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Solid polymer electrolytes (SPEs) encounter the challenge of balancing high ionic conductivity and
mechanical strength. lonic liquids, which are among the contenders to be used in high-performance
supercapacitors, have difficulty infiltrating commercial polyolefin separators for combined applications.
In this study, a novel SPE involving uniform infiltration in the micropores of commercial polyolefin
separators with polyethylene oxide (PEO), lithium salt, and different proportions of added ionic liquid was
developed. The composite membranes combining ionic liquid-filed SPE with polypropylene (PP)
microporous separators simultaneously achieve excellent mechanical strength and high-ionic
conductivity. The low wettability of pure ionic liquids and commercial polyolefin-based separators is
addressed. The 70 wt% IL-filled solid electrolyte composite membrane (PLI(70)@PP) exhibits a high ionic
conductivity (2.9 x 1073 S cm™), low resistance at the electrolyte—electrode interface and excellent
mechanical strength (128 MPa) at 25 °C. The all-solid-state supercapacitor using PLI(70)@PP exhibits
a specific capacitance of 158 F g~ at 0.1 A g~ and stable cycle performance. The proposed method can
be performed via high-volume roll-to-roll processing to obtain high-performance all-solid-state
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Introduction

The increasing demand for sustainability and carbon neutrality
necessitates new technologies for efficient energy usage and
storage. All-solid-state supercapacitors (ASSCs) are novel energy
storage devices that feature fast charge-discharge capability
and excellent cycle performance. They have garnered consid-
erable attention in recent years. Solid polymer electrolytes
(SPEs) are integral components of ASSCs. Unlike traditional
liquid electrolytes, SPEs do not pose risks such as flammability,
leakage, toxicity, and corrosivity."* However, the need for high-
ionic conductivity and excellent mechanical properties makes
SPEs a relevant research subject in the industrial application of
ASSCs.*®

Polyethylene oxide (PEO) is a commonly used material in
SPEs owing to its low weight, excellent flexibility, and good
interfacial compatibility. It is highly porous and provides
channels for ionic transport, thus enabling salt ions to fill the
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supercapacitors (ASSCs) for engineering applications.

pores.” However, the narrow electrochemical stability window
and low-mechanical strength of PEO limit its application. Thus,
scholars have focused on improving the performance of PEO-
based SPEs by modifying using inorganic nanoparticles and
salts. These modifications have advantages and disadvantages.
Inorganic nanoparticles have the potential to enhance both the
activity of polymeric chains and ionic conductivity of electro-
Iytes. Nevertheless, their incorporation reduces the mechanical
strength of the polymer.’** By contrast, salts can improve the
mechanical strength and interfacial stability of electrodes;"*"”
however, ensuring uniform salt dispersion could be considered
after commercialization."®>* Other techniques, such as elec-
trostatic spinning,*® hydrogel aerogel,> hydrogel,>® three-
dimensional printing,*® and templates,”” have been reported
to enhance the ionic conductivity of SPEs. Regardless of the
method of modification, a primary objective is to simplify the
preparation process, which contributes to the further scaling-up
and application of solid-state electrolytes.

The separation and insulation properties of conventional
SPE membranes fail when temperatures exceed the crystalliza-
tion melting temperature of the membranes. Equipment
without mechanical separators require strict temperature
limits, and accidental overheating is a serious safety concern
when evaluating equipment performance.® This study investi-
gates the reinforcement of commercial separators to achieve
stability even at high temperatures.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Tonic liquids are organic salts and an ideal choice for rein-
forcing the separator owing to their stable electrochemical
properties at high temperatures.?®>° Ionic liquids exist as liquid
compounds at room temperature and comprise organic cations
and inorganic/organic anions. These substances demonstrate
remarkable stability both chemically and electrochemically,
possess negligible vapor pressure, and exhibit high ionic
conductivity. Furthermore, ionic liquids are non-inflammable.
However, microporous separators typically used in commer-
cial energy storage devices are polyolefin-based materials, such
as polypropylene (PP) or polyethylene (PE). The existing
commercial polyolefin separators are unsuitable for ionic
liquids owing to their hydrophobicity, poor infiltration, and low
wettability.*=*

In this study, we developed a composite SPE (recorded as
PLI(x)@PP) by using a commercial PP separator as the internal
reinforcement skeleton of the SPE. The porous PP separator is
permeated and encapsulated by the PEO-based SPE (recorded as
PLI(x)) in the composite electrolyte, which improves mechanical
strength and thermal stability, and the PEO matrix is used as
a carrier for adsorbed ions, which solves the low compatibility
of commercial polyolefin membranes' with ionic liquids. Ionic
liquids establish pathways resembling ion channels via strong
bonding interactions with the polymer chains of PEO,* thereby
enhancing the ion conductivity of PLI(x)@PP. The ionic
conductivity is increased to fulfil the actual application
requirements by changing the ionic liquid content in the PLI(x).
The soft PLI(x) on the surface of PP increases the contact area
with the electrode and aids in lowering the electrode-electrolyte
interface resistance. The electrical performance of the assem-
bled supercapacitor is excellent. This work presents the devel-
opment of a simple, low-energy PLI(x)@PP, which has the
potential to employ large-scale roll-to-roll production.

Materials and methods
Materials

The compounds used were as follows: PEO (Mw = 600 000,
Sigma), lithium bis(trifluoromethane sulfonyl)imide (LiTFSI)
(99.95%, Sigma), ionic liquid 1-ethyl-3-methylimidazolium tet-
rafluoroborate (IL) (=99.0%, Sigma), polypropylene separator
(single-layer PP separator, Zhongxing Innovative Material
Technologies Co., Ltd.), carbon electrode (AC, YP-50F, Kuraray,
Japan), carbon black (CB, EC 600 J, Ketjen Black, Japan), poly-
vinylidene fluoride (PVDF, 99.5%, Hefei Kejing Material Tech-
nology), N-methyl-pyrrolidone (>99.0%, Aladdin Chemical
Reagent), and acetone (>99.0%, Aladdin Chemical Reagent).

Preparation of PLI(x) solid electrolyte membrane

Half a gram of PEO and 0.18 g LiTFSI were dissolved in acetone
(10 mL) and stirred at 50 °C to obtain a homogeneous solution
(PEO:Li = 18: 1, molar ratio). Subsequently, different propor-
tions of IL (0%, 20%, 33%, 40%, 50%, 60%, and 70% of the total
mass of PEO-LiTFSI-IL) were separately added to the solution
and stirred vigorously for 12 h at 50 °C to prepare a series of

solution samples. The solution was poured onto
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polytetrafluoroethylene (PTFE) moulds and smoothened with
a squeegee after defoaming. The membrane (PLI(x)) was
vacuum-dried at 40 °C for 24 h. Finally, a thin layer of release
agent was applied to the PTFE moulds to prevent sticking.

PLI(x)@PP membrane preparation

The same procedure as that with the PLI(x) membrane prepa-
ration was followed to prepare PLI(x)@PP (x = 0, 20, 33, 40, 50,
60, 70) membranes, except that the PLI(x) solution was poured
onto both sides of the PP separator, which was laid flat on the
PTFE mould. The specimen was then vacuum-dried in an oven
at 40 °C for 24 h to remove the solvent.

Electrode preparation

The electrode solution was prepared by mixing AC, CB, and
PVDF powders (mass ratio of 8: 1 : 1) with N-methyl pyrrolidone
via vigorous magnetic stirring overnight. The homogeneous
mixture was then coated on aluminium foil and transferred into
a 100 °C oven for 12 h to obtain the carbon electrode (CE). The
electrode was perforated into a disk (diameter = 13 mm).

Electrochemical testing

Electrochemical impedance spectroscopy (EIS) and cyclic vol-
tammetry (CV) were performed using an electrochemical
workstation (CHI660E, Shanghai Chenhua Device Company,
China). The CV test conditions included a voltage of 0-2.5 V
potential range and a scan rate in the 10-100 mV s~ range.
Sample films for EIS were sandwiched between two stainless
sheets, and data were collected under conditions with a 5 mV
amplitude and a 10 '-10° Hz frequency range. EIS could be
used to determine the equivalent series resistance (ESR) and
charge transfer resistance of the film device. The samples were
placed in an environmentally controlled chamber for high-
temperature tests (25-70 °C). The temperature for each test
was maintained for 30 min to ensure stability. The ionic
conductivity was calculated from the EIS spectra using the
following equation.

L

=R xS (1)

where L, S, and Ry denote the thickness, area, and bulk resis-
tance of the PLI(x)@PP membranes, respectively (Rs corre-
sponds to the x-axis intercept of the impedance response).

The ASSC galvanostatic charge-discharge (GCD) cycle was
completed using the blue battery test System (CT2001A, Land
Electronic). The voltage range was 0-2.5 V, and different current
densities (ratio of current to the mass of a single electrode) were
measured. The capacitance of ASSCs (Cc.p, F) was calculated
from the discharge curve of GCD. The specific capacitance of
electrode (Cyp, F g~ '), energy density (E, Wh kg™ '), and power
density (P, W kg~ ") of ASSCs were calculated using the following
equations.?*®

I x At

il = 2
Cl,ll AV [ )
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ZCvcell
Co=—— 3)
_ Ccell X (AV)Z
E= 4m x 3.6 (4)
E
P= A x 3600, (5)

where I denotes the discharge current (4), At indicates the
discharge time (s), AV refers to the voltage value (V) during
discharge after the voltage jump/drop (IR), and m denotes the
AC mass (g) for one electrode.

Thermal performance testing

A differential scanning calorimeter (DSC, model HSC-4, Beijing
permanent laboratory equipment Co., Ltd) was used to detect
the melting temperature (Ty,) and melting enthalpy (AH) of the
electrolytes. The temperature range and heating rate were 0-
100 °C and 10 °C min ", respectively. T, denotes the minimum
heat absorption peak caused by the crystalline phase melting.
The degree of crystallinity (X., %) was calculated as follows:

AH
X, = —— x 100,
NG x 10 (6)
where AH indicates the melting enthalpy (J ¢ ") expressed as
heat absorbed per unit weight of the polymer sample, and AH,

denotes the melting enthalpy of 100% crystalline PEO (213.7 J
—1) 39
g )

Material characterization

The membrane morphology was characterized using a field
emission scanning electron microscope (SEM, x130esem-FEG,
FEI). Cross-sectional elemental analysis was performed using
X-ray energy dispersive spectrometry (EDS). The edges of the
dried PLI(x)@PP membranes were notched, immersed in liquid
nitrogen, and torn off to obtain test samples with unmetallized
cross-sections.

A tensile test was performed using a GOTECH AI-7000SUT
tensile machine at 25 °C according to the ASTM D882 stan-
dard, with a film size, fixture spacing, and tensile rate of 150 mm
x 12 mm, 100 mm, and 50 mm min ", respectively. The tensile
strength and toughness were averaged over five samples.

Results and discussion

In this study, a novel solid polymer electrolyte composite
membrane was prepared by thoroughly permeating PP separa-
tors with a PLI(x) electrolyte solution (Fig. 1). This method is
distinct from the conventional dispersed mixing of polymers
and inorganic nanoparticles. The PEO matrix of the developed
PLI(x)@PP membrane provided a channel for ions in separator
pores. Additionally, the PP separators served as a structural
backbone to provide strength. These two characteristics
addressed the problems of incompatibility between IL and PP
(Fig. S1t), as well as the poor mechanical strength of the PEO
matrix. The proposed preparation method also enables the
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Fig. 1 Schematic of PLI(x)@PP preparation.

application of a roll-to-roll process and product-scale produc-
tion, making it suitable for numerous potential applications.

Optical photographs of membranes with different propor-
tions of IL show that the membrane transparency gradually
increased with the addition of the IL (Fig. 2a). This phenom-
enon was caused by the photorefraction as the light penetrated
the micropores, suggesting that more IL was present in the PP
separators.

SEM imaging revealed micron-sized pores on the surfaces of
the PP separators (Fig. 2b); these pores facilitated the PLI(x)
solution penetration. Additionally, the smooth surfaces of PP
separators indicated that PLI(x) was also uniformly coated on
the surface of PP (Fig. 2c-i). Moreover, the membrane surface
exhibited a folded morphology as IL increased in the PLI(x); this
change was caused by the capillary force after PLI(x) penetrated
the PP micropores.*

The PP separator in the PLI(40)@PP cross-section was
approximately 16 pm thick; soft PLI(x) electrolyte layers (II and
IV) on both surfaces of the separator with a thickness of
approximately 5 um (Fig. 2j) were observed. The distributions

. . G

1(0)@PP PLI(20)@PP PLI(33)@PP PLI(40)@PP PLI(S0)@PP PLI(60)@PP PLI(70)

10 pm

Fig.2 (a) Optical photographs of PP separators and PLI(0)@PP-PLI(70)
@PP membranes, (b—i) SEM images of PP and PLI(x)@PP surface, (j)
SEM images of the PLI(40)@PP membrane cross-section, and (k—m)
corresponding EDS elemental maps of N, F, and S.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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of N, F, and S in this cross-section showed that the PLI(x) elec-
trolyte was uniformly dispersed on the surfaces of PLI(40)
@PP(1), internal PP separator (III), and the PLI(x) layers (I and
IV) (Fig. 2k-m). The element distributions inside the separator
were slightly sparser because the PLI(x) electrolyte only infil-
trated the separator pores (Fig. S37).

In addition, the gradually decreased element sulphur (S)
(specific to LiTFSI) in the cross-section (Fig. S2t) indicates that
the percentage of LiTFSI decreased. This change was caused by
the gradual rise in IL, indirectly explaining the variation in the
optical photographs of the PLI(x)@PP membranes described
previously.

An evaluation of the PLI(x) electrolyte thermal properties
revealed a relatively sharp peak of heat absorption at 70.9 °C for
pure PEO (Fig. 3a). The melting peak and peak width shifted
towards lower temperatures with the addition of LiTFSI and
different IL concentrations to the PEO matrix (Table S1t). A
lower Ty, is expected following the addition of salt to the poly-
mer and has been associated with a decreased spherical crystal
size and surface free energy.*"*> The AH of crystallization indi-
cates the melting peak area (proportional to X.) of the DSC
curve. Reductions in Ty, and AH with the addition of salt indi-
cate a lower crystallinity and elevation of the amorphous region
in PEO.* Moreover, the segmental motion of the PEO molecules
and ion transport were both enhanced owing to the higher
flexibility and fluidity of amorphous PEO chains.

As shown in Fig. 3b, mechanical tensile tests were conducted
on the PP, PLI(x)@PP, and PLI(0) membranes. The maximum
tensile strength for all three membranes was approximately
128 MPa, and the fracture elongation increased with the IL
content. Compared to the PP separator, the fracture strength of
the PLI(x)@PP membrane was slightly lower, but it exhibited
better toughness. This tendency can be attributed to the infil-
tration of the soft PLI electrolyte into the micro-pores of the PP
separator, which enhanced the plasticity of the PP separator
matrix. Furthermore, the PLI(0) sample without a PP separator
as a reference showed a fracture strength of only 1.8 MPa but
a fracture elongation as high as 1100%. This result indicates
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Fig. 3 (a) DSC curves of PEO and PLI(x), (b) stress—strain curves of the
composite membrane PLI(x)@PP and the pure electrolyte membrane
PLI(0), (c) impedance spectrogram test results (25 °C), (d) reduction in
ESR (Rs) and charge transfer resistance (Ry) with increasing IL contentin
PLI(x)@PP, (e) ionic conductivity at 25 °C, and (f) ionic conductivity
trends across a range of temperatures (25-70 °C).
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that the presence of the PP separator significantly improved the
strength of the electrolyte membrane.

In addition to the mechanical tests, the Nyquist plot of the
PLI(x)@PP membranes is illustrated in Fig. 3c. A semicircular
characteristic exists in the high-frequency region, and a linear
characteristic can be observed in the low-frequency region,
indicating a standard double-layer capacitance behaviour. In
the region of high frequency, the curve intersects the x-axis at
a decreasing rate, and the diameter of the semicircle shifts
towards the high-frequency area. This observation suggests that
a higher IL content is efficient for diminishing the ESR and
charge transfer resistance. In the low-frequency region, the
linear slope, which represents the rate of charge diffusion,
steepens with the increasing IL content, indicating that the
charge diffuses faster in electrolytes with high IL content. The
Nyquist diagram simulated by the equivalent circuit diagram is
shown in Fig. 3d. Ry and Ry represent the ESR and charge
transfer resistance, respectively. W1 represents the charge
diffusion impedance, and the curve plotted in Fig. 3d shows the
trend of decreasing ESR and charge transfer resistance with
increasing IL content in PLI(x)@PP. As shown in Fig. 3e, the
corresponding ionic conductivities of the PLI(x)@PP
membranes are 9.6 x 10°°, 3.4 x 107>, 5.1 x 107>, 1.2 x 10~ %
4.7 x 107, 1.7 x 107>, and 2.9 x 10> S ecm™". The positive
correlation between the ionic conductivity and IL concentration
may have been caused by the increase in the charge carrier
density; IL enhances lithium salt dissociation and polymer
segmental motion by weakening chain forces.****® Furthermore,
the ionic conductivity of the PLI(x)@PP membranes exhibit
a strong temperature dependence (Fig. 3f); the ionic conduc-
tivity of the PLI(x)@PP membranes increased as temperatures
increased within the range of 25-70 °C. The elevated ion
mobility and chain segmentation at 70 °C resulted in an ionic
conductivity of nearly 107> S em ™" for PLI(70)@PP, which is
comparable with the highest reported values.*”

CE/PLI(x)@PP/CEs were assembled using two carbon elec-
trodes and a PLI(x)@PP membrane. We performed cyclic vol-
tammetry (CV) tests on the assembled CE/PLI(x)@PP/CEs, as
shown in Fig. 4a. As the IL content increased, the CV curve area
expanded, indicating an increase in the capacitance of the
device. Charge-discharge cycles of the CE/PLI(x)@PP/CEs were
performed at 25 °C (Fig. 4b). The area under the galvanostatic
charge-discharge (GCD) curves increased with the IL content.
This finding indicates that the specific capacitance of CE/

—~
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CEPLIG0)
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Fig. 4 (a) CV curves of CE/PLI(x)@PP/CE assemblies with different
PLI(x)@PP compositions, (b) GCD curves of CE/PLI(x)@PP/CE at
0.1A g™ and (c) specific capacitance of CE/PLI(x)@PP/CE at different
current densities.
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PLI(70)@PP/CE is the highest among all samples (Fig. 4c) at
70 wt% of the IL. Moreover, the voltage IR decreased as IL
increased, indicating the lower equivalent series resistance
(ESR) of this specific ASSC. This characteristic can be attributed
to the softer electrolyte layer, which lowered the interface
resistance of the electrode, and it is consistent with ionic
conductivity results.

The CV curves for the CE/PLI(70)@PP/CE were estimated at
different scan rates and room temperature (Fig. 5a). At low-scan
rates, the CV curves were rectangular; however, deviations from
that shape occurred at high scan rates for ideal double-layer
capacitors, possibly because of resistance and overpotential.*®

However, CV could not fully explain the electrochemical
properties of the CE/PLI(70)@PP/CE. Therefore, the GCD
measurements were performed at various current densities
(Fig. 5b). The charge-discharge curves exhibit triangular linear
profiles, typical of double-layer capacitors. The results confirm
their superior capacitive properties. The charge-discharge
curves of the CE/PLI(70)@PP/CE at various current densities
reveal that the area under the GCD curves decreased as the
current density increased. The specific capacitance of the CE/
PLI(70)@PP/CE increased to 158 F g” ' at 0.1 A g~ " (Fig. 5¢),
a value at the higher end of reported values among polymer
electrolytes mixed with IL (Table S2}). The CE/PLI(70)@PP/CE
demonstrated a high-energy density of 32.1 Wh kg™ " and
power density of 75.6 W kg~ " with a current density of 0.1 Ag™";
the energy and power densities were low at 13.8 Wh kg™* and
1.06 kW kg ' (Fig. 5c), respectively, with a current density of
1 A g '. The developed membranes exhibit excellent energy and
power densities compared with those reported in the literature
(Fig. S47) and outperformed similar supercapacitors in terms of
the energy density.**® A red light-emitting diode (LED) (2 V)
could be lit for a few minutes after charging the ASSC to 2.5 V
(Fig. 5¢).
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Fig. 5 Electrochemical results for (CE)/PLI(70)@PP/CE: (a) CV curves
at different current densities, (b) GCD curves at different current
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density against power density, and (d) capacitance retention and
coulombic efficiency across 1000 cycles.
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One thousand charge-discharge cycles of the CE/PLI(70)
@PP/CE were performed at a current density of 1 A g*
(Fig. S51). The charge-discharge cycle curves of the quasi-
isosceles triangle yielded a minimal increase in the IR after
1000 cycles, thus indicating charge transport stability between
the electrode and electrolyte interfaces.> The discharge capacity
of the CE/PLI(70)@PP/CE gradually decreased with the number
of cycles (Fig. 5d). Its capacity retention after 1000 cycles
reached 90% of the initial capacity. The coulombic efficiency
was high (99.37%) over 1000 cycles, demonstrating the excellent
cycle stability of the device. By contrast, the capacity retention of
the CE/PLI(70)/CE ASSC decreased considerably with cycling,
reaching values as low as 60% after 800 cycles. The difference in
the cycle stability of ACCSs was revealed by comparing the
semicircular diameter change of the EIS curve before and after
cycling. The CE/PLI(70)@PP/CE exhibited lower R¢ and range of
variation after cycling than CE/PLI(70)/CE (Fig. S6at). After CE/
PLI(70)@PP/CE cycling, a slight increase in Rf (semicircular EIS
diameter) was associated with a decrease in IL content within
PLI(70)@PP (reduced F-element content in the EDS spectrum,
Fig. S6bt). The porous PP separator with network structure can
hinder the local chain reorganization of the polymer electrolyte
owing to its large surface area. This leads to the presence of
highly amorphous regions in the polymeric matrix, favouring
ionic migration.>” These results indicate that the PP separator
provides a more stable support structure and ionic transport
channel.

Thermal stability tests were conducted on the PLI(x) and
PLI(x)@PP membranes (Fig. S7t). All membranes show
dimensional stability at temperatures below 40 °C. The PLI(70)
membrane without the PP separator as the backbone melted
into a viscous liquid at 50 °C, whereas the PLI(70)@PP
membrane remained intact even at 70 °C. Additionally, no IL
exudation was observed on the PLI(70)@PP membrane, indi-
cating its stable morphology at high temperatures. This
phenomenon suggests that the PP separator functions as
a structural backbone, ensuring the morphological stability of
the composite membrane at high temperatures, which forms
the basis for maintaining stable electrical properties.

The mechanical and electrical performance of PLI(70)@PP
were characterized at various temperatures (25-70 °C). Fig. 6a
presents the mechanical performance of the PLI(70)@PP
membrane at different temperatures, exhibiting a decrease in
mechanical performance (Fig. S8t) and an increase in elonga-
tion at higher temperatures. This finding can be attributed to
the elevated temperatures causing increased movement of the
PP molecular chains, which dominates the mechanical
performance.

Furthermore, concerning the electrical properties, Fig. 6b
illustrates the EIS curves at various temperatures. In the high-
frequency range, the curves demonstrate a decrease in the
intercept with the x-axis, whereas the slope increases in the low-
frequency range. This characteristic suggests that higher
temperatures can reduce the equivalent series resistance and
charge transfer resistance of the device, potentially owing to
enhanced interface compatibility between the electrode and
electrolyte as the temperature increases.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Mechanical and electrochemical properties of PLI(70)@PP at
25-70 °C. (a) Stress—strain curve; (b) EIS impedance spectrum; (c)
GCD curve; (d) specific capacitance calculated from the GCD
measurements.

The GCD curves for CE/PLI(70)@PP/CE, with a current
density of 1 A g™, were measured at different temperatures (25-
70 °C), as depicted in Fig. 6¢c. The CE/PLI(70)@PP/CE electrode
exhibits an increase in specific capacity during charge-
discharge cycles at higher temperatures, as observed in Fig. 6d.
This increase is likely to have resulted from the improved
migration of PLI(70) into the AC electrode pores at elevated
temperatures, resulting in the increased contact area between
the electrolyte and electrode.*

Conclusions

In this study, a composite SPE was developed using a PP
membrane reinforcement. The PLI(70)@PP membrane exhibi-
ted a high ionic conductivity of 2.9 x 107 S em™" at 25 °C,
along with low electrolyte-electrode interface resistance and
excellent mechanical properties. The CE/PLI(70)@PP/CE
devices, with a specific capacity of 158 F g~ !, demonstrated
superior energy and power densities as well as stable cycling
performance. The PLI(70)@PP maintained a stable mechanical
structure and showed excellent electrochemical performance at
25-70 °C. This work presents a facile and effective composite
solid polymer electrolyte (PLI(x)@PP), which shows potential for
large-scale roll-to-roll preparation processes and is considered
a solid electrolyte candidate for the development of high-
performance ASSCs.
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