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Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the
world's energy in the future, replacing the present fossil fuel-based energy infrastructure. Hydrogen is
expected to solve the problem of energy shortages in the near future, especially in complex
geographical areas (hills, arid plateaus, etc.) and harsh climates (desert, ice, etc.). Thus, in this report, we
present a current status of achievable hydrogen fuel based on various scopes, including production
methods, storage and transportation techniques, the global market, and the future outlook. Its objectives
include analyzing the effectiveness of various hydrogen generation processes and their effects on the
economy, society, and environment. These techniques are contrasted in terms of their effects on the
environment, manufacturing costs, energy use, and energy efficiency. In addition, hydrogen energy
market trends over the next decade are also discussed. According to numerous encouraging recent

advancements in the field, this review offers an overview of hydrogen as the ideal renewable energy for
Received 30th July 2023

Accepted 18th September 2023 the future society, its production methods, the most recent storage technologies, and transportation

strategies, which suggest a potential breakthrough towards a hydrogen economy. All these changes
DOI: 10.1039/d3ra051589 show that this is really a profound revolution in the development process of human society and has

rsc.li/rsc-advances been assessed as having the same significance as the previous industrial revolution.

1 Introduction

Over the past ten years, there has been a noticeable and
significant shift in the global fuel supply. Traditional fossil fuels
like coal, gas, and oil will progressively be phased out; this is
also an unavoidable tendency of civilization, with negative
implications and effects on the climate, water resources, land
resources, and people. Renewable energy sources, including the
sun, wind, ocean waves, hydrogen, and others, have emerged as
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the most promising and likely prospects for the future of energy
supply.”? In which hydrogen energy is anticipated to become
widely used in the future, exerting significant influence on
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a variety of societal developments. Hydrogen energy could be
created on an industrial scale without relying on the environ-
ment, in contrast to renewable energy sources like sun, wind,
and tide energy that are dependent on weather conditions.**
This is another key benefit of this fuel type. Moreover, hydrogen
fuel can be produced using various techniques based on the
specific industrial infrastructure conditions of each country,
making it a very flexible energy fuel type.

There is a trend for the usage of fossil fuels to progressively
decline dramatically as the adoption of new, more ecologically
friendly energy solutions and renewable energy sources rises. A
big role is anticipated for hydrogen-based energy processes in
our upcoming generations as they appear to be one of the best
ways to create improved environmental and sustainability
circumstances.>® In an ever-increasing number of studies,
hydrogen is being viewed as a critical component of a global
sustainable energy plan that significantly lessens the menace of
climate change, air pollution, and global warming.”” As an
inevitable development trend of human civilization, the world
has started to convert energy from one to one another. Here, the
prediction of transition from solids to liquids and gas fuels has
been illustrated in Fig. 1.
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It is possible to manufacture hydrogen fuel from environ-
mentally benign sources (solar, wind, tide, etc.), which is
regarded as a renewable energy fuel. However, most of the
hydrogen is being produced from fossil fuels, and the actual
output of hydrogen being created using water electrolysis and
renewable resources like biomass, sewage sludge is still too
small due to the limitations of technology and the high cost in
comparison with the other traditional fossil precursors.'***
Almost all of the hydrogen utilized today is generated from
fossil fuels, with a few rare exceptions. Fig. 2a clearly shows that
the majority of the hydrogen generated worldwide (about 48%)
comes from natural gas, 18% of hydrogen is produced from
coal, and 30% of dedicated hydrogen is produced from oil.
Electrolysis of water and electricity is used to create the
remaining 4%.°

Fig. 2b shows hydrogen production efficiency from various
different processes, with electrolysis demonstrating the highest
efficiency at around 80%, but this technology is still expensive
and difficult to use on a large scale.”” Currently, the steam
reforming is the most popular strategy to produce hydrogen.

In the long run, hydrogen fuel will replace hydrocarbon fuels
because of its benefits and adaptability. In recent years, the
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Fig.1 The energy form transitioned from solid to liquid from 1850 to 2150.” Reproduced from ref. 7 with permission from [Scientific Research],

copyright [2019].

water splitting method has been heavily researched to produce
clean hydrogen gas, which means that no harmful gases (CO,
and CO,) are generated during the production process. Thus,
water is only produced as a byproduct of the creation of
hydrogen fuel if we use the electrocatalyst method, which is
thought to be the most effective and clean energy source.'®*>°
The use of hydrogen fuel as an independent, clean energy
source with a higher energy content than fossil fuels is
acknowledged on a global scale. A great choice as an energy
source for heat and power, among many other uses, hydrogen
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has many beneficial characteristics, including a large storage
capacity, renewability, purity, massive transportation, high
transformation, low emission sources, versatility, and rapid
recovery.”* > It is therefore recognized as the most promising
and ecologically beneficial energy source of the twenty-first
century. Hydrogen fuel will soon play a key role in industrial
applications, spurring the growth of business, electronic tech-
nology, transportation, and air technology (Fig. 3).

Over the next decade, the race to produce green hydrogen in
Asia will intensify as many of the world's leading energy
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(a) Global hydrogen production,*® reproduced from ref. 16 with permission from [MDPI], copyright [2022] and (b) hydrogen production

efficiency from various different process.” Reproduced from ref. 17 with permission from [Royal Society of Chemistry], copyright [2023].
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Fig. 3 The relationship between supply and demand of hydrogen fuel.

companies join hands with regional partners to implement
a range of energy projects. Green hydrogen is created by sepa-
rating water into hydrogen and oxygen using renewable energy
from sources like solar and wind power. This hydrogen fuel can
be used for heavy industries such as steel production, concrete,
and the transportation industry. Demand for green hydrogen is
growing strongly globally, especially in Europe, which is accel-
erating the development of renewable energy to reduce depen-
dence on fossil energy supplies, especially in the winter season.
However, this investment trend is forecast to explode in Asia in
the near future. Moreover, hydrogen storage and transportation
techniques also require stronger research and investment
resources in the context of increasing demand. This has led to
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a strong investment in research into new materials for liquid
hydrogen containers and gaseous hydrogen storage. In
summary, the hydrogen industry will lead the rapid develop-
ment of various supporting industries that help to raise the
economy and provide a great opportunity for a future society
based on clean renewable energy.

There have been numerous reviews about hydrogen fuel,
production methods, storage and transport facilities, and
economic value. Each review brings certain knowledge and
perspectives to this future fuel. This review is presented with
the ambition of being able to synthesize, distill key points,
and timely update important information about hydrogen
energy.
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2 Hydrogen productions

Hydrogen fuels current can be generally categorized by various
types based on the color, such as green type can be produced
from renewable sources, blue type can be made from fossil
sources with CO and CO, capture, grey type can be created from
fossil sources without harmful gases capture, red type can be
produced from nuclear energy (Fig. 4).>*2° Even though most
hydrogen fuels now are of the blue and grey types, which can be
generated via the steam hydrocarbon reforming technique with
CO and CO, release, green hydrogen may also be produced from
renewable energy sources. A common technique is electrolysis,
which splits water into oxygen and hydrogen under applied
electrical current and produces green hydrogen with no outright
emissions of carbon dioxide. The required electricity might be
generated using renewable energy sources. Fig. 5 shows the
various methods to produce hydrogen fuels including three
types of blue, red, and green from two main sources: (i) fossil
fuels, and (ii) renewable resources.””* Each of these methods
has advantages and disadvantages, which will be discussed
below.

2.1 Hydrogen from fossil sources

At present, global hydrogen production is mainly produced
from fossil fuel inputs by two main methods: reforming and
pyrolysis on an industrial scale. Up until now, hydrogen fuel
circulating on the market has been blue and grey, with the
advantages of low cost, being able to be supplied in large
quantities, and being produced in many different countries
spanning four continents.

2.1.1 Steam reforming. The majority of the hydrogen used
in the worldwide market is produced by reforming hydrocarbon
fuels. The creation of hydrogen is thought to mostly be
produced by the steam reforming of hydrocarbons, particularly
in refineries. In the steam reforming reaction, a combination of
steam and hydrocarbons reacts at a high temperature to create
carbon dioxide and hydrogen (Fig. 6). Natural gas such as

28266 | RSC Adv, 2023, 13, 28262-28287

AlKkaline fuel cell
Solid oxide fuel cell

Bio-photolysis

liquefied petroleum gas and naphtha are both used in the steam
reforming process to obtain hydrogen. Here, steam methane
reforming from natural gas or light hydrocarbons is the
hydrocarbon reformation technique that is most frequently
utilized. The general process of methane steam reforming can
be described by following equations:*'~**

- Steam reforming reaction:

CH,4 + H,O (heat) — CO + 3H, (1)
- Water gas shift:
CO + H,O0 — CO;, + H, (2)
- CO, reforming:
CH,4 + CO, — 2CO + H,O (3)
- Higher hydrocarbons steam reforming:
C,H, + mH>0 (g) = mCO + (m + 0.5n) H, (4)

For example, methanol and oxygenated hydrocarbons need
to be heated to 180 °C, but most traditional hydrocarbons need
to be heated to more than 500 °C in order to undergo steam
reforming.***” Additionally, the use of catalyst reforming tech-
niques with extra metal has been researched to overcome the
restrictions of mass and heat transfer to permit the kinetics of
steam reforming.***® Both nonprecious metals, like nickel, and
precious metals from group VIII elements, such platinum or
rhodium, are utilized as catalysts.**** Conventional steam
reformers are constrained by the efficacy factor of pelletized
catalysts due to significant mass and heat transmission
restrictions.** Therefore, with traditional steam reformer reac-
tors, kinetics is seldom the limiting factor, and as a result, less
costly nickel catalysts are utilized in industry.*>*¢ In general,
steam reforming will continue to be the dominant source of
hydrogen fuel in the coming decade because it has an estab-
lished industrial production system, an assured supply of input

© 2023 The Author(s). Published by the Royal Society of Chemistry
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fuel, and an optimized manufacturing method that yields the
highest quality product. Of course, the hydrogen fuel industry's
long-term objective is to substitute other, more environmentally
friendly production techniques for the steam reforming process
that uses natural gas fuel sources and emits CO or CO, during
operation.

2.1.2 Partial oxidation. An alternate strategy to steam
reforming processes is partial oxidation which focus on
methane, heavy fuel oil, coal, and other feed stocks might all be
used in this process.*”** The best method for producing
hydrogen from coal and heavy fuel oil is partial oxidation.****
Hydrocarbon fuels are transformed into a mixture of hydrogen,
CO, CO,, and other partially oxidized compounds by the
exothermic process of partial oxidation. One benefit of this

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(a) Traditional partial oxidation reactor, and (b) catalytic partial oxidation reactor.

method is the strong exothermic nature of oxygen processes,
which negates the need for an external energy source.
Frequently, heavy oil fractions and low-grade coal, which are
challenging to further process and use, are gasified source
materials.® Biogas and methane are also possibilities.>** In
a non-catalytic process called partial oxidation, the raw material
is gasified in the presence of oxygen and possibly steam at
pressures between 3 and 8 MPa and temperatures between 1300
and 1500 °C, which generate more CO than steam reforming, so
the partial oxidation process needs to be completed by the
steam-based conversion of CO into H, and CO,. The partial
oxidation process is an exothermic reaction, and the equation
for the reaction is given by the following equation:***

RSC Adv, 2023, 13, 28262-28287 | 28267
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C,H, + 0.5m0, —» mCO + 0.5nH, (5)

Moreover, in order to increase the hydrogen conversion rates
and decrease the reaction temperature compared to non-
catalyzed partial oxidation techniques, hydrogen generation
from the partial oxidation of hydrocarbons employing catalysts
has been used in commercial settings (Fig. 7).%**

2.1.3 Autothermal reforming. The method for producing
hydrogen by combining the catalytic partial oxidation process is
known as autothermal reforming. Steam reforming (endo-
thermic) and partial oxidation (exothermic) processes are both
components of autothermal reforming.***” Compared to steam
reforming of methane, autothermal reforming has the advan-
tages of not requiring external heat and being easier and low-
cost. In short, the reformer is filled with both steam and
oxygen, which causes the reforming and oxidation events to
occur concurrently and produce a thermodynamically neutral
reaction.® Compared to the partial oxidation reforming
method, the autothermal reforming technique can be carried

View Article Online

Review

out at low pressure. Fig. 8 shows the general autothermal
reforming reactor following chemical equations:
- Combustion zone:

C,H, + 0.5m0, — mCO + 0.5nH, (6)
Hz + 0502 - Hzo [7)
CO + 0.50, — CO, 8)

- In thermal and catalyst zone:
C,,H, + mH,0 (g) —» mCO + (m + 0.5n) H, (9)

CO + H,O — CO, + H, (10)

The choice of catalyst, much like in partial oxidation or
steam reforming, is critical to the outcome, with the most
widely used catalysts being nickel-based because of their effi-
ciency and affordability. Due to this method's exceptional
thermal efficiency, less energy is used compared to partial
oxidation or steam reforming.*® Moreover, an important benefit
of the auto-thermal reaction method over partial oxidation is
that it may create a lot of hydrogen gas while beginning and
ending quickly. The steam to carbon ratio and the oxygen to fuel
ratio were both thought to be essential for controlling the
temperature and avoiding coke formation during the auto-
thermal reaction process.®*-*>

2.1.4 Pyrolysis. Pyrolysis is a thermal decomposition tech-
nique happening in non-oxygen or anaerobic condition in order
to covert different light liquid hydrocarbons into hydrogen and
other carbon element.”® The degradation of hydrocarbons by
heat is referred to as pyrolysis, which depends on the charac-
teristics of the coal, and these decomposition processes have
been conducted at 300 to 400 °C.**% The thermal breakdown of
other hydrocarbons has been place at high temperatures; for
example, methane requires a high temperature of 1400 °C to
thermally decompose.®® In addition, the use of a transition
metal catalyst like Ni, Fe, or Co can lower the temperature of the
pyrolysis procedure.®®®® The pyrolysis of hydrocarbon can be
described by following equations:***

(@)
Coal Steam Gas Shift H, H
. : ; 2
Oxygen purification reaction separation
(b)
H,
separ;ﬁon H,
Coal Steam
Oxygen
e CO, capture

purification

separation

Fig. 9 General schematic for hydrogen production from: (a) traditional process of coal gasification, (b) modified process of coal membrane

gasification with CO, capture.
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C,H, — mC + 0.5nH, (11)
C,H, + (2m — 0.57) H, — mCH, (12)
CH, — C +2H, (13)

When heavy residual fractions with a boiling point greater
than 300 °C are the source of thermal breakdown, it makes
sense to produce hydrogen using a two-step process that
includes (i) hydrogasification (eqn (12)) and (ii) methane
cracking gasification (eqn (13)). Despite producing less
hydrogen than the other methods, this method enables the
simultaneous creation of useful byproducts, such as carbon
nanotubes, carbon nanofibers and carbon spheres.”*7>

2.1.5 Fossil gasification. The fossil gasification technique
is described as a series of thermochemical reactions between
the gasifying agent, such as oxygen, steam, air, or carbon
dioxide, and the fossil fuel, such as coal, that occur at high
temperatures.”>”* For instance, the thermochemical conversion
process known as coal gasification transforms coal into gaseous
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products like hydrogen and carbon monoxide (Fig. 9).”>”® This
procedure tries to substitute coal burning in order to lessen
hazardous emissions and boost the fuel's energy density. The
key benefit of this strategy is the cheaper fuel than natural gas
reforming. However, given the high carbon content, the major
issue with producing hydrogen via coal gasification as opposed
to alternative methods that employ various feedstocks is con-
nected to greater CO, emissions.”” Due to these benefits, coal
gasification and carbon capture-based technologies are being
combined.” The gasification of coal is the earliest way of
producing hydrogen, which is created in outdated gas plants
and comprises a significant quantity of CO and approximately
60% hydrogen.” Coal, for example,
following equations:

has pyrolysis process
75-79

3C (coal, patch, etc.) + O, + H,O — H, + 3CO (14)

CO + H20 - C02 + H2 (15)
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Fig. 10 Pyrolysis and gasification technologies for hydrogen production using biomass resources.®* Reproduced from ref. 83 with permission

from [MDPI], copyright [2020].
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2.2 Hydrogen from renewable sources

2.2.1 Hydrogen production from biomass resources.
Biomass is considered a great energy resource for hydrogen
production due to its abundant sources and environmental
friendliness, which aim to replace fossil fuels.*® Currently, there
are several techniques to produce energy from biomass,
including physical, thermal, chemical, and biological conver-
sion.** Biomass might be transformed into heat, power, solid
fuels (coal), liquid fuels (bio-oil, methanol, etc.), and gas fuels
(hydrogen, syngas, etc.) via the gasification and pyrolysis
processes, water splitting, respectively.®*

The oldest and most well-known method for utilizing
biomass as a source of hydrogen generation is gasification,
which employs a carefully regulated process involving heat,
steam, and oxygen to transform biomass into hydrogen and
other products without burning.**#* Because carbon dioxide is
removed from the atmosphere during the development of
biomass, this method may have negligible net carbon emis-
sions, especially if carbon capture, use, and storage are
employed. The construction and operation of biofuel gasifica-
tion facilities can provide high-quality hydrogen fuels at
a reasonable cost. Typically, in the process of gasification,
carbon monoxide, hydrogen, and carbon dioxide are produced
from organic or fossil-based carbonaceous materials at
temperatures above 500 °C without burning (Fig. 10). After that,
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the carbon monoxide reacts with water in a water-gas shift
reaction to create carbon dioxide and more hydrogen. This gas
stream can have the hydrogen removed using adsorbers or
certain membranes. The biomass gasification process can be
described by following reactions:**%>%

First simplified gasification

C,H,0.N,,S; (biomass resources) + O, + N, + H,O —
CO + CO, + H; + other species (16)

Water-gas shift reaction

CO + H,O — CO;, + H, (17)

One another strategy to produce hydrogen from biomass is
pyrolysis technology. In fact, pyrolysis is modified-gasification
technology in the absence of oxygen.*” Compared to coal,
biomass is more difficult to gasify, and when no oxygen is
utilized, it also creates additional hydrocarbon compounds in
the gas mixture that leaves the gasifier. Consequently, a further
step is often required to reform these hydrocarbons using
a catalyst to produce a clean syngas combination of hydrogen,
carbon monoxide, and carbon dioxide. The carbon monoxide is
then transformed into carbon dioxide using steam in a subse-
quent step known as a shift reaction, just like in the gasification
process used to create hydrogen (Fig. 11).*** The generated
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Fig. 12 Schematic of flow diagram of gasification process using mixed plastic waste precursor to produce hydrogen and other species.®*
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hydrogen is then sorted and cleaned after separation and
purification.

2.2.2 Hydrogen production from plastic wastes. Because
plastics are employed in so many different aspects of daily life,
their production, consumption, and resulting plastic waste have
all increased steadily since the industrialization of plastic
production.®®®* Significant negative effects on the environment,
particularly for terrestrial and marine ecosystems, are caused by
the proliferation and misuse of plastic packaging, improper
management of residues, unlawful dumping, and unregulated
landfilling. Since plastic pollution has been documented for
a long time, it has raised economic and societal concerns. In
fact, plastics can break into micro- and nano-plastics through
erosion and degradation, which is an issue that is difficult to
manage due to its ability to contaminate water supplies, interact
with chemical species in the environment, and even enter
human bodies.***

The problem of recycling plastic waste has been proposed for
decades with many experimental technologies. One of the ideas
that is considered groundbreaking is to decompose plastic
waste as an input precursor to synthesize hydrogen through
several classic methods such as gasification, gasification—-
pyrolysis, and electrolysis.**** Among them, hydrogen produc-
tion from plastic gasification is the most popular technology
with the most synchronized infrastructure and has been put
into production on an industrial scale. Hydrogen production by
gasification can at the same time obtain methane (CH,) as
a major product and segregated capture, as shown in Fig. 12.%*
This technology has been the main method of making hydrogen
fuel from plastic waste with high efficiency, stability, and low
cost.

With the goal of increasing the efficiency of hydrogen gas
production, pyrolysis has been developed with the advantage of
being able to gasify large volumes of plastic waste such as tires,
plastic containers, etc. Plastic pyrolysis is a technology that
involves the rapid usage of trash and results in significant
issues (Fig. 13). The quickest approach to prevent adding
significant volumes of plastic waste such as plastic bag, plastic
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wall
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Flow
N; controller

cylinder

View Article Online

RSC Advances

container, tires to municipal solid waste is to use this
technique.®”® Pyrolysis also has the advantage of blocking the
channel via which micro- and nano-polymers can exist in water
sources and enter the human body. However, the plastic
pyrolysis technology also has some limitations of carbon
dioxide and waste oil product during pyrolysis process.
Currently, to increase the hydrogen fuels, various modified-
techniques have been used such as pyrolysis-steam reform-
ing,'* pyrolysis-CO, dry reforming,***
processing.'*>'%

In addition to gasification and pyrolysis-gasification
methods that are widely used in industry, electrocatalyst
methods are also being developed. Electrocatalysis is an
appealing and sustainable method to produce clean H, from
electrolyte containing organic materials at the cathode and
value-added oxygenates at the anode under moderate circum-
stances, which can be powered by renewable energy.'**'*
Typically, there are two different ways to convert polymers
through electrocatalytic oxidation: direct oxidation and indirect
oxidation. Indirect oxidation employing potent oxidizing inter-
mediates predominates in the conversion of plastics, whereas
direct oxidation corresponds to the electrophilic assault on
a polymer by OH created by water discharge on the anode
surface.’® For example, Fig. 14a shows electrocatalyst reform-
ing process of for direct oxidation polyethylene terephthalate
(PET) by using palladium modified nickel foam (Pd/NF) anode
and pure NF cathode. After 20 h of electrolysis at 0.7 Vvs. RHE at
a current density of 400 mA cm ™2, the conversion efficiency of
PET increased up to 100%.'” Fig. 14(b)-(d) illustrates the elec-
trocatalyst reforming PET by KOH and the final product
including potassium diformate, terephthalic acid electrolyte
and hydrogen fuel.'*®

In general, the purpose of recycling plastic waste still has
a long way to go. However, it must be affirmed that the advent of
disruptive methods such as gasification, pyrolysis, and elec-
trochemical reforming will give hope for a future where plastic
waste can be completely used as abundant input resource into
hydrogen fuel production.

pyrolysis-plasma catalytic

Exhaust

Condenser

Fig. 13 A scheme of pyrolysis process to produce hydrogen from waste plastic resources.®® Reproduced from ref. 99 with permission from

[Elsevier], copyright [2023].
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2.2.3 Hydrogen production from water splitting using
renewable energy. At the present time, the production of
hydrogen fuel by the water splitting method is a topic of great
interest for research and improving technology to reduce costs.
Why is water splitting so fascinating? Because the ultimate
objective of this technique is to develop an electrolytic system
that generates hydrogen and oxygen using seawater as an elec-
trolyte. One of the best advantages of this technique is that it
can obtain up to 95% purity hydrogen product. In general, water
splitting methods can be classified by three techniques: (i) low
temperature water electrolysis, (ii) high temperature water
electrolysis, and (iii) photonic.

Low temperature water electrolysis is the process by which
electrical energy is used to separate water into hydrogen and
oxygen at ambient temperature. With this method, the total
energy required for electrolyzing water slightly rises with
temperature. The water electrolysis process is described by the
generic equation below:'*>**°

H,O0 + electricity — H, + 0.50, (18)
For acid electrolyte:
At anode: 2H,O — O, +4H +4e; EE=0V (19)
At cathode: 4H" + 4~ — 2H,; E* = +1.23 V (20)
For base electrolyte:
At anode: 4OH™ — O, + 2H,0 +4e™; E° = +0401 V  (21)

At cathode: 4H,O + 4e~ — 2H, + 4OH™; E° = —0.828 V (22)

(2)

Anode Cathode
Pd/NF NF
terephthalate
[ Co0
(8] 4] Electroreforming
HO '("—@—i"-o-cu,(‘u, 1 +60H ————— + 200,% + 5H,
) " CoO

Fig. 14
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For neutral electrolyte:

At anode: 2H,0 — O, + 4H" +4e™; E° = +0817V  (23)

At cathode: 4H,O + 4¢~ — 2H, + 4OH ; E° = +0.413 V (24)

Here, the process of breaking the hydrogen and oxygen bonds
within water depends on the passage of a current of electricity
through an anode and cathode placed in the electrolyte.
Although the principle is the same, several electrolysis tech-
niques, such as alkaline-, anion exchange-, solid oxide-, and
proton exchange membrane-electrolysers, can be used to
produce hydrogen [Fig. 15(a)-(c)].****** Fig. 15a shows the
general working principle of one water splitting system while
Fig. 15b and c are the developed system of anion exchange
membrane (AEM) electrolysis and proton exchange membrane
(PEM) electrolysis, respectively. These approaches differ mostly
in terms of the electrolyte type used or the ion transport tech-
nique used. Currently, water electrolysis can obtain a high
transition efficiency of up to 80%, which is higher than gasifi-
cation and pyrolysis, but this technique needs to be evaluated
for its price to be viable for large-scale production in industry.

A microbial electrolysis cell (MEC) is a bioelectrochemical
hydrogen generation method that is ecologically benign.
Fig. 15d shows the construction of one standard MEC system
based on three main parts: (i) cathode, (ii) membrane, and (iii)
anode, where anodic bio-catalytic oxidation and cathodic
reduction processes are used in the technique.'* An external
renewable energy source, such as solar or wind energy, can serve
as a power source for a MEC system and become a promising
strategy to produce hydrogen. Currently, MEC is focused on
wastewater treatment and also bioenergy hydrogen production
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system.

because the hydrogen production efficiency of the MEC system
provides greater yields than water electrolysis. However, the
MEC system still has some disadvantages that need improve-
ment, such as the instability of the bioanode at high tempera-
tures, the high substrate concentration, the fact that bioanodes
are quite sensitive to high acid concentrations, and the fact that
the bioanode can assume hydrogen. Additionally, MEC is an
interesting technique that was developed based on microbial
fuel cells (MFC). MFC has a long history, beginning with
a simple half-fuel cell in 1931 by Barnett Cohen and progressing
through various completed systems to the present. In general,
MFCs are electrochemical devices that can produce electricity
by converting chemical energy into electrical energy from the
biochemical reactions of bacteria.

High-temperature electrolysis is the process of dissociating
H,O into H, and O, under steam conditions at very high
temperatures from 500 to 1000 °C, and system efficiencies rise
with rising operating temperatures (Fig. 16). In the high
temperature water electrolysis system, the needed power supply

© 2023 The Author(s). Published by the Royal Society of Chemistry

is lower than low temperature water electrolysis because the
required power supply decreases with the increasing tempera-
ture. It is recognized that high-temperature electrolysis is more
effective than standard electrolysis that takes place at normal
temperature and provides higher efficiency. Therefore, the
high-temperature electrolysis process is being completed and
will be applied on an industrial scale in the near future.
Currently, the solid oxide electrolyser is preferred for use in
high-temperature systems due to its chemical stability at high
temperatures and cost-effectiveness. Since non-rare-earth
elements are more often utilized as catalysts, solid oxide elec-
trolysis is a growing technique that gains from its high effi-
ciency. The most popular electrode material is a composite of
yttria-stabilized zirconia or Ni-based ceramics, with ceramics
serving as the electrolyte in most cases.'*

In summary, low-temperature and high-temperature water
electrolysis are promising technologies for addressing the
global energy crisis. In the hydrogen economy, they also play
a significant role in manufacturing the hydrogen gas that
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Fig. 16 A comparison between solid oxide fuel cell (SOFC) and solid oxide electrolysis cell (SOEC).**> Reproduced from ref. 115 with permission

from [Wileyl], copyright [2020].

powers the industrial and transportation sectors. A wide range
of research interests have been expanded to include additional
industrial uses as well as the development of high-performing
materials in order to optimize their potential usage. These
research interests go beyond just electrolyzing water to produce
hydrogen.

Hydrogen from photocatalyst technique is the water splitting
separates into hydrogen and oxygen via photocatalysis. Since

this is what normally occurs in the creation of photosynthetic
oxygen, light energy (photons), water, and catalyst materials are
required. Currently, semiconductors and their composites are
commonly used as photocatalysts. The working principle of
water splitting can be described in Fig. 17, when absorbing
photons from light with energy equal to or higher than the band
