilirubin quantication
method but requires the pretreatment of samples and long
reaction times.15–19 The uorescence analysis method is selec-
tive and highly sensitive toward the free type,20–23 but huge and
expensive spectral tools and trained operators are needed.
Electrochemical sensors have emerged as powerful and poten-
tial tools for quantifying free bilirubin, and because of their low
cost, ease of utilization, and small sizes, they are potential
candidates for medical applications.24–27 For example, electro-
chemical sensors have provided quick and simple methods for
the detection of free bilirubin by utilizing bilirubin oxidase,28–31

which coverts bilirubin into biliverdin. However, biosensors
have the disadvantages of poor stability and high cost.32–35 To
overcome these obstacles, non-enzymatic biosensors utilizing
nanomaterials have gained much interest because of their high
activity, stability, and low cost. For example, Au and Ag
nanoparticles36–39 have been reported as substituents for BOx in
the free-type catalytical oxidation for biosensing. However, the
construction of gold and silver non-enzymatic catalysts with
high activity prepared via complicated steps as an improvement
over inefficient, simple free-bilirubin biosensors is still
challenging.40–42 The utilization of nanomaterials to enhance
electrochemical sensor performance has been very common in
© 2023 The Author(s). Published by the Royal Society of Chemistry
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recent years. Among the various nanomaterials, graphene and
its derivatives have emerged as interesting materials owing to
their high electrical conductivities and relatively low cost of
preparation.43–45 Graphene has a large surface area, but the
interactions between graphene sheets cause an aggregation
which efficiently decreases its surface area. To overcome this
issue, doping graphene with other nano oxides is proposed.46–48

Graphene is composed of carbon atom rings with sp2 hybrid-
ization and active oxygen groups. GO makes the surface of
graphene active leading to the association of functional
groups.49–52 The prompt electron transport occurs at the surface
of the edge planes when contrasted to the essential planes for
the biosensors prepared with graphene-dependent
materials.53–55 These defects in the modied graphene can be
exploited for biosensor applications.56–59 Polyaniline (PANI) is
generally utilized as a conducting polymer in biosensors due to
its inveterate stability in atmospheric conditions.60–62 Polyani-
line has a large surface area for congealing enzymes or nano-
particles because of its porous structure. In addition, it is a good
material for biosensor applications due to its stability and
excellent electric conductivity.63–66 To prevent agglomeration or
aggregation, GO was doped into the PANI to increase the
interaction between GO and PANI materials. A nanocomposite
of GO nanosheets with PANI (GO@PANI) is anticipated to show
higher conductivity compared to the individual components to
improve the response of biosensors in terms of stability,
sensitivity, and electric conductivity. In this work, we promote
a new strategy for immobilizing BOx on the GO@PANI modied
indium tin oxide (ITO) coated glass plate electrode. Moreover,
optimization and characterization of the prepared electrodes
and their application for determining bilirubin in the blood
serum were also performed.
2. Experimental
2.1 Materials

All materials used in preparing the active electrodes were
utilized without any future purication. BOx (15 IU mg−1), tris
hydrochloric acid, bilirubin, and glutaraldehyde were supplied
by Sigma Aldrich Co. Sodium nitrate, 4-amino phenzophenone
potassium, sodium sulphate ferrocyanide, phenol, and horse-
radish were purchased from Fluka Co. Ammonium persulfate,
graphite, potassium permanganate, hydrogen peroxide, and
aniline were procured from Merck Co. Indium tin oxide (ITO)
conductive glass with transmission 85% and resistance
approximately 7 Ohm sq−1 was supplied by Sigma Aldrich.67–69
2.2 Assay of free BOx

The examination depends on measuring hydrogen peroxide
(H2O2) that is released as bilirubin is oxidized by BOx.34,70,71 For
15 min and 37 °C, (0.8 ml, 0.25 M, pH = 8.5) of tris hydrochloric
acid, (0.1 ml, 34 mm) bilirubin solution, and (0.1 ml, 5 Uml−1) of
BOx were mixed together. Then, (1 ml, 0.45 M, pH = 7.0) of
sodium phosphate, containing 40 mm 4-aminophenazone,
10 mg horseradish, and 1000 mg phenol were added to the
mixture and kept incubated for 15 min at 37 °C. Finally, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
absorption of the reaction mixture solution was read at 520 nm
and the H2O2 concentration was extrapolated from the
standard curve.

2.3 Synthesis of GO and GO-PANI nanocomposite

Graphite was converted to stable graphene oxide (GO) nano-
sheets by following the modied Hummers' method reported in
our recent work.35,72,73 The polyaniline (PANI) chains were doped
on the GO nanosheets during the in situ oxidative polymeriza-
tion using ammonium persulphate as an initiator. For this
purpose, (10 ml, 2 M) of HCl containing 3 ml of aniline solution
was prepared under ice conditions, and 30 ml of aqueous GO
solution (10 g/500 ml) was added to the solution. Then, the
mixture was stirred for 30 min in an ice bath for 30 min. Aer
that, (20 ml, 1 M) ammonium persulphate was dripped into the
mixture until a black-green precipitate was formed, which
conrmed the formation of PANI. Finally, the formed precipi-
tate was isolated and washed 4 times with distilled water and
dried at 80 °C for 2 h.

2.4 Electrodeposition of GO-PANI onto ITO conductive glass

By using cyclic voltammetry, GO-PANI was placed onto the ITO
substrate (50 mm × 50 mm × 1.2 mm). Firstly, the ITO
substrate was immersed in a solution of 25 mg of GO, (15 mM, 3
ml) aniline dispersed in 5 ml of 50 mM NaClO4. Then, the
potential range of −0.2 to +0.8 V was applied for 15 polymeri-
zation cycles with scanning of 100 mV s−1. The cycle number
affects the production of the nanocomposite lm on the elec-
trode surface.

2.5 Preparation of enzyme electrode (BOx/GO@PANI/ITO
electrode)

A mixture of glutaraldehyde (GA), BSA, and BOx was immobi-
lized on the surface of the GO@PANI/ITO electrode to fabricate
an enzyme electrode. To prepare 15 mL of the mixture, 5 mL of
glutaraldehyde (1.25% v/v in distilled water) was added to the
solution containing 0.4 mg BSA and 0.1 BOx in (10 mL, pH 7, 0.1
M) the phosphate buffer solution. 5 mL of the crosslinked
solution of BSA and BOx was dropped on the GO@PANI/ITO
electrode surface and dried at 30 °C. Finally, aer 24 h, the
prepared electrode was washed with 5 ml of the phosphate
buffer solution to remove the unbound enzyme.74–76

2.6 Response measurement and optimization factors of the
BOx/GO@PANI/ITO electrode

Cyclic voltammetry measurements were carried out utilizing
three electrodes with three mixture solutions as an electrolyte
containing (10 ml, 0.1 M) KCl, (5 ml, 0.1 M, pH 7.5) sodium
phosphate buffer, and (0.1 ml, 0.1 mM) of bilirubin with
a potential range between −0.4 to 0.4 V. To determine the
optimum concentration of the enzyme, the reaction was
executed at different enzyme concentrations in the range of 100
to 500 IU. Many factors, such as pH impact, bilirubin concen-
tration, temperature, and incubation time were studied to
optimize the performance of the BOx/GO@PANI/ITO electrode.
RSC Adv., 2023, 13, 36280–36292 | 36281
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The optimum pH was obtained in the range 7–10, while the
temperature was set in the range of (25 to 50 °C) in increments
of 5 °C. For monitoring the response of the fabricated BOx/
GO@PANI/ITO electrode at different bilirubin concentrations,
the range of 0.01–250 mm was studied.

3. Results and discussion
3.1 Structural characterization

FTIR spectra of GO and GO-PANI nanocomposite are shown in
Fig. 1a and b, respectively. In Fig. 1a, two peaks centered at 1643
and 1735 cm−1 correspond to C]C and C]O stretching bands,
respectively.36,77–79 A broad band located at 3420 cm−1 is
assigned to O–H deformation in the COOH group. Moreover,
a strong band located at 1118 cm−1 is due to the C–O in the
epoxide group (C–O–C). The FTIR spectrum of PANI deposited
on GO is illustrated in Fig. 1b. Two absorption peaks centered at
1474 and 1622 cm−1 correspond to quinonoid and benzenoid
C]C groups, respectively. In addition, a new peak appearing at
1300 cm−1 is assigned to C–N due to the covalent bonding of
PANI with GO sheets during the reaction with the epoxide
ring.37,80,81

UV-vis spectra of GO and GO-PANI nanocomposite are
depicted in Fig. 2. The GO spectrum shows two absorption
bands located at 219 and 307 nm, which correspond to p/ p*

(C]C) and n / p* (C]O) groups, respectively.38,82–84 For the
GO-PANI spectrum, the absorption band of p / p* almost
disappeared aer incorporating PANI, which indicated precip-
itation of PANI over GO sheets, causing weakening of the
absorption of the benzene rings. Moreover, a new absorption
band is shown centered at 300–500 nm, which is related to the
binding of PANI with GO sheets.39,85–87

Raman spectra of GO and GO-PANI nanocomposite are
demonstrated in Fig. 3. Two characteristic bands are associated
with the defect density of GO sheets and sp2 graphitic carbon
bonds, which are centered at 1350 and 1586 cm−1, called D and
G-bands, respectively. For GO-PANI, the results show red shi-
ing in the D band from 1350 to 1333 cm−1, which indicates the
p / p* interaction of PANI with GO sheets.40 On the other
hand, the results showed that the 2D band intensity was
decreased aer the precipitation of PANI over GO indicating the
presence of more PANI layers than GO layers and the reduction
of GO by PANI.

To conrm the structure of the prepared GO-PANI, XRD
analysis of pure GO, PANI, and GO-PANI nanocomposite was
performed and the results are shown in Fig. 4a–c. As shown in
Fig. 4a, a strong and sharp diffraction peak centered at 2q =

12.53° related to the interlayer spacing of 0.61 nm of pure GO
was observed.41 The XRD pattern of pure PANI is shown in
Fig. 4b. Two diffraction peaks located at 2q = 19.9° and 25.20°,
corresponding to (020) and (200) crystal planes of the emer-
aldine salt form were observed. For GO-PANI nanocomposite, it
can be noted that the diffraction peak related to pure GO is
shied from 12.53 to 8.76 nm, which is assigned to the distance
of 1.02 nm, as shown in Fig. 4c. The expansion in the distance
of layer is due to the interaction of PANI between the sheets
of GO.42
36282 | RSC Adv., 2023, 13, 36280–36292
To investigate the thermal stabilization and the impact of
the incorporation of PANI chains into the GO sheets, TGA/DTG
analysis was performed and the results are shown in Fig. 5.
Derivative thermogravimetry (DTG) plot analysis of GO indi-
cated four major steps for losing the mass at zones (1) 100–115 °
C, (11) 115–170 °C, (III) 170–300 °C, and (IV) 400–550 °C, which
are related to the removal of adsorbed water on GO surface,
removal or decomposition of hydroxyl group, decomposition of
epoxy and carboxylic acid functional group, and nally analysis
or decomposition the skeleton carbon of GO, respectively.43 At
600 °C, the remaining weight was about 13.12% from GO. In the
same Fig. 5, the results exhibited the TGA/DTG of GO modied
by PANI. The results showed no clear loss of weight step up to
350 °C, which indicates an increase in the thermal stability of
GO during the interaction of PANI with oxygenic functional
groups of GO. Above 340 °C, the results show an increase in the
weight loss of PANI-GO nanocomposite, which is due to the
decomposition of PANI chains.44 Moreover, at 600 °C, the
remaining weight of the nanocomposite was approximately
17.25%.

3.2 Construction of the bilirubin biosensor

The prepared enzyme electrode based on the immobilization of
BOx on GO nanosheets/PANI nanocomposite modied ITO
electrode is shown in Fig. 6. By using a simple electrochemical
method, the mixture of GO and PANI was co-precipitated on the
bare ITO conductive glass. Aer that, several modications were
performed on the GO@PANI/ITO electrode by adding an
extensively crosslinked solution of BOx-BSA/GA on the surface
of the electrode. The linking was performed by attaching the
CHO group of GA with the NH2 group on the surface of the
enzyme and attaching another CHO group with NH2 of BSA,
thus attaching or crosslinking the product to a stable complex
of BOx. The cyclic voltammetry (CV) indicated that the
GO@PANI/ITO electrode promoted the currents compared with
the PANI/ITO electrode, which indicated high surface area and
more charge transfer pathway provided by the GO nanosheets,
thus improving the response of the biosensor and boosting the
sensitivity.

3.3 Electrochemical characterization

To study the alteration in the electrode surface impedance,
electrochemical impedance spectroscopy (EIS) and cyclic vol-
tammetry measurements were carried out. This tool is sensitive
to the sequential stages of the biosensor electrode fabrication,
which emphasizes successful modication of the electrode. The
EIS spectrum of the fabricated electrodes is shown in Fig. 7. The
results showed two frequencies; a lower frequency corre-
sponding to the Warburg diffusion and a high frequency
assigned to the Nyquist plot which equaled the resistance of the
charge transfer (Rct).45,88 The Nyquist plot was created by using
the fabricating electrodes and electrolyte solution containing
0.1 M sodium phosphate buffer and 5mMK4Fe(CN)6/K3Fe(CN)6
with ratio (1 : 1) as the redox probe. From the Nyquist plot, the
results showed that Rct values of bare ITO, GO@PANI/ITO, and
BOx/GO@PANI/ITO electrodes were 730, 300, and 515 U,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 FTIR spectra of (A) GO and (B) GO@PANI.
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respectively, which indicate that the GO@PANI/ITO electrode
has more conductivity, lower resistance, and more electron
transfer efficiency than the bare ITO electrode. Moreover,
incorporating GO nanosheets with PANI provides more capac-
itance andmany active sites for faradaic reactions. On the other,
the results demonstrated that the Rct value of BOx/GO@PANI/
ITO is higher than that of GO@PANI/ITO aer immobilization
of BOx, which may be back to the hydrophobic materials and
high thickness that causes more electron transfer resistance.

By using cyclic voltammetry (CV) analysis, a comparison
between GO, PANI, and GO-PANI-modied ITO electrodes was
performed. The measurements were carried out using 0.1 M
sodium phosphate buffer and 5 mM K4Fe(CN)6/K3Fe(CN)6 with
a ratio (1 : 1) as an electrolyte solution, and using three elec-
trodes GO, PANI, and GO-PANI modied ITO in separate
experiments. The CVs were recorded in different scan rates with
© 2023 The Author(s). Published by the Royal Society of Chemistry
a potential window range of −0.4 to +0.4, as illustrated in
Fig. 8A. The results showed that the current values of GO/ITO
and PANI/ITO are 0.14 mA and 0.16 mA, respectively. The
current response of CV was increased for the electrode modied
by GO nanosheets as shown in curve a, in which the deposition
of GO led to a faster increase in the intensity of the current as
a result of increasing the active area of the electrode. Fig. 8B
shows the consecutive fabrication of the enzyme electrode that
was investigated using CV measurements at a potential equal to
+0.2 V. The data did not show any redox peaks for bare ITO
electrodes, as shown in Fig. 8B (black line), while it spotted the
current characteristic for the PANI/ITO electrode aer 10 scan
rates (Fig. 8B/blue line). As shown in Fig. 8B (red line), the CVs
of GO/PANI/ITO showed an increased level of current with good
redox peaks, corresponding to the presence of GO nanosheets.
At 0.15 mA, the BOx/GO/PANI/ITO electrode showed a redox
RSC Adv., 2023, 13, 36280–36292 | 36283
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Fig. 2 UV-vis spectra of GO and GO@PANI.

Fig. 3 Raman spectra of GO and GO@PANI.

Fig. 4 XRD patterns of (A) GO, (B) PANI, and (C) GO@PANI.

Fig. 5 TGA and DTG of GO and GO@PANI.
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peak assigned to H2O2 oxidation via immobilized BOx, as
demonstrated in Fig. 8B (green line).

3.4 Bilirubin biosensor response

The response investigation of the BOx/GO@PANI/ITO electrode
in the concentration of bilirubin from 0.01 to 250 mm utilizing
the phosphate buffer solution is illustrated in Fig. 9A. The results
indicated a linear relationship, which is in agreement with
earlier studies.46 Fig. 9B shows the plots of the current–time for
different bilirubin concentrations. The voltammetric calcula-
tions were performed aer the addition of 250 mm of bilirubin
concentration. A considerable increase in the current was not
noted when the bilirubin concentration was increased beyond
250 mM, indicating that the fabricated BOx/GO@PANI/ITO elec-
trode reached a saturation level at 250 mM. The results indicated
that the time demanded to achieve 95% of the steady-state
response was 2.5 s, which indicated a fast process. Moreover,
the LOD and LOQ values of the fabricated sensor were calculated
and the results showed that they were 0.15 and 2.8 nM,
36284 | RSC Adv., 2023, 13, 36280–36292
respectively. In addition to this, the fabricated biosensor alter-
ation of quartz crystal is performed utilizing hydroxyapatite lm
during the molecular imprinting process using the sol–gel
surface technique.46
3.5 Biosensor optimization

To examine the GO amount that can be precipitated with PANI,
its concentration ranged from 0.1–10 mg ml−1 in the NaClO4 +
aniline + GO nanosheets solution and the response of the
chronoamperometric current was registered and summarized
in Table 1. Although the anodic current increased with
increasing concentration of GO nanosheets, following changes
in the morphology of the GO/PANI nanocomposite, the essen-
tial improvements were not noted across the higher GO nano-
sheet concentrations. Then, a 5 mg ml−1 concentration was
used for fabricating the working electrode.47 The electro poly-
merization mechanism of aniline marked by the oxidation of
aniline monomer formed a solution rich in aniline cations at
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 A schematic demonstration of the fabrication steps of the bilirubin biosensor.

Fig. 7 The Nyquist plots of fabricated electrodes.

Fig. 8 CV of (A) GO/ITO and PANI/ITO electrodes; (B) CV of the fabrica
bilirubin.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the surface of electrode. This unstable aniline cation may react
with anions present in the solution to produce soluble products
or may bond with GO nanosheets by van der Waals forces or
hydrogen bonding.48 GO nanosheets have a high surface area,
which provides multiple xed sites for soluble products with
low molecular weight. In all the experiments, the voltage value
of +0.2 V was used as the standard, where the best response of
the fabricated biosensor was noted. The impact of temperature,
pH, bilirubin concentration, and incubation time were esti-
mated as these factors impacted the conditions of the experi-
ment in response to the fabricated biosensor. The results
indicated that the optimum temperature and pHwere 30 °C and
7.5, respectively. Compared to the reported studies,48,89 the
optimum pH optima was lower than that of the controlled
bilirubin based on the indirect electrochemical response. On
the other hand, the results showed that the obtained relation-
ship between the response of the biosensor and bilirubin
concentration (0.01–250 mm) was linear, and the response
ted electrodes in sodium phosphate buffer at pH 7.5, 30 °C in 0.1 mM

RSC Adv., 2023, 13, 36280–36292 | 36285
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Fig. 9 CV of (A) the BOx-GO@PANI/ITO electrode at different concentrations in the sodium phosphate buffer at pH 7.5 and a scan rate of 50mV.
(B) Chronoamperometric curves investigated at different concentrations of bilirubin.

Table 1 The current response at different concentrations of the
nanocomposite

Solution [NaClO4 (100
mM + 30 mM aniline)]

Concentration
of GO Np (mg L−1)

Current
(mA)

NaClO4 + aniline 0.1 0.17
1 0.26
2.5 0.29
5 0.31
10 0.32
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remained constant aer 250 mm. The fabricated biosensor dis-
played a high sensitivity of 0.905 mA mm−1. Moreover, the
response of the biosensor was quick and was recorded as 2 s
from 95% of the constant current for each point.
Fig. 10 The relationship between the fabricated biosensor and that
measured using a standard photochromatic method.
3.6 Bilirubin detection in real samples

In the serum samples of healthy and patients with jaundice
(ESI† Table. 1), the levels of bilirubin measured using the fabri-
cated biosensor ranged from 0.2–15 and 20–60 mm, respectively.
To estimate the precision of this method, twenty samples were
contrasted for detecting bilirubin using the BOx/GO@PANI/ITO
electrode (y) and the common colorimetric method (x). The
results show that the correlation analysis displayed a linear rela-
tionship by utilizing a regression equation, with determination
coefficient R2 equal to 0.997, and the equation of regression was y
= 1.035x− 2.157, as shown in Fig. 10. These results show that the
performance of the fabricated biosensor in serum samples
showed a good response compared with another biosensor.

To compare the difference response of amperometry, many
interferences, involving 5 mM of glucose, uric acid, glucine,
ascorbic acid, and creatinine were added. For all the measure-
ments, the constants were bilirubin conc. 100 mM, pH7.5, and the
sodiumphosphate buffer solution. The results demonstrated that
the activity of interference was reduced as follows: 2% glucose,
36286 | RSC Adv., 2023, 13, 36280–36292
4% uric acid, 3% glycine and ascorbic acid, and 1% creatinine, as
shown in Fig. 11A, which indicates that there was no impact on
the practical impact on the response of the biosensor.

To investigate the stability of the fabricated biosensor with
time, the current response was determined by storing the
biosensor at 5 °C. The results (Fig. 11B) show that the fabricated
enzyme electrode maintained 50% of the initial activity aer
using it 100 times for 120 days, illustrating considerable
agreement with those reported earlier.49 Four enzyme electrodes
were created and estimated individually for the effect of storage
at 5 °C. The results (Fig. 11C) show that no considerable
difference in the stability of storage of fabricated electrode was
noted marking a reproducible and satisfactory performance
showing high stability to a higher frequency for utilizing the
fabricated electrode.

Compared with the anterior studies or analytical methods,
for example, the piezoelectric and electrochemical methods
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 (A) The effect of the interferences on the activity of the fabricated biosensor, (B) response of the fabricated biosensor under 5 °C storage
conditions, and (C) the effect of storage stability on four similar fabricated biosensors.

Table 2 A comparison of analytical properties of bilirubin biosensors

Electrochemical
sensor type Sensing modied electrodes

Limit of detection
(mM)

Detection linear
range (mM)

Response
(s)

Storage stability
(days) Ref.

Amperometric (SiO2@ZrONPs)/chitosan/Au 0.02 0.02–250 2 120 45
Amperometric Ppy/PANI lm 0.01 0.01–320 2 60 46
Piezoelectric TiO2 lm 0.05 0.1–50 1800 90 47
Electrochemical Au/MWCNTs 0.1 1–100 5 60 48
Amperometric PEI lm 0.04 0.1–50 5 60 49
Amperometric Screen printed electrodes functionalized

with carbon nanotubes and graphene
0.0001 0.1–600 ND 28 90

Amperometric Europium doped yttrium oxide 0.041 0.0–60 ND ND 91
Piezoelectric Paper-based screen-printed electrodes

functionalized with silver nanoparticles
0.1 0.1–90 ND ND 92

Electrochemical Molecular imprinted polymer
and ferromagnetic nanocomposite

0.15 0.03–0.13 ND ND 93

Amperometric BOx/GO@PANI/ITO 0.01 0.01–250 2 120 Our study

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 36280–36292 | 36287
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(Table 2), this sensor showed good sensitivity, lower limit of
detection, and faster achievement for the detection of bilirubin.
The linear range of this enzyme biosensor BOx/GO@PANI/ITO
for bilirubin was approximately 0.01 to 250 mm. The unifor-
mity of the results in our method compared to the standard
method was noted. The fabricated biosensor BOx/GO@PANI/
ITO showed application for the point-of-care testing for rapid
in vitro characterization of jaundice.

4. Conclusions

In this work, an enzyme biosensor that can measure the free
type of bilirubin with good selectivity and sensitivity in serum
was fabricated. The synthesized GO/PANI nanocomposite
combined the high transfer ability of electrons, hence noting
enhancement of the sensor performance. The utilization of
BOx/GP@PANI modied ITO has expedited the biosensing of
bilirubin providing analytical improvement from the limit of
detection that is 0.1 nM and a wide range of 0.01–250 mM for
working concentrations, fast response (3 s) and the stability of
the storage for 100 days without any interference withmaterials.
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