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acetate, 1,3-indanedione and aldehyde for generating bis-spirocyclohexanes. This reaction progressed in

an unusual [1 + 1 + 1 + 3] annulation manner via a Knoevenagel/Michael/Michael/Michael sequence,
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Introduction

The development of novel synthetic strategies for constructing
new chiral spirocyclic compounds with varied medicinal
potentials is a great challenge in organic and pharmaceutical
chemistry." In this regard, Multicomponent Reactions (MCRs)?
are preferred for the synthesis of chiral spirocyclic compounds?
by virtue of their advantages, i.e., one-pot synthesis, avoiding
isolation of intermediates and atom economy.

In recent times, the B-nitrostyrene derived Morita-Baylis-
Hillman (MBH)* adducts have been explored extensively
towards the construction of various MCRs.” The B-nitrostyrene
derived MBH adducts®® are one of the essential classes of
molecules in medicinal chemistry, due to their utility as
building blocks for constructing complex and biologically
sound molecules.’

Among the various B-nitrostyrene derived MBH adducts,
nitroallylic MBH acetates have been explored extensively to give
various spirocycles,’ heterocycles," carbocycles,"” bicyclic
skeletons,” and arenes. But to date there are no available
reports for the construction of bis-spirocyclohexanes utilizing
nitrostyrene derived MBH acetate with 1,3-indanedione® or
arylidene indanedione.**"”

In 2015, He et al. successfully utilized acrylate derived MBH
adducts along with 2-arylidene-1,3-indanediones to

Department of Chemistry, School of Applied Sciences and Humanities, Vignan's
Foundation for Science, Technology and Research-VFSTR, (Deemed to be University),
Vadlamudi, Guntur 522 213, Andhra Pradesh, India. E-mail: shaikanwarcu@gmail.
com; drsa_sh@vignan.ac.in; Tel: (+91)-8632344700

T Electronic supplementary information (ESI) available. CCDC 2149813 2149825
2175054. For ESI and crystallographic data in CIF or other electronic format see
DOI: https://doi.org/10.1039/d3ra04996e

27456 | RSC Adv, 2023,13, 27456-27460

resulting in the generation of three/four chiral centres, and two all-carbon quaternary centres through
the formation of 3 new C-C bonds.

demonstrate a [2 + 2 + 2] annulation protocol for producing
substituted bis-spirocyclohexanes (eqn (a), Scheme 1).**

Hereby, we propose an MCR strategy to explore the utility of
nitroallylic MBH acetate for generating fully substituted bis-
spirocyclohexanes in a unique [1 + 1 + 1 + 3] annulation fashion
(eqn (b), Scheme 1).

Annulation reaction using acrylic MBH acetates (He et. al)
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Scheme 2 AB,C type four component quadruple cascade reaction.
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In continuation of our perpetual study on heterocycles and
spirocycles,” we have demonstrated an AB,C type four-
component reaction®® between 1,3-indanedione, aryl alde-
hydes, and B-nitrostyrene derived MBH acetates via [1 +1+1 + 3]
cyclization strategy (Scheme 2).

Results and discussion

Optimization studies of quadruple cascade reactions were
carried out and the obtained results were tabulated (Table 1).
The reaction initially carried out with potassium carbonate (1.5
equiv.) in acetonitrile at ambient temperature, gave the desired
compound 8a in 24% yield (entry 1, Table 1). Increasing the
amount of indanedione to 2 equiv. gave a marginal increase in
the yield i.e., 25% for the product formation 8a (entry 2, Table
1). The use of chlorinated solvents, i.e., chloroform, didn't alter
the yield even after 24 h (entry 3, Table 1). The yield for product
8a improved to 35% with the use of potassium carbonate in 3
equiv. amounts (entry 4, Table 1). There is no improvement was
observed with the change in reaction time as well as tempera-
ture (entries 5 and 6, Table 1). The use of methanol as solvent
decreased the diastereomeric excess and yield due to the poor

Table 1 Optimization studies for quadruple cascade reaction®
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solubility of in situ-formed KC product (entry 7, Table 1). Uti-
lisation of organic bases such as DABCO, urea and thiourea
couldn't improve the yield for the product formation 8a (entries
8-15, Table 1). We also examined the effect of other inorganic
bases such as Cs,CO; but, there is no appreciable improvement
was observed for the formation of desired product 8a (entries 16
and 17, Table 1). It was observed that, there is no improvement
in the yield with the higher concentrations of aldehyde (entries
18-20, Table 1). As the base concentration increases, the yield of
8a gets decreases due to the high amount of side products
formation (entries 21 and 22 Table 1). The use of mixture of
solvents did not improve the yield and delivered the compound
8a in 25% of yield (entry 23, Table 1). This is due to the less
solubility of in situ formed KC side product for further cascade
process.

The lower yield for 8a is due to the formation of side product
11 (i.e., double Michael reaction of MBH acetate 4a with 1,3-
indanedione 6) and 10a (Knoevenagel condensation between
aldehyde 7a and 1,3-indanedione 6). It was also observed that,
recovery of aldehyde for the most of the reactions was
predominant. In conclusion of the optimization studies, the use
of potassium carbonate (3 equiv.) in acetonitrile solvent gave

base

solvent

S. no 6 (equiv.) Base (equiv.) Solvent Temp (°C)/time (h) Yield (%)” dr’

1 1 K,CO; (1.5) ACN 30 (4) 24 >20:1
2 2 K,CO; (1.5) ACN 30 (4) 25 >20:1
3 2 K,CO; (1.5) CHCl, 30 (24) 20 >20:1
4 2 K,CO; (3) ACN 30 (4) 35 >20:1
5 2 K,CO; (3) ACN 30 (12) 20 >20:1
6 2 K,CO; (3) ACN 60 (4) 20 >20:1
7 1 K,CO; (3) MeOH 30 (4) 18 19:1
8 1 DABCO (3) MeOH 30 (4) 15 16:1
9 1 Thiourea (3) MeOH 30 (4) 22 10:1
10 2 Thiourea (3) MeOH 30 (4) 20 10:1
11 2 Urea (3) MeOH 30 (4) 20 nd

12 1 Thiourea (3) ACN 30 (4) 24 nd

13 2 Thiourea (3) ACN 30 (4) 25 nd

14 1 Urea (3) ACN 30 (4) 23 nd

15 2 Urea (3) ACN 30 (4) 25 nd

16 1 Cs,CO0; (1.5) ACN 30 (4) 21 nd

17 2 Cs,CO0; (1.5) ACN 30 (4) 27 nd
187 2 K,CO; (3) ACN 30 (4) 25 nd
19¢ 2 K,CO; (3) ACN 30 (4) 23 nd
20/ 2 K,CO; (3) ACN 30 (4) 20 nd

21 2 K,CO; (4) ACN 30 (4) 26 nd

22 2 K,CO; (5) ACN 30 (4) 20 nd
23¢ 2 K,CO; (3) ACN 30 (4) 25 nd

“ Compound 4a (110.5 mg, 0.5 mmol), 6 (0.5 or 1.0 mmol), 7a (92.5 mg, 0.5 mmol) and base (0.75 or 1.5 mmol) were dissolved in 5 mL of solvent.
b Isolated yields. © Determined by "H NMR. ¢ 1.5 equiv. of aldehyde was used. ¢ 2.0 equiv. of aldehyde was used.” 3.0 equiv. of aldehyde was used.

¢ ACN and H,O (1:1) used; nd = not determined.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the maximum yield. The final product 8a obtained with highly
diastereoselectivity was fully characterized by 'H NMR, "*C
NMR, DEPT-135 and the structure was further confirmed by
single crystal X-ray analysis.*

The studies for the formation of bis-spirocyclohexane were
further explored into substrate scope study with various MBH
acetates 4/5 and aldehydes 7a-i possessing electron with-
drawing and donating substituents (Table 2). This reaction
when employed with p-nitrobenzaldehyde resulted in 34% yield
for product 8b. When the reaction was carried out with p-cya-
nobenzaldehyde, the corresponding bis-spirocyclohexane 8c
was obtained in a 39% yield. Compound 8d was obtained in
31% of yield with the use of unsubstituted benzaldehyde. m-

Table 2 Substrate scope for construction of bis-spiroyclohexanes®?¢

N A
Ry ©; 2 o
K,CO.
+ + Ar)J\H — == .
ACN, 1t 4-8 h N
1 0o NO,

4a,R=H,R'=H 6 7 R' gai, R=H, R'= H
4b, R =H, R'= OMe 8j, R=H, R' = OMe
5, R =COOEt, R'=H 9a-d, R = COOEt, R'= H

8e, 24%, >20:1 dr 8f, 31%, >20:1 dr

9b, 28%, >20:1 dr

9c¢, 35%, >20:1 dr 9d, 31%, >20:1 dr

“ Compound 4/5 (0.5 mmol), 6 (1.0 mmol), aldehyde 7 (0.5 mmol) and
K,COj3 (1.5 mmol) were dissolved in 5 mL of ACN and stirred at 30 °C.
b Isolated yields. ¢ dr was determined by 'H NMR.
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bromobenzaldehyde on reacting with indanedione 6 and MBH
aetate 4 retained high diastereoselectivity for product 8e in 24%
of yield. It was observed that the substitution of an electron-
withdrawing group i.e., m-cyano, gave 8f with a yield of 31%.
The ortho-nitro substituted benzaldehyde delivered the corre-
sponding bis-spirocyclohexane 8g in 35% yield.

A good yield of 42% for the formation of compound 8h was
observed when o,p-dichlorobenzaldehyde was employed in the
reaction. Heteroaromatic aldehydes also tolerated the reaction
conditions towards the formation of bis-spirocyclohexanes. The
quadruple cascade reaction with 2-thiophenyl aldehyde
produced compound 8i in a good yield of 40%. An impressive
yield of 59% was observed for compound 8j, by the reaction of p-
methoxy MBH acetate 4b, 1,3-indanedione and o,p-dichloro
benzaldehyde. We further explored the utility of secondary
nitroallylic MBH acetate 5 to develop fully substituted bis-spi-
rocyclohexanes 9a-d. The reaction involving unsubstituted
benzaldehyde, gave the desired compound 9a in 19% yield. The
substitution of electron-withdrawing groups like -NO,, -CN at
the para position of the benzaldehyde resulted in compounds
9b and 9c in 28% and 35%, respectively. Whereas, the p-bromo
benzaldehyde delivered the compound 9d in 31% of the yield.
Attempts using aliphatic aldehydes led to trace amounts of
corresponding bis-spirocyclohexanes. This may be presumably
due to poor reactivity of 2-alkylidene indanediones.

Br

K,CO3

ACN, rt, 4h S
oas

8a

33%, 0.93 g, 1.5 mmol
>20:1dr

OAc
NO,
©j/ : o 0
/@)kH
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4a 6 7a

10g 139 0.836 g

Scheme 3 Gram scale synthesis of bis-spirocyclohexane 8a.

o CHO
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+ T
o Br
H.
6 7a 0
ORTEP diagram of 11

Scheme 4 Plausible reaction mechanism for the quadruple cascade
sequence.
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We further examined the scalability of our protocol by gram
scale preparation of bis-spirocyclohexane 8a (Scheme 3). To our
delight the reaction retained with high diastereoselectivity for
product 8a formation.

A possible mechanistic pathway for the formation of bis-
spirocyclohexane products 8/9 is explained in Scheme 4. Base
assisted MBH acetate 4a on reaction with 1,3-indanedione via
Sn2 manner generates intermediate A as a Michael adduct.
Intermediate A undergoes another Michael addition with in situ
generated KC product arylideneindanedione 10a to form
intermediate B which further undergoes 6-endo-trig cyclization
via Michael addition to produce 8a. The overall reaction follows
a Knoevenagel/Michael/Michael/Michael quadruple cascade
reaction sequence via [1 + 1 + 1 + 3] annulation. This plausible
mechanism is further supported by the isolation of side product
11. The formation of side product 11 is due to a parallel reaction
of intermediate A with MBH acetate 4a in a Michael addition
manner via double Sy2 fashion.

Conclusions

A multicomponent reaction was demonstrated for developing
fully substituted bis-spirocyclohexanes derived from p-nitro-
styrene derived MBH acetates. This AB,C type four-component
cascade protocol between nitroallylic MBH acetate, 1,3-inda-
nedione, and aldehyde resulted in synthesis of bis-spi-
rocyclohexanes in high diastereoselectivity.
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