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Preparation of electrochemical horseradish
peroxidase biosensor with black phosphorene—
zinc oxide nanocomposite and their applications

Feng Yang, 2 Yijing Ai,1® Xiaoging Li,*° Lisi Wang,? Zejun Zhang,?® Weipin Ding*®
and Wei Sun @ *?

In this work, a novel and sensitive electrochemical biosensor was constructed based on a black
phosphorene (BP) and nanosized zinc oxide (ZnO@BP) nanocomposite as a modifier, which was used for
the immobilization of horseradish peroxidase (HRP) on a carbon ionic liquid electrode (CILE). The
ZnO@BP nanocomposite was synthesized by a simple in situ hydrothermal method with stripped black
phosphorus nanoplates and ZnO. The ZnO@BP and HRP-modified electrode was developed by a casting
method. ZnO@BP with highly conductivity, large surface area and good biocompatibility could maintain
the bioactivity of HRP and accelerate the electron transfer rate. Cyclic voltammetry was used to study
the direct electrochemistry of HRP on the Nafion/HRP/ZnO@BP/CILE with the appearance of a pair of
distinct redox peaks. The constructed electrochemical HRP biosensor exhibited excellent electrocatalytic
effects on the reduction of trichloroacetic acid and sodium nitrite. Real samples were detected with
satisfactory results, which demonstrated the potential applications of this electrochemical HRP biosensor.

1. Introduction

Two-dimensional nanomaterials have attracted extensive
attention and research interest due to the large specific surface
area, unique surface energy and high interfacial reaction
activity, which demonstrate a wide range of applications in
supercapacitance, photocatalysis, and biosensing.'* In the field
of electrochemical biosensors, the electrode interface modified
with two-dimensional nanomaterials not only exhibits high
affinity and good biocompatibility for biomolecules, but also
maintains the activity of biomolecules. Furthermore, the
excellent electrical conductivity can significantly enhance the
current signal and improve the detection sensitivity.* In 2014,
single-layer and few-layer black phosphorene (BP) nanosheets
were first mechanically stripped from bulk black phosphorus
crystals.®* The synthesis of BP, a new member of the two-
dimensional material family, and BP-related composites with
high chemical activity, excellent carrier mobility, and aniso-
tropic electrical and thermal conductivities has become a new
trend, which act as promising materials for sensing

“Key Laboratory of Laser Technology and Optoelectronic Functional Materials of
Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry
of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal
University, Haikou 571158, China. E-mail: sunwei@hainnu.edu.cn

*Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127,
China. E-mail: gzsdingwp@126.com

°College of Health Sciences, Shandong University of Traditional Chinese Medicine,
Jinan, 250355, China. E-mail: 11x2g3_li@126.com

+ These authors contributed equally to this work.

32028 | RSC Adv, 2023, 13, 32028-32038

applications.®® For example, Niu et al. used a BP-modified
glassy carbon electrode (GCE) for the sensitive voltammetric
detection of rutin.® Li et al. prepared an electrochemical
biosensor based on BP and a poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) composite with hemoglobin (Hb).** Zhao
et al. developed an Hb-biosensor based on poly-L-lysine and BP
to investigate the bioactivity of Hb." Shi et al. synthesized
nitrogen-doped carbonized polymer dots anchoring few-layer
BP and constructed an electrochemical DNA sensor for the
determination of Escherichia coli O157: H7.** Xiang et al.
designed a novel electrochemical nanosensor based on BP for
the sensitive voltammetric detection of ochratoxin A in beer and
grape juice samples."” Ge et al. used BP, Nafion and isopropanol
composite-modified GCEs for the voltammetric detection of
clenbuterol in bovine meat and bovine serum samples." Ram-
alingam et al. constructed a microfluidic aptasensor based on
BP and gold nanocomposite-modified screen printed electrodes
for the detection of okadaic acid.*

As a commonly semiconductive nanomaterial, nano-zinc
oxide (ZnO) has been widely selected for the preparation of
electrochemical sensors due to its good biocompatibility, high
surface activity and low cost.®'” Ding et al. used a black phos-
phorous quantum dot (BPQD)-doped ZnO nanoparticle-
modified GCE for the detection of hydrogen peroxide with
excellent electrochemical properties.”® Li et al. synthesized
a BP-ZnO nanohybrid by a simple one-step co-precipitation
method with enhanced visible light photocatalytic activity.® Li
et al. constructed a NO, sensing platform based on hetero-
structured ZnO-BP composites to detect NO, gas.”®

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Experimental process diagram for the synthesis of ZnO@BP nanocomposite and the fabrication procedure of electrochemical

biosensor.

In this paper, ZnO@BP was synthesized by an in situ
hydrothermal method and modified on the surface of a carbon
ionic liquid electrode (CILE) as a substrate electrode. Horse-
radish peroxidase (HRP) was immobilized on the ZnO@BP/
CILE with Nafion as a film to obtain the biosensor. The
synthesis of a ZnO@BP nanocomposite and the fabrication
procedure of the electrochemical biosensor are shown in
Scheme 1. Due to the synergistic properties between BP and
ZnO, direct electrochemical behaviors of HRP on the modified
electrode exhibited a pair of quasi-reversible redox peaks.
Furthermore, the modified electrode was used for the electro-
catalytic reduction of trichloroacetic acid (TCA) and sodium
nitrite (NaNO,) with satisfactory results.

2. Experimental
2.1 Reagents

1-Hexylpyridinium hexafluorophosphate (HPPFg, >99%, Lanz-
hou Yulu Fine Chem. Co., Ltd., China), HRP (MW 40 000,
Sinopharm Chem. Reagent Co., Ltd., China), black phosphorus
nanoplate dispersion (BPNPs, Nanjing XFNANO Materials Tech.
Co., Ltd., China), 1-methyl-2-pyrrolidone (NMP, 99.5%,
Shanghai Aladdin Bio-Chem. Tech. Co., Ltd., China), TCA
(Tianjin Kemiou Chem. Co., Ltd., China), nano-zinc oxide (ZnO,
Nanjing XFNANO Materials Tech. Co., Ltd., China), NaNO,
(Yantai Sahe Chem, Co., Ltd., China) and graphite powder
(particle size 30 pm, Shanghai Colloid Chem. Co., Ltd., China)
were used as provided. The supporting electrolyte was 0.1 mol
per L phosphate buffer solution (PBS) with different pH values.
All the other reagents were of analytical grade, and ultra-pure
water (Milli-Q, IQ-7000, Merck Millipore Co., Ltd., USA) was
used throughout the experiments.

2.2 Apparatus

All the electrochemical experiments were performed using
a CHI 1040C electrochemical workstation (Shanghai Chenhua
Instrument Co., Ltd., China). Electrochemical impedance

© 2023 The Author(s). Published by the Royal Society of Chemistry

spectroscopy (EIS) was carried out using a CHI 660E electro-
chemical workstation (Shanghai Chenhua Instrument Co., Ltd.,
China). A traditional three-electrode system was used with
a self-made modified electrode (Nafion/HRP/ZnO@BP/CILE) as
the working electrode, Ag/AgCl (saturated KCl solution) as the
reference electrode, and a platinum wire as the auxiliary elec-
trode. Transmission electron microscopy (TEM) was performed
using a JEM-2010F (JEOL, Japan) with scanning electron
microscopy (SEM) using a JSM-7100F (JEOL, Japan). X-ray
diffraction (XRD) experiments were conducted using a D/Max-
2500V X-ray diffractometer (Rigaku, Japan) with Cu-Ko radia-
tion. X-ray photoelectron spectroscopy (XPS) was performed
using an AXIS HIS 165 spectrometer (Kratos Analytical, UK). The
N, adsorption and desorption isotherms, surface area and pore
size distribution of the ZnO@BP nanocomposite were tested
using an Autosorb iQ Station 2 (Quantachrome Instruments,
USA) in a liquid nitrogen environment.

2.3 Synthesis of ZnO@BP nanocomposite

According to the reported procedure with slight modifica-
tions,*»** 10.0 mg BPNP powder and 10.0 mL of NMP were
mixed in a mortar and then ground for 10 min. The mixture was
sonicated for 8 h with ice cooling and then centrifuged at
8000 rpm for 20 min to remove unexfoliated BPNPs and obtain
a BP suspension. ZnO@BP was synthesized by an in situ
hydrothermal method as follows:* first, 10.0 mL 1.0 mg mL ™"
nano-ZnO dispersion was added into 10.0 mL as-obtained BP
suspension. The mixture solution was sonicated for 10 min and
sealed into a Teflon equipped stainless steel autoclave. After
heating at 180 °C for 2 h, the product was removed, washed with
ethanol solution and N, saturated ultrapure water, respectively,
and dried at 60 °C for 8 h under vacuum to obtain a ZnO@BP
solid powder.

2.4 Construction of the modified electrode

According to the ref. 24, the mass ratio of graphite powder
and HPPFg was 2 : 1 to construct a CILE, which was used as the

RSC Adv, 2023, 13, 32028-32038 | 32029
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base electrode with the electrode surface polished before each
use. In a nitrogen-filled glove box, 10.0 pL of 1.0 mg mL ™"
ZnO®@BP suspension was casted onto the surface of the
electrode and dried naturally to obtain the ZnO@BP/CILE.
Then, 10.0 pL of 15.0 mg mL ™" HRP solution and 10.0 pL of
0.5% Nafion solution were applied onto the modified surface
in sequence and dried at room temperature to obtain the
Nafion/HRP/ZnO®@BP/CILE. The same method and procedure
were used to fabricate other modified electrodes for
comparison.
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2.5 Electrochemical investigations

Electrochemical measurements were investigated in 0.1 mol L ™"
PBS with different pH values ranging from 2.0 to 8.0 by cyclic
voltammetry (CV) at a scan rate of 0.1 Vs ". The buffer solutions
were deoxygenated by highly pure nitrogen for 20 min before
the measurements. Electrochemical behaviors of different
modified electrodes were analyzed in 1.0 mmol L™ K;[Fe(CN)g]
and 0.5 mol L™' KCl solution with EIS measurements in
10.0 mmol L™" K;[Fe(CN),]/K4[Fe(CN),] and 0.1 mol L™" KCI
solution in the frequency range of 0.1-10° Hz.
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Fig. 1 Survey XPS spectra of (A) BP and (B) ZnO@BP nanocomposites. (C) Zn 2p, (D) O 1s and (E) P 2p spectra of ZnO and ZnO@BP nano-
composites. (F) XRD patterns of BP, ZnO and ZnO@BP nanocomposites. (G) N, adsorption and desorption isotherms of ZnO@BP nano-

composites. (H) Pore size distribution curve.
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3. Results and discussion
3.1 Characterization of ZnO@BP nanocomposite

XPS was performed to illustrate the composition and chemical
state of elements in materials. In Fig. 1A and B, the full survey
spectra of BP and ZnO@BP confirmed the presence of O, P and
Zn, in which the atom ratio of Zn 2p and P 2p was 19 : 25. Fig. 1C
showed the characteristic peaks of pure ZnO at 1021.4 eV and
1044.4 eV, which were ascribed to the binding energies of Zn
2pss2 and Zn 2py,,, respectively.”® Compared with pure ZnO, the
characteristic peaks of Zn 2p;/, and Zn 2p,,, for ZnO@BP shif-
ted 0.3 eV and 1.4 eV to a higher binding energy, respectively.
Fig. 1D shows the O 1s XPS spectra of ZnO and ZnO@BP, and
the peaks at 530.4 eV and 530.5 eV were assigned to the O~ ions
in the Zn-O bonding of ZnO and ZnO®@BP.*® Besides, the
shoulder peaks at 531.7 eV and 532.0 eV were related to surface-
adsorbed oxygen of materials, which also moved to higher
binding energies. For XPS P 2p spectra (Fig. 1E), three charac-
teristic peaks located at 130.2 eV, 131.0 eV and 134.3 eV for BP
were attributed to P 2pzs, P 2p;, and oxidized phosphorus
(PO,).”” The characteristic peaks of P 2p;, and P 2p,),, for
ZnO@BP both shifted to lower binding energies (129.4 eV and
130.2 eV, respectively), which indicated the electron transfer
from ZnO to BP and strong interaction between ZnO and BP
nanosheets. Besides, the peak intensity of PO, increased and
the binding energy changed 1.0 eV, indicating the slight
oxidation of BP nanosheets during the preparation of ZnO@BP.

Fig. 1F further shows the XRD pattern of nano-ZnO, BP and
ZnO@BP nanocomposites. As for pure nano-ZnO particles, XRD
analysis showed that the reflections at 26 were 31.89°, 34.57°,
36.48°, 47.70°, 56.89°, 63.03°, 68.11°, and 69.17°, which corre-
sponded to the (100), (002), (101), (102), (110), (103), (112) and
(201) crystal planes of single-phase ZnO with the wurtzite
structure (JCPDS file no. 36-1451).2%*° For BP, three strong peaks
at 16.92°, 34.22° and 52.34° were assigned to the (020), (040)
and (060) planes of BP (JCPDS file no. 47-1626), respectively. The
weak peaks of BP in Fig. 1F might correspond to a slightly
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View Article Online

RSC Advances

distorted orthorhombic structure of BP.** Due to the low doping
amount of BP, the typical diffraction peak of BP could not be
detected in ZnO@BP. The lattice parameters of ZnO@BP were
very similar to those of pure ZnO, indicating that the influence
of BP lattice on the lattice parameters of ZnO was negligible. It
was inferred that ZnO was only dispersed on the surface of BP
and maintained good crystal lattice.*

The textural properties of ZnO@BP were further studied by
the N, adsorption-desorption analyses. As shown in Fig. 1G, the
adsorption-desorption isotherm profile was described as type
IV, which indicated that ZnO@BP has abundant mesoporous
and macroporous structures with a BET specific surface area of
11.7 m® ¢~ '. The pore distribution plot is depicted in Fig. 1H,
and ZnO@BP exhibits a pore size distribution from 1.3 to
3.5 nmwith a peak at 1.76 nm. The presence of mesoporous and
macroporous structures of ZnO@BP was ascribed to the
immobilization of HRP.

Fig. 2 shows the SEM and TEM images of BPNPs, ZnO and
ZnO@BP nanocomposites. It could be observed that the BPNPs
presented a multilayered sheet-like structure (Fig. 2A and B) and
ZnO appeared as nanoparticles with some aggregations (Fig. 2C
and D). Fig. 2E and F show the typical SEM images of ZnO@BP
nanocomposites at different amplifications, which indicated
that the existence of BP reduced the stacking density of ZnO
nanoparticles. The TEM image (Fig. 2G) indicated that ZnO
nanoparticles were successfully loaded on the BP nanosheets.
The elemental mapping images of P, Zn and O (Fig. 2H) indi-
cated that all the elements were uniformly distributed on the
surface of ZnO@BP.

3.2 Electrochemical characterizations

Using 1.0 mmol L " K;[Fe(CN)g] and 0.5 mol L™ KCl mixture as
the electrochemical probe, electrochemical responses of
different modified electrodes were investigated by CV. As shown
in Fig. 3, on the CILE (curve a) a pair of reversible redox peak
appeared with a cathodic peak current (I,.) of 19.80 pA and an

Fig. 2 SEM images of (A and B) BPNPs, (C and D) ZnO, and (E and F) ZnO@BP nanocomposites with different magnification. (G) TEM image of
ZnO@BP nanocomposites. (H) Elemental mapping of P, Zn and O of ZnO@BP nanocomposites.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) Cyclic voltammograms of the CILE (curve a) and ZnO@BP/CILE (curve b) in 1.0 mmol L~! Kz[Fe(CN)g] and 0.5 mol L™ KCl solution at
a scan rate of 100 mV s~ (B) EIS results of the CILE (curve a) and ZnO@BP/CILE (curve b) in 10.0 mmol L™ Ks[Fe(CN)gl/K4lFe(CN)e] and 0.1 mol

L~ KCl solution at a frequency from 10° to 0.1 Hz.

anodic peak current (I,,) of 17.80 pA. The anodic peak potential
(Epa) and cathodic peak potential (Ep,.) were located at 0.249 V
and 0.164 V with the peak-to-peak separation (AE,) of 85 mV. As
for the ZnO@BP/CILE (curve b), the I, and I,, were increased to
48.12 pA and 43.16 pA, respectively, which were 2.43 and 2.42
times than that of the bare CILE with a AE}, value decreased to
65 mV, which indicated that the redox reaction of [Fe(CN)e]> /*~
became more reversible.*® Therefore, the modification of
ZnO@BP on the CILE surface significantly improved the inter-
facial conductivity of the modified electrode, accelerated the
electron transfer rate of [Fe(CN)s]>*~, and improved the elec-
trochemical response signal.

EIS is commonly used to investigate the electron-hole
separation efficiency.*> The electron transfer resistance (Re)
depends on the semicircle domains of impedance spectra and
can control the electron-transfer kinetics of the redox probe on
the electrode surface. As shown in Fig. 3B, on the bare CILE
(curve a) R, was estimated to be 22 Q, which was due to the high
conductivity of the CILE. As for the ZnO@BP/CILE (curve b), the
R was approximately 10 Q, which was lower than that of the
bare CILE, indicating that the ZnO@BP nanocomposite present
on the surface of CILE provided a faster electron transfer
process at the interface due to the high conductivity. The cor-
responding electrochemical parameters are listed in Table 1 for
comparison. Based on the Randles-Sevcik equation,*?* the
effective electrode surface area of the ZnO@BP/CILE was
calculated as 0.207 cm”, which was 1.64 times larger than that of
the CILE (0.126 cm?®). Therefore, the presence of ZnO@BP
nanocomposite can not only provide a large effective surface
area, but also improve the interfacial conductivity. The syner-
gistic effects resulted in an increase in the current response of
electrochemical probes with a more reversible electrode
process.

Table 1 Electrochemical parameters of different electrodes

AE
Electrodes Inc (MA) Ipa (HA)  Epe (mV)  Ep, (mV) (mV) R (Q)
CILE 19.80 17.80 0.164 0.249 85 22
ZnO@BP/CILE 48.12 43.16 0.159 0.224 65 10

32032 | RSC Adv, 2023, 13, 32028-32038

3.3 Direct electrochemistry

In 0.1 mol L™ pH 2.0 PBS, the electrochemical behaviors of
different modified electrodes were investigated by CV with
curves shown in Fig. 4A, no voltammetric responses were
observed on the bare CILE (curve a) and Nafion/ZnO@BP/CILE
(curve b), indicating that no electrochemical reaction took place
on the electrodes in the potential range of —0.8 to 0.2 V. On the
Nafion/HRP/CILE (curve c), a pair of redox peaks appeared with
I, as 5.456 pA and I, as 3.521 pA, indicating that the electron
transfer of HRP had occurred on the electrode surface. Ej,, and
Ep,. were located at —0.234 V and —0.142 V with AE; as 92 mV
and Ip,/Ip. as 0.65, demonstrating a quasi-reversible electrode
process.* On the Nafion/HRP/ZnO/CILE (curve d), a larger redox
peak current appeared with the I, and I,, increased to 16.07 pA
and 11.03 pA, respectively, indicating that the presence of ZnO
could improve the response. While on the Nafion/HRP/
ZnO@BP/CILE (curve e), a more reversible redox peak
appeared with the largest redox currents and a well-defined
peak shape. The current value of I,. (22.40 pA) and I, (16.85
pA) were 4.11 and 4.79 times than those of the Nafion/HRP/
CILE, respectively, revealing that ZnO@BP could promote the
electron transfer of HRP effectively. It was attributed to the
synergistic effects of the ZnO@BP nanocomposite with a larger
effective surface area, high conductivity, increased interfacial
roughness, more exposed active sites and good biocompati-
bility, which promoted the direct electron transfer rate and
improved the electrochemical response signal. E,,. and E,, were
located at —0.210 V and —0.148 V with AE as 62 mV and the
formal peak potential [E” = (Ep, + Epc)/2] as —0.179 V, which was
characteristic of HRP Fe(in)/Fe(u) redox couples.*® The results
indicated that the HRP molecules maintained the active struc-
ture in the composite film with direct electron transfer of HRP
accelerated by the ZnO@BP nanocomposite on the substrate
electrode.

The influence of scan rate in the range of 0.05 to 1.0 Vs~ on
the direct electrochemical behavior of HRP was also investi-
gated by CV with the results shown in Fig. 4B. It can be found
that the redox peak current gradually increased and the peak
potential slightly shifted with the increase in scanning rate. The
redox peak potential had a linear relationship with In » and the
corresponding linear regression equations were calculated as

© 2023 The Author(s). Published by the Royal Society of Chemistry
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pH 2.0 PBS (from (a)—(k): 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 V s %). (C) Cyclic voltammograms of Nafion/HRP/ZnO@BP/CILE in PBS
of different pH values ((a)-(g) represent the pH values of 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0) at a scan rate of 100 mV s, (D) Linear relationship

between £% and pH.

Epa (V) =0.0492 Inv — 0.1117 (y = 0.995) and Ej (V) = —0.0525
Inv — 0.2537 (y = 0.993). According to Laviron's equation,*”**
the electron transfer number (n) and the electron transfer
coefficient («) were 0.926 and 0.484. Then, the reaction rate
constant (k) can be further calculated as 5.93 s, which was
much larger than previous reports of 1.27 s~ ', 0.14 s,*° and
1.585 s 1" Therefore, the existence of the ZnO@BP nano-
composite can provide a biocompatible interface on the elec-
trode surface, which made HRP undergo a single-electron
transfer reaction on the modified electrode with the acceler-
ated electron transfer rate. The redox peak current gradually
increased with the scan rate, and there was a linear relationship
between the peak currents and scan rate. The linear regression
equations were obtained as I, (1A) = 76.83v (Vs ') +3.075 (y =
0.998) and I,, (MA) = — 63.12v (Vs ') — 1.761 (y = 0.998),
indicating that the electrochemical reaction at the electrode
interface was an adsorption control process. According to the
formula Q = nAFI'** I'* was calculated as 5.33 x 10~ ° mol
em ™2, and the total amount of HRP on the modified electrode
interface was 2.98 x 10~% mol cm 2. Therefore, 17.9% HRP
molecules on the electrode surface participated in the electrode
reaction process, which confirmed that the ZnO@BP nano-
composite could make more than one layer of HRP take part in
the electrode reaction. Therefore, the ZnO@BP nanocomposite
can not only offer a large surface area and high conductivity, but
also improve the adsorption and the loading of HRP with the
electron transfer rate accelerated. The good electrical

© 2023 The Author(s). Published by the Royal Society of Chemistry

conductivity and two-dimensional structure of BP were advan-
tageous to quick charge transfer and ZnO loading, and the
effective surface area of ZnO offered more activity sites for HRP
binding.

The influence of different pH buffers on the direct electro-
chemical behavior of HRP in PBS was checked. As shown in
Fig. 4C, with the increase in pH from 2.0 to 8.0, the redox peak
potential gradually shifted to the negative direction. The formal
peak potential (E”) has a good linear relationship with pH
(Fig. 4D) with the linear regression equation as E” (V) = —
0.0461pH — 0.0643 (y = 0.991), which showed that the formal
peak potential increased by 46.1 mV for each additional pH
unit. For the reversible system, the theoretical value of the slope
value was 59.0 mV pH ' (298 K) for a single proton-coupled
reversible one-electron transfer process.**** The electro-
chemical reduction process of HRP may be expressed using the
equation: HRP Fe(m) + H' + e~ < HRP Fe(u).** When the pH was
2.0, the cathodic peak current reached the maximum and the
electrochemical response signal was the most obvious. This
may be attributed to the heme iron and the amino acids around
HRP were influenced by the protonation of transligands or the
protonation of water molecules coordinated to the heme
iron.***” In a pH 2.0 buffer, more hydrogen ions can be provided
to traverse the Nafion film and involve in the following electrode
reaction. Besides, the Nafion film can protect the sensing
interface composed of HRP and ZnO@BP. Therefore, pH 2.0
was selected as the optimal condition for all experiments.
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Fig.5 Cyclic voltammograms of the Nafion/HRP/ZnO@BP/CILE in 0.1 mol L™ pH 2.0 PBS at a scan rate of 100 mV s~ (A) with 0.6, 10.0, 20.0,
40.0, 60.0, 80.0, 100.0, 120.0, 140.0, 180.0, 220.0, 260.0, and 300.0 mmol L™ TCA (curve a—m), the inset shows the relationship of catalytic
reduction peak currents and the TCA concentration, and (B) with 0.5, 1.0, 1.6, 2.4, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 14.0, and 14.6 mmol
L=t NaNO; (curve a—o), the inset shows the relationship of catalytic reduction peak currents and the NaNO, concentration.

3.4 Electrocatalytic performance

TCA is widely used in industry, agriculture, biochemistry and
public health fields, which is an organohalide environmental
pollutant and has been proven to be carcinogenic and poses
potential risks to human health.*®* Nitrates and nitrites are
food preservative and extensively used in the food industry. At
a concentration exceeding the safe levels, they pose a wide
variety of health risks.” Therefore, it is important to develop
sensitive electrochemical methods for TCA and NaNO, detec-
tion. It is well known that the redox protein-based electro-
chemical sensors show excellent electrocatalytic ability toward
the reduction of TCA and NaNQ,.?"*

The electrocatalytic behaviors of the Nafion/HRP/ZnO@BP/
CILE to TCA were investigated with CV curves of different
concentrations of TCA recorded in Fig. 5A. With the addition of
TCA, the reduction peaks current at —0.55 V gradually
increased, which was a typical feature of the TCA catalytic
reaction. When the TCA concentration was in the range of 0.6 to
300.0 mmol L', the reduction peak currents (I5;) had a linear
relationship with the TCA concentration, and the linear
regression equation was Iy (mA) = 0.0067C (mmol L™') + 0.168
(y = 0.991) with the detection limit as 0.2 mmol L™ (3S/N).
When the TCA concentration was greater than 300.0 mmol
L', the reduction peak current remained basically stable,
indicating a typical Michaelis-Menten Kkinetic reaction

mechanism. The apparent Michaelis constant (KyP) can be
calculated according to the electrochemical expression of the
Lineweaver-Burk equation:*

11 Ky
[ +
ISS Imax IITAHX C

In the formula, Iy is the steady-state current after adding the
substrate, C is the concentration of the substrate, and I, is the
maximum current measured under the saturated substrate
state. Using the double reciprocal plot method (1/I, ~ 1/[TCA]),
the apparent Michaelis constant of this catalytic reaction could
be calculated as 0.14 mmol L™}, which was smaller than the
previous reports, as listed in Table 2. It is well known that the
smaller K3fP value showed the higher catalytic ability.*® There-
fore, the HRP-modified electrode based on the ZnO@BP-
modified CILE had a high catalytic activity for TCA.

Fig. 5B shows the cyclic voltammograms of the Nafion/HRP/
ZnO@BP/CILE in different concentrations of NaNO, with
a reduction peak appearing at —0.62 V (vs. SCE). When the
concentration of NaNO, was in the range of 0.5 to 14.6 mmol
L™, I had a good linear relationship with the concentration of
NaNO, (inset of Fig. 5B) and the linear regression equation was
Is (MA) = 0.0406C (mmol L) + 0.0523 (y = 0.995) with the
detection limit as 0.167 mmol L' (3S/N). When the

Table 2 Comparison of electrochemical biosensors for the detection of TCA®

Modified electrode Linear range (mmol L) Detection limit (mmol L) KPP (mmol L) Ref.
AFIL-LDH-Hb/GCE 0.8-430.0 0.19 1.43 39
CTS/Hb/GR-CuS/CILE 1.0-64.0 0.20 6.30 40
CTS/GR-LDH-C3N,-Hb/CILE 0.2-36.0 0.05 3.30 45
Hb/ZnO-MWCNTs/Nafion/GCE 1.0-82.6 0.80 — 46
CTS/ELDH-GR-Hb/CILE 5.0-360 1.51 7.90 49
Nafion/Mb-HAp@CNF/CILE 6.0-180.0 2.00 224 54
HA-HRP-CdS-IL/CILE 1.6-18.0 0.53 0.36 55
CTS/TiO,-Hb/CILE 0.8-32.0 0.26 1.75 56
Nafion/HRP/ZnO@BP/CILE 0.6-300.0 0.20 0.14 This work

¢ AFIL: amino functionalized ionic liquid; LDH: layered double hydroxides; GCE: glassy carbon electrode; GR: graphene, CTS: chitosan; ELDH:
exfoliated Co,Al layered double hydroxide; HAp@CNF: hydroxyapatite doped carbon nanofiber.
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Table 3 Comparison of electrochemical biosensors for the detection of NaNO,*

Linear range

Detection limit

Modified electrode (mmol L) (mmol L) P (mmol L) Ref.
Nafion/Mb-HAp@CNF/CILE 0.3-10.0 0.23 1.13 54
Nafion/Mb/GT/CILE 0.4-4.2 0.13 1.36 57
Nafion/Hb/B-GQDs/CILE 1.0-80.0 0.3 6.37 58
Nafion-Mb-SGO-GCE 2.0-24.5 1.5 — 59
Nafion/Hb/Co3;0,-CNF/CILE 1.0-12.0 0.33 — 60
Nafion/Mb-SWCNT/GCE 0.5-5.0 0.95 6.45 61
BPE-PEDOT:PSS-hemin/CILE 1.0-10.5 0.33 23.31 62
Nafion/HRP/ZnO@BP/CILE 0.5-14.6 0.17 5.96 This work

“ GT: graphene tube; B-GQDs: boron-doped graphene quantum dots; SGO: sulfonated graphene oxide; BPE-PEDOT:PSS: black phosphorene (BPE)
and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hybrid.

Table 4 Analytical results of TCA and NaNO; in different samples (n = 3)
Sample Detected (mmol L") Added (mmol L) Total (mmol L") Recovery (%) RSD
Medical facial peel 10.97 10.00 20.54 95.7 2.71
20.00 32.58 108.1 3.60
30.00 42.24 104.2 2.82
Soak water of pickled vegetables 1.12 2.0 3.14 101.0 1.93
2.5 3.59 98.8 2.11
3.0 4.13 100.3 1.75

concentration of NaNO, reached 14.6 mmol L%, the reduction
peak current remained basically unchanged, and then K3fP of
the catalytic reaction of the Nafion/HRP/ZnO®@BP/CILE can be
calculated as 5.96 mmol L™ ™.

The electrocatalytic activities of the Nafion/HRP/ZnO@BP/
CILE and other sensors toward TCA and NaNO, were
compared, and the results are presented in Tables 2 and 3,
which indicated the superior activity of the Nafion/HRP/
ZnO@BP/CILE to some of the previously reported sensors
with a lower detection limit and a wider linear range. All the
results concluded that the ZnO@BP nanocomposite provided
better biocompatibility and higher enzymatic ability of HRP for
TCA and NaNO, detection, which was attributed to the
comprehensive synergy between ZnO and BP.

3.5 Analytical applications

In terms of actual sample application, the modified electrode
was used to detect the content of TCA in the medical facing peel
solution (Shanghai EKEAR Bio. Tech. Co., Ltd., 35% TCA) and
NaNO, in pickled vegetables (bought from food supermarket
and filtered off the mixture) by using the standard addition
method. As shown in Table 4, the recovery rates were between
95.7-108.1% and 98.8-101.0% with the relative standard devi-
ation (RSD) less than 4.0%, indicating that the proposed
detection method can be used for the analysis of TCA and
NaNO, in actual samples with good application prospects.

3.6 Stability and reproducibility

The stability and reproducibility of the Nafion/HRP/ZnO@BP/
CILE were investigated. After scanning continuously for 50

© 2023 The Author(s). Published by the Royal Society of Chemistry

cycles in PBS, the cyclic voltammetric response was reduced by
2.36% as compared with the initial current. The modified
electrode was stored in a refrigerator at about 4 °C for two
weeks, and the redox peak current remained at 97.2% of the
original value. After being placed for four weeks, the cyclic
voltammetric response remained at 90.8% of its original value,
which proved that the modified electrode had good stability.
Three Nafion/HRP/ZnO@BP/CILE were used to detect
10.0 mmol L™ TCA with an RSD value of 3.21%, indicating that
the Nafion/HRP/ZnO@BP/CILE had excellent reproducibility for
the voltammetric detection of TCA. Therefore, the good stability
and excellent reproducibility of the constructed biosensor can
be attributed to the high stability of the ZnO@BP nano-
composite on the modified electrode.

4. Conclusion

In this work, a new and sensitive electrochemical biosensor has
been prepared based on a ZnO@BP nanocomposite by an in situ
hydrothermal method, which has been modified on the surface
of a CILE. The electrochemical behavior of the Nafion/HRP/
ZnO@BP/CILE was investigated by cyclic voltammetry with
a pair of quasi-reversible redox peaks observed, indicating that
the presence of the ZnO@BP nanocomposite could enhance the
electron transfer rate with the advantages of large specific
surface area, high electronic conductivity and good biocom-
patibility. The electrocatalytic behaviors to TCA and NaNO,
were further studied with the characteristics of wider linear
range, lower detection limit and good stability. In addition, the
proposed electrodes were used to detect the real samples with
satisfactory results, which showed that the ZnO®@BP

RSC Adv, 2023, 13, 32028-32038 | 32035
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nanocomposite had potential application in the field of elec-
trochemical sensors.
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