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tric response of dilute protein
solutions

Dmitry V. Matyushov *

A theory for the nonlinear dielectric response of dilute protein solutions is presented. The field-dependent

dielectric function of the protein solution changes linearly with the electric field squared in the lowest order.

The slope of this dependence is expressed in terms of the protein dipole momentM0, its volume fraction in

solution h0, and the second osmotic virial coefficient. For practical conditions, the nonlinear dielectric

response scales as h0
3M0

8. This strong dependence on the protein dipole moment and concentration

establishes a sharp contrast between the nonlinear response of solvated proteins relative to the

surrounding polar solvent. Nonlinear dielectric response can serve as a sensitive tool for monitoring

protein conformations and physiological activity.
1 Introduction

Consider a particle carrying the dipole momentM0 immersed in
a polar liquid with the dielectric constant 3s (subscript “0”
stands for solute properties). When an external (Maxwell1) eld
E is applied to the solution along the laboratory axis z, the
dipole moment orients along the eld to allow an average dipole
projection on the eld hM0ziE, where h.iE species a statistical
ensemble average in the presence of the eld. The Maxwell eld
E= f/d, given as the ratio of the voltage f at a plane capacitor to
the distance d between the plates, is related to the vacuum eld
of external charges Evac trough the static dielectric constant of
the solution 3sol as Evac = 3solE x 3sE.

If the response of the dipole is linear in the applied eld, the
standard perturbation theory yields the following result2–4

hM0ziE ¼ 3s

3
ccbM0

2E: (1)

In this equation, cc is the cavity-eld susceptibility1,2,5 that
connects the uniform eld of external charges Evac to the local
eld acting on the solute dipole, M0 is the dipole moment
magnitude, and b = (kBT)

−1 is the inverse temperature.
Proteins typically carry large dipole moments of the order of

several hundreds of Debye units due to asymmetric distribu-
tions of charged residues exposed to water and charges of the N-
and C-termini.6–8 The value of the cavity-eld susceptibility was
estimated as cc x 1.1–1.2 for proteins.9,10 With these numbers,
one arrives at

hM0ziE/M0 x 0.23E (kV−1 cm−1), (2)
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when E is expressed in kV cm−1 and water at room temperature
is considered as the solvent. This estimate implies that the
dipole moment aligned along the eld becomes a substantial
portion of the dipole moment magnitude at elds exceedingx1
kV cm−1. Such elds are available in many experimental setups,
raising the question of signicance of nonlinear dielectric
susceptibilities extending beyond the linear term in eqn (1).
This study offers an analytical theory of the nonlinear dielectric
effect (NDE) of dilute protein solutions limited to the lowest-
order nonlinear term quadratic in the applied eld E.

Measuring NDE in bulk polar liquids requires much stronger
electric elds, ∼100 kV cm−1.11 The gap in eld magnitudes
between bulk liquids and protein solutions suggests that NDE
can be used to probe the protein component separately from
a much weaker nonlinear response of the surrounding solvent.
Given that the dipole moment is sensitive to protein's confor-
mations and physiological activity,12–16 NDE can potentially
monitor alterations in the protein structure, phosphorylation,
and redox reactions. Despite some preliminary reports on
cells17,18 and membrane-bound proteins,19 NDE of proteins in
solution has not been measured and the formalism proposed
here remains a theoretical prediction at this moment.

The NDE is quantied by the dielectric function of the
solution 3sol(E) depending on the applied electric eld, in
contrast to the linear dielectric constant (a material property)
3sol independent of the eld. The difference 3sol(E)− 3sol is linear
in E2 in the lowest order. The proportionality constant a is the
Piekara coefficient11,20–22

D3(E) = 3sol(E) − 3sol = aE2. (3)

The theory presented here calculates a for low-concentration
protein solutions when interaction between individual protein
molecules are sufficiently weak to be viewed as perturbations
RSC Adv., 2023, 13, 31123–31127 | 31123
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(see below). It shows that D3(E) changes its scaling fromfcpM0
4

at low concentrations to fcp
3M0

8 at larger protein concentra-
tions cp (in g L−1). The slope of the dielectric constant vs. cp at cp
/ 0 provides access to the ratio,M0

4/Mp, of the fourth power of
the protein dipole moment M0 and the protein molar mass Mp.

A strong dependence of the protein NDE on the protein
dipole moment provides high contrast of solvated proteins
relative to a much weaker background signal from the solvent.
Linear dielectric spectroscopy of solutions also allows6 access to
M0

2 from the slope of the solution dielectric increment 3sol − 3s

vs. the protein concentration (Oncley's formula23). A much
stronger scaling D3(E) f cp

3M0
8 compared to 3sol − 3s f cpM0

2

grants a much higher sensitivity of the NDE to the presence of
proteins in solution compared to linear dielectric spectra.
2 Model

A general formulation of the problem of nonlinear dielectric
polarization24 represents the Piekara coefficient in eqn (3) in
terms of the parameter describing non-Gaussian uctuations of
the dipole moment projection M0z

afN

"
1�

�
M0z

4
�

3
�
M0z

2
�2
#
: (4)

Here, en ensemble average h.i is taken over the sample
congurations in the absence of the applied eld and hM0zi =
0 is assumed.

The term in the brackets in eqn (4) describes non-Gaussian
statistics of the dipole moment projection. It vanishes for
a macroscopic sample with a large number of dipoles N as
stipulated by the central limit theorem. This is avoided by
multiplying the bracket term with N thus resulting in a nite
value of the Piekara coefficient a.

Non-Gaussian statistics of the dipole moment can arise from
both internal protein motions, such as conformational transi-
tions, and from correlated rotations of the protein dipoles in
solution. The present formulation considers only the latter
mechanism, leaving the possibility of intrinsic conformations
and eld-induced opening of membrane-bound protein
pumps18,25,26 as a source of non-Gaussian statistics to future
studies. Nevertheless, conformational transitions altering the
protein dipole moment should project to an altering NDE.

Assuming that proteins behave as rigid dipoles, the fourth-
order statistical central moment in eqn (4) introduces dipolar
correlations of up to the fourth order. Some of these correla-
tions decouple, allowing one to cast the Piekara coefficient in
terms of the second, third, and fourth-order correlations of the
protein dipoles24,27

a ¼ pb3M0
4r0

10

�
Hð2Þ þHð3;4Þ�: (5)

Here, r0 = N0/V is the number density of N0 solutes in the
solution volume V and the two correlation terms, H(2) and H(3,4),
describe binary and higher-order (three- and four-particle)
dipolar correlations, respectively. The term H(3,4) vanishes at
low concentrations and only binary correlations survive. We will
31124 | RSC Adv., 2023, 13, 31123–31127
therefore drop H(3,4) in eqn (5) and focus solely on the binary
term24,27

Hð2Þ ¼ 6ðgK � 1Þ þ 5cT

2cid
T

� 1: (6)

In this equation, gK is the Kirkwood factor of protein dipoles
describing short-ranged binary orientational correlations and
dened by the following expression

gK ¼ 1þ
X
j. 1

�
ê1$êj

�
: (7)

Here, êj =M0j/M0 is the unit vector specifying the orientation of
jth protein dipole. Further, cT in eqn (6) is the isothermal
osmotic compressibility28–31 scaled with the ideal-gas
compressibility cidT = (r0kBT)

−1. The ratio of two compressibil-
ities in eqn (6) can be expressed in terms of the k= 0 value of the
density–density structure factor S00(k) of proteins in solution. It
represents thermal uctuations of the local protein density

cT

cid
T

¼ S00ðk ¼ 0Þ ¼ V

D
ðdr0Þ2

E
r0

: (8)

When the density of dipoles is low, the Kirkwood factor gK in
eqn (6) can be calculated as a series expansion in the dimen-
sionless density of protein dipoles2,3 commonly appearing in
dielectric theories

y ¼ 4p

9
br0M0

2 ¼ y0h0; (9)

where h0 = N0U0/V is the volume fraction (packing fraction32) of
proteins in solution and y0 = (4p/9U0)bM0

2 is the effective
dipolar strength dened for a single protein molecule with the
volume U0. Gaussian electrostatic units are used here and one
gets y0 = bM0

2/(930U0) in SI units, where 30 is the vacuum
permittivity. Similarly, the transformation to SI units in eqn (5)
is achieved by the replacement M0

2 / M0
2/(4p30).

The lowest-order perturbation expansion of gK in terms of
y0h0 reads33

gK ¼ 1þ 17

16
ðy0h0Þ2 þ.: (10)

From eqn (9) and (10), one obtains for the Piekara coefficient

a ¼ 9b2M0
2

40
y0h0

�
51

8
ðy0h0Þ2 þ

5

2
S00ðh0Þ � 1

�
; (11)

where we have explicitly indicated the dependence of S00(h0) =
S00(h0, k = 0) on the protein density.

The ideal-gas limit for S00(h0) is the Poisson uctuations of
the protein density leading to S00 = 1 at h0 / 0 in eqn (8). This
limit does not, however, apply to charged proteins in electrolyte
solutions: the ideal-gas limit is not reached even when there are
no interactions between the protein molecules.34 The reason is
that electroneutrality condition imposes a constrain on the
protein density uctuations, which become coupled to corre-
sponding density uctuations of the electrolyte. Following
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Stockmayer34 and Asthagiri et al.35 one can calculate S00 from
the derivative of the protein density over the protein chemical
potential m0

S00 ¼
�
vln r0

vbm0

	
T ;p;r1

; (12)

where the derivative is taken at the constant particle density r1
of the electrolyte ions. Assuming that the protein carries the
charge z0 and is placed in the 1 : 1 electrolyte (e.g., NaCl), one
can write the equations for the chemical potentials of the
protein and electrolyte ions, which are coupled to each other
through the electroneutrality condition. Finding the derivative
in eqn (12) becomes a matrix inversion problem.34 Assuming
ideal electrolyte on non-interacting ions, one arrives at

S00 ¼
�
1þ z0

2r0

2r1 þ z0r0
þ 2B00r0

��1
; (13)

where B00 is the second osmotic virial coefficient. The Donnan
term34,35 z0

2/(2r1 + z0r0) does not allow reaching the ideal-gas limit
for S00 even with no inter-protein interactions, B00 / 0. The
physiological concentration of electrolyte, ∼0.1 M, substantially
exceeds the protein concentration, ∼1 mM, at typical experi-
mental conditions an one can re-write eqn (13) as28,30,31

S00 = [1 + 2B0h0]
−1, (14)

where

B0 = 4B00/B
HS
00 + z0

2/(r1B
HS
00 ). (15)

The rst term in this equation is the osmotic coefficient reduced
with its hard-sphere (HS) value BHS

00 = 4U0.36–39

One nally arrives at the following equation for the Piekara
coefficient

a ¼ 9b2M0
2

40
y0h0

�
51

8
ðy0h0Þ2 þ

3� 4B0h0

2ð1þ 2B0h0Þ
�
: (16)

Below, this equation is applied to known parameters of proteins
in solution to establish the relative signicance of two terms in
the brackets and the anticipated scaling of the protein NDE with
the protein dipole moment and the solution concentration.
3 Discussion and model calculations

A positive NDE (a > 0) is found here for a dilute protein solution.
In contrast, the NDE is typically negative (a < 0) for bulk polar
liquids, thus leading to a dielectric decrement in the applied
eld.11 While a negative NDE is oen related to dielectric
saturation through the Langevin equation,2 an exact theoretical
formalism27 leading to eqn (5) assigns negative NDE to multi-
dipolar correlations responsible for a negative H(3,4) in eqn (5),
which exceeds in magnitude the typically positive binary term
H(2). The binary term can in principle be negative for a suffi-
ciently large positive second virial osmotic coefficient (B0 in eqn
(16)), which can lead to rather complex concentration depen-
dencies for the NDE of binary mixtures of polar and nonpolar
liquids.22
© 2023 The Author(s). Published by the Royal Society of Chemistry
For typically large protein dipole moments, the polar term, 6
(gK − 1), dominates in eqn (5) and (6) thus leading to a positive
NDE. This result is generally consistent with an increment of
dielectric constant of protein solutions over that of the solvent,6

also arising from a large protein dipole moment. The strong
polarity of proteins in solution is allowed by reorientations of
the protein dipole to align along the applied eld. When the
protein is immobilized, its internal dielectric constant is low,41

3p x 4, because the internal dipoles are restricted, by the
protein fold, from aligning along the eld.

The present theory is not limited to protein solutions and
can be applied to test the widely accepted dielectric saturation
paradigm2 for the NDE. The Langevin equation used to describe
dipole's saturation predicts a linear scaling,2,24 −af b3M0

4r0 f

r0, of a negative Piekara coefficient with the solute concentra-
tion. The derivation of the Langevin equation is performed for
a single dipoles and specic assumptions need to be imposed
when the theory is extended to an ensemble of dipoles. While
those are oen omitted, it is implicitly assumed that dipoles are
placed on a rigid lattice with a low compressibility (cT � cid-

T) and they do not interact (gK = 1).2 Eqn (5) then reduces to
a result, a = −pb3M0

4r0/10, very close to the result of the Lan-
gevin model, which additionally requires adopting a specic
form for the cavity-eld susceptibility cc (see eqn (1)).24

Saturation prescribed by the Langevin framework can be
distinguished from correlations advocated here by measuring
NDE of dilute solutions of dipolar particles (dipolar molecules,
proteins, or ferroelectric nanoparticles42) in less polar or
nonpolar solvents. A positive Piekara coefficient in the present
formulation scales linearly with the concentration in the
innite dilution limit, a = 3pb3M0

4r0/20, but becomes propor-
tional to the third power of the concentration, a f r0

3, when
binary dipolar correlations start dominating over the
compressibility term in the brackets of eqn (16). The distinction
in the sign and in the concentration scaling should allow one to
discriminate between saturation and binary correlations when
dielectric measurement are performed at sufficiently low
frequencies below the frequency of solute tumbling.

The positive Donnan term in eqn (15) can be neglected at
sufficiently large electrolyte concentrations and pH close to the
isoelectric point. The second osmotic coefficient becomes
negative at high pH and high electrolyte concentrations.30,31 A
negative B00 is a good predictor of protein crystallization36,43 or
of the liquid–liquid phase separation.38,39 For a negative value of
B0 in eqn (15), the truncation of the osmotic virial expansion
produces a divergence in the structure factor S00 in eqn (14) at 1
+ 2B0h0 / 0. Such a singularity, reached at the critical point or
at the spinodal line, might signal the onset of the liquid–liquid
phase separation of the protein solution32,38,39 or arise from the
failure of the truncated expansion for the osmotic pressure. The
range of protein concentrations is chosen to ensure 1 + 2B0h0 >
0 in the present calculations.

It is clear that the second term in the brackets in eqn (16)
dominates over the rst term at h0 / 0. Given that B00 is of the
order of BHS

00 ,36,44 and h0 < 0.2 at typical protein concentrations
<20 g L−1,37,39 the rst term gains in importance at
RSC Adv., 2023, 13, 31123–31127 | 31125
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Table 1 Calculation parameters for proteins at 300 K in 0.1 M
electrolyte

Proteina z0 U0, nm
3 M0, D y0 B0/4

Lysb 8 24 208 61 29
Lysc −0.87
BSAd −8 137 384 36 4.5e

a Lys = lysozyme, BSA = bovine serum albumin. b Second virial
coefficient at pH = 7 and c1 = 7 mM is taken from ref. 35. c Data at
pH = 6 and c1 = 0.1 M from ref. 30. d Data taken at pH = 7 and c1 =
15 mM from ref. 40 where corrections for the Donnan term were
implemented. e Values x−2.4 at c1 = 7 mM were reported in the
presence of trivalent salts.38,39

Fig. 2 a/(jawjcp) vs. cp2 for Lys (black, second line in Table 1) and BSA
(blue).
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h*0 . 2=ð ffiffiffiffiffi
17

p
y0Þ. With the typical values of y0 for proteins

(Table 1), this condition puts h*0 within the range of protein
concentrations studied by light scattering35,38–40 and dielectric
spectroscopy45,46 of protein solutions. One can, therefore,
anticipate a crossover from the linear scaling, a f M0

4cp, to
a cubic dependence a f M0

8cp
3. However, by virtue of being

multiplied with h0 in the Piekara coefficient in eqn (16), the low-
concentration range is not prominent in the overall dependence
a(cp).

Fig. 1 shows a(cp)/jawj normalized with the Piekara coeffi-
cient for bulk water at 293 K:47 aw = −0.8 × 10−15 m2 V−2. The
calculations are done for lysozyme (Lys, second line in Table 1)
and bovine serum albumin (BSA) proteins (Table 1). The full
calculation according to eqn (16) (solid lines) is compared to the
results with the second term in the brackets, containing the
second osmotic coefficient, dropped (dashed lines). At
concentrations cp > 10 g L−1, one can neglect the virial coeffi-
cient component and approximate the Piekara coefficient by the
dipolar term

ax0:93� 10�18M0
2ðy0h0Þ3

�m
V

�2

; (17)

where the numerical coefficient is evaluated at T= 300 K andM0

is in Debye units (y0 is unitless, see Table 1). It is clear from the
Fig. 1 Reduced Piekara coefficient a/jawj (aw =−0.8× 10−15 m2 V−2 is
the Piekara coefficient for bulk water) vs. the protein concentration cp
(g L−1) for Lys (black, second line in Table 1) and BSA (blue). The solid
lines indicate calculations based on eqn (16) and dashed lines refer to
calculations with the second term in the brackets (involving the
second virial coefficient) dropped.

31126 | RSC Adv., 2023, 13, 31123–31127
plot that the Piekara coefficient of protein solutions exceeds
that of bulk water by about two orders of magnitude in the
concentration range shown in the plot.

If the purpose of measuring the Piekara coefficient is to gain
access to the protein dipole moment, a better strategy might be
to plot a/cp vs. cp

2. Both the slope and intercept should provide
access to M0: the intercept becomes (3p/20)b2M0

4NA/Mp, where
Mp is the protein molar mass and NA is the Avogadro number.
Extrapolation from high concentrations can be of limited value
because of the curvature of the plot at cp/ 0, as is seen in Fig. 2
for BSA. The slope (17/5)b5M0

8(pNA/(3Mp))
3, provides a more

robust access to M0. A strong temperature dependence of the
slope, fT−5, can be used to test theory predictions.

From a general perspective, the Piekara coefficient quanties
the non-linear dielectric response and non-Gaussian statistics
of the sample dipole moment24 (eqn (4)). In bulk dipolar
materials, the NDE arises from rotations of individual non-
interacting dipoles (Langevin model) or from mutual correla-
tions of dipoles (the present description). Non-Gaussian
statistics of the dipole moment can also arise from intrinsic
conformational transitions of the protein. Intrinsically disor-
dered proteins or disordered domains of folded proteins48 can
potentially be good candidates for observing the NDE. The eld
required to observe protein NDE, x1–10 kV cm−1, is compa-
rable to the eld strength of protein capture on nanopores by
another nonlinear dielectric effect, the protein dielectropho-
resis.49,50 Extending the theory to the response of entire cells18

requires modeling the eld-induced changes of the membrane-
bound protein pumps.26
4 Conclusions

An analytical theory for the nonlinear dielectric response of
protein solutions developed here shows high contrast between
the nonlinear response of proteins in solution and surrounding
water. The contrast arises from a strong scaling,fcp

3M0
8, of the

nonlinear response with the large protein dipole. The Piekara
coefficient of proteins in solution exceeds that of surrounding
water by two orders of magnitude at the typical protein
concentrations used in light-scattering and dielectric
measurements.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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