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nalysis of red blood cells in
oscillating microchannels†

Andreas Link, Irene Luna Pardo, Bernd Porr and Thomas Franke *

The flow dynamics of red blood cells in vivo in blood capillaries and in vitro in microfluidic channels is

complex. Cells can obtain different shapes such as discoid, parachute, slipper-like shapes and various

intermediate states depending on flow conditions and their viscoelastic properties. We use artificial

intelligence based analysis of red blood cells (RBCs) in an oscillating microchannel to distinguish healthy

red blood cells from red blood cells treated with formaldehyde to chemically modify their viscoelastic

behavior. We used TensorFlow to train and validate a deep learning model and achieved a testing

accuracy of over 97%. This method is a first step to a non-invasive, label-free characterization of

diseased red blood cells and will be useful for diagnostic purposes in haematology labs. This method

provides quantitative data on the number of affected cells based on single cell classification.
Introduction

Blood tests still play a major role in diagnostics since samples
are easy to obtain and are routinely used for analysis in clinical
and general practice settings.1 Red blood cells (erythrocytes)
form by far the major component of whole blood (about 50%)
and have been used as biological indicators for several diseases
such as sickle cell anaemia, spherocytosis, beta-thalassemia,
malaria,2,3 hypercholesterolemia4,5 and many others. In many
of these diseases the shape of the erythrocyte is altered, so
simple optical microscopical examination and cell counting
allows quantitative analysis in stasis e.g., in a blood smear. The
adopted shape depends on mechanical properties of the cell
and the external strain. In hydrodynamic ow, there have been
various shapes reported in vivo as well as in vitro. For healthy
cells these encompass discocytes, parachutes and slipper-like
shapes and echinocytes, spherocytes, etc. for diseased cells.
However, not all cells of a sample are in the same shape
condition, due to variances in mechanical properties within the
cell population. Even within one blood sample there exists
a variance of mechanical properties of the erythrocyte since for
example cells alter their properties and size during their ∼120
days lifetime of circulation in the organism.6 Red blood cells
(RBCs) in microow conditions have been analysed both in
experiments7 and theory.8 Most of the studies are in capillary
ow, yet some research was done on more complex geometries
to reveal the shape relaxation dynamics.9,10
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Based on viscoelastic models the experimentally observed
cells could be reproduced and variation of mechanical param-
eters (viscoelastic moduli) were determined has also demon-
strated that transitions in between these cell shapes can occur.
However, in experimental settings it is still challenging to
distinguish between populations of red blood cells from
different samples, such as diseased cells and healthy cells.

In AI based red blood cell classication most of the prior
work11–13 distinguished between populations of cells with the
associated problems mentioned above and in addition poses
technical problems when employing segmentation techniques
to isolate individual blood cells which are error prone and
computationally intensive. Because there is a strong interest in
the viscoelastic properties of the red blood cells oen only their
shape has been analysed but not the healthiness of the cells.14,15

The use of a channel to probe the mechanical properties of the
red blood cells in conjunction with AI to detect a disease has, to
our knowledge, only attempted once.16

Here, we demonstrate an AI based image analysis using Ten-
sorFlow that can decide between native, untreated red blood cells
and red blood cells with chemically altered mechanical properties
to mimic disease.17–24 Unlike the other studies mentioned before,
we do not analyse the contour or shape of the cell tomodel the cell
mechanics but train a TensorFlow implemented AI model with
a large number of images fromnative and treated cells. Themodel
is trained for 10 epochs and achieves a high training and valida-
tion accuracy already aer ∼5 epochs, making is very efficient.
Experimentally, we use a microchannel with oscillating width to
transiently deform cells to capture both, the elastic, and the
viscous properties. Our device presents a method that can
distinguish a population of cells which are not obvious by simple
inspection by eye. It is ready to be used for disease diagnosis and
analysis of the severity of a disease by providing quantitative
© 2023 The Author(s). Published by the Royal Society of Chemistry
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results on the frequency of affected cells and enables an end-to-
end classication of red blood cells without understanding the
biomechanical differences between the classied cells in detail.
Fig. 2 2 Data processing pipeline. (A) Single frame from a video clip
with a red blood cell in the red boundary box touches the “soft trigger”
(black line) which then leads to the extraction of the image in the area
“crop” (black box). (B) Background of the cropped area from (A) by
taking a video frame from the video clip without a red blood cell. (C)
Background subtraction of (B) subtracted from (C) and taken the
absolute value. (D) TensorFlow layers: “norm”: RGB value normal-
isation to 0.01, “conv2D”: standard 2D convolutional layer, “max
pooling”: standard 2D max pooling, “dense”: standard dense layer. The
final layer has two outputs: one for the detection probability of a native
red blood cell and one for the chemically modified one.
Results
Microuidic procedures/setup

We probe red blood cells in ow with periodically oscillating
ow velocities in a zigzag-shaped microchannel. The channels
are fabricated using standard so-lithography and mounted on
an inverted uorescence microscope. Videos of cells owing
through the channel are recorded with a high-speed camera
(Photron, UX50). Red blood cell samples are prepared from
whole blood by centrifugation and incubation steps with
chemicals for modication of their mechanical properties (see
material and methods section). We use a diluted red blood cell
suspension in PBS buffer with a haematocrit (Ht) of Ht = 0.5%
and inject it into the inlet of the microuidics device using
a pressure driven system, controlling the pressure drop between
inlet and outlet. Cells then enter a zigzag-shaped region that is
in the eld of view of a 60× objective as shown in Fig. 1. To
avoid large sections of videos without cells and to reduce
memory consumption at the low chosen, we trigger the
recording of videos by a hardware trigger. Therefore, we use
a laser to excite (488 nm) a uorescent marker in the red blood
cell and detect the emitted (525 nm) uorescence signal with
a photomultiplier tube (PMT). In this way we record cell
sequences of 60 and 40 frames per cell. We record 248
sequences and then transfer the batch of data from the fast
camera RAM to the computer hard drive for post-processing.
Video processing

Three batches of 248 sequences each were recorded for healthy
cells which results in a total of 744 video sequences of native red
blood cells (the rst two sequences where removed). Two
batches of 248 sequences each were recorded for chemically
modied cells which resulted in a total of 496 video sequences.
Fig. 2 shows how the training data has been extracted from the
raw video sequences. Fig. 2A shows a snapshot of one clip where
the cells are owing from the le to the right. Here, the cell has
already progressed to the 2nd narrow section of the channel.
Since we are interested how the zigzag-channel impacts on the
Fig. 1 Schematic of the microfluidic setup mounted on an inverted
fluorescence microscope: RBCs entering the device and flow into the
region of oscillating width and adopt their shape. Videos are taken with
a fast camera and recording is triggered by cell passing a photoelectric
barrier and rapid analysis in a photomultiplier tube.

© 2023 The Author(s). Published by the Royal Society of Chemistry
cell's behaviour and shape, we have dened a “so trigger”
where a snapshot for training is used. One can think of the so
trigger as a nishing line in a race.

As an example, we have shown one so trigger when the cell
in the red square has just arrived at a narrow section and has
touched the so trigger. A 2nd so trigger has also been
established (not shown) when the cell has arrived at a wide
section and thus, we have two so triggers: one for taking
a snapshot in the narrow section and one for the section. Once
the cell has been detected a snapshot is taken of the size of the
crop window indicated with “crop” in Fig. 2A. As a next step the
background was obtained (Fig. 2B) and subtracted (Fig. 2C) to
prevent TensorFlow from learning features of the background
instead of that of the red blood cells. Since the cell ows
through the image from le to right, we can take the back-
ground for the le half from the nal frames of a clip and the
background from the right half from the rst frames of the clip.
Splicing these two halves together gives the background which
can then be used in Fig. 2C to obtain a background-free cell
image.
Data analysis and decision making with TensorFlow

The video processing pipeline described above uses three
batches of 248 images (one image per sequence) of native red
blood cells and two batches of 248 images of chemically
modied red blood cells for training. For training the model
every image is labelled of either being healthy or diseased. This
results in 5x248 images/label-pairs. These pairs are then
RSC Adv., 2023, 13, 28576–28582 | 28577
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shuffled randomly for training and then fed into TensorFlow
(Fig. 2D). This is a standard network topology as suggested by
TensorFlow/Keras to do image classication. The network has
two outputs, one gives the probability of being a native cell and
one the probability of being a chemically modied one.
Training was performed with 10 epochs and the test accuracy
evaluated with two separate batches of clips not being part of
the training: 492 images of healthy red blood cells and 111
images of diseased cells. These two subpopulations where then
sent into TensorFlow for training (80%) and validation (20%)
which is described next.
Comparison of frame location in the microuidic channel

To investigate the impact of the position of the cell in the
microchannel we created two datasets of red blood cell images
and fed them into TensorFlow – one with the red blood cells
detected in the widening section of themicrochannel and another
one with the red blood cells in the narrow section as shown in
Fig. 3. The goal of training is to have for a two-output classier one
output close to one and its other output close to zero so that either
the “native” output becomes one or the “chemically modied”
Fig. 3 TensorFlow training behaviour and results. (A) Training and
validation loss for the narrow part of the microchannel and for the
wide part (B) of the microchannel. Classification results for the narrow
section of the microchannel for (C) native red blood cells and (D)
chemically modified red blood cells. Classification results for the wide
section of the microchannel for (E) native red blood cells and (F)
chemically modified red blood cells. “N”: native, “C”: chemically
modified, “p/det”: detection probability.

28578 | RSC Adv., 2023, 13, 28576–28582
becomes one but never both. TensorFlow training and validation
on the dataset containing images from the narrow part of the
channel is shown in Fig. 3A: on the le the training and validation
accuracy is shown and on the right the training and validation loss
is shown. Both training and validation accuracy reach 99% aer 5
epochs and stabilise there. The same applies for the training and
validation loss which reach their minimum aer 5 epochs.
Training using images from the wide section (Fig. 3B) of the
microchannel result is remarkably similar behaviour: both the
training accuracy and the validation accuracy converge to over
99% aer 5 epochs. Also, the training loss and validation loss
reach their minima in a similar way as the training in the narrow
section.

Aer training the TensorFlow model was presented with test
data which the network has not yet seen: 492 clips of native red
blood cells and 111 clips of chemically modied cells. The
testing accuracy at the narrow section was 98% and for the wide
one 97%. Fig. 3C/D show the testing results for the dataset
generated at the narrow section of the channel and Fig. 3E/F at
the wide section of the channel. Every row shows three examples
of red blood cells and their detection probability against the
ground truth: true native or true chemically modied.
Remember that training forces the network to clearly output
a one for its detection category. For example, in Fig. 3C the
ground truth is “native” and the network outputs a one for
native, indicated as “N” under the green bar. Then in Fig. 3D the
cells were chemically modied, and the network classied them
all with very high condence as chemically modied (“C”).
Fig. 3E/F now shows the same as above but for the wide section
of the channel. Again, true native ones are detected as native
without any doubt and reects the 97% of the testing accuracy.
The truly chemically modied ones were also detected with
ease. Having just two categories being native or chemically
modied allows a simple comparison which is robust with one
category being almost zero and the other almost one.

Material and methods
Microuidic device preparation

Microuidic channels are fabricated using so lithography.25,26

Briey, the channel structure is designed in CAD program and
transferred to a chromium mask (ML&C GmbH). The zigzag-
shaped channel has a periodicity of 20 mm, and an amplitude
of 20 mm. The narrow part of the channel is 10 mm and the wide
part is 20 mm in width (for details see sketch in the ESI†). To
structure of the mask is transferred to a silicon wafer coated
with 10 mm SU8-3010 photoresist that denes the height of the
channel (Microchem, SU8 3000 series) using a mask aligner
(MA6, Süss MicroTec). Aer developing with (Microposit™EC
Solvent, Shipley), the structured SU8 acts as a template to
fabricate PDMS moulds (PDMS, Sylgard™ 184 Silicone Elas-
tomer Kit). The uid PDMS is poured onto the template and
cured for 4 h in an oven at 75 °C. The ratio of elastomer base to
curing agent is 10 : 1.

We punch holed into the cured PDMSmould to connect inlet
and outlet to the tubing. The PDMS is covalently bonded onto
a microscope slide using oxygen plasma.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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RBC preparation

Whole blood was obtained from healthy donors (Research
Donors, Cambridge Bioscience) and washed three times in
a phosphate-buffered saline solution (PBS 1×, pH 7.4, 307
mOsm L−1, Gibco Life Technologies). Aer each washing step,
the sample was centrifuged for 5 minutes at 2500 rpm (mini
spin plus centrifuge, Eppendorf), and the white buffy coat and
supernatant were removed.

For the native red blood cell sample, we used 10 mL of
concentrated RBC pellet from the bottom of the reaction tube
and incubated in 0.5 mL green-uorescent calcein-AM solution
(5 mM, Invitrogen) for 30 minutes at 37 °C, followed by three
washes with PBS.

For the chemically modied RBC experiments, we rst
incubate the red blood cells in formaldehyde solution before we
stain the cells. Briey, 10 mL of the pellet were incubated in
0.37% formaldehyde solution (Sigma-Aldrich) for 10 min at
room temperature. The cell suspension was then washed three
times before stained in calcein-AM as described above.

To avoid cell sedimentation during the experiment, the cells
were suspended in a density-matched solution using a density
gradient solution (OptiPrep Density Gradient Medium, Sigma
Life Science). Optiprep is a sterile non-ionic solution of 60% (w/
v) iodixanol in water. Additionally, bovine serum albumin (BSA,
Ameresco) was used to prevent cell adhesion to each other and
the microchannel walls. The stock density matched solution
was prepared by mixing 945 mL of OptiPrep solution with 3035
mL of PBS and 40 mg BSA.

For the experiments 5 mL of the native or chemically modi-
ed cell suspension were mixed with 995 mL of the stock density
matched solution and used as the stock solution with a hae-
matocrit of 0.5%. The experiments were completed within a day
of blood collection. The nal density of this solution was r =

1.080 g mL−1 with an osmolarity of cosm = 317 mOsm L−1. The
viscosity of this solution was determined aer Ubbelohde to be
h = 1.5 ± 0.1 mPa s.

The red blood cell suspension was pumped by a pressure
driven ow using a pressure transducer (MarshBellofram, USA)
and a pressure of p = 20 mbar at cell velocities in range from
1.3–8 mm s−1. Due to the Poiseuille-like ow cells owing close
to the wall are slower than cells in the centre of the channel. The
average velocity of the red blood cells measured is vRBC =5.1 ±

2.0 mm s−1. The ow velocity is not constant and does change
along the channel because of the alternating width and across
the channel due to the Poiseuille-prole. Similarly, the ow rate
is variable. However, to estimate typical shear forces on the cell
we estimate an effective shear rate from an average channel
width of wav = 15 mm and the average velocity to be _geff =

2vRBCwav = 680 s−1. From the shear rate and the viscosity of the
density matched solution h= 1.5 mPa s we estimate an effective
shear stress to be seff = h × _g=1.0 Pa.
Python code

The red blood cells videos consist of multiple sequences
conjugated aer each other triggered by the uorescence
detector described in Fig. 1. The number of sequences in each
© 2023 The Author(s). Published by the Royal Society of Chemistry
video can vary in the number of frames and is specied in the
code for the different videos used. We use two “nishing lines”
at different positions in the oscillating channel where we wan-
ted to capture images of cells at the wide and narrow sections.
The nishing lines were different for wide and narrow section at
each of the videos and it was inputted in the code specic for
the different videos as before.

To detect the cells at these nishing lines, we used OpenCV
background subtractor, a Gaussian Mixture-based background/
foreground segmentation, with a history of 100 and varThres-
hold of 20. We exclusively applied this only to the specic
detection area which was determined by the nishing line
parameter we had specied. The detection area was dened by
a y range of (10 110) and an x range from the nishing line to the
nishing line plus 250. Then, we used OpenCV function “nd-
contours” to create contours around the moving cells in that
detection area. We dened an area threshold of 20 px2 enclosed
by these contours to identify a cell. If a cell passes the detection
area and is above the set threshold the frame number is
recorded and an image of the cell is extracted. In this way the
function “ndcontours” is only used to determine the so-
trigger as shown in Fig. 2 and no information on the contour
is used in the AI categorization model.

The resulting images were cropped to a size of 120 × 150
pixels, with a cropping range of 0 to 120 for height and from the
nishing line minus 80 to the nishing line plus 70 for the
width. Therefore, images were of a shape of (120,150,3).

For our neural network, we used Keras sequential model
with 10 layers. The rst layer is used to rescale and normalize
the input data. In the second layer a 2D convolution layer is
used with 16 lters to detect different features in the input
image. The next layer, the Maxpooling2D layer, reduces the
spatial dimensions of the data, controlling overtting and
reduces the computational load. In the fourth layer another 2D
convolutional layer is used but with more lters as before, with
64 as the number of output lters. Then another Maxpooling2D
layer to reduce the dimensions of the data is used. To prepare
the data for the upcoming dense layers the multidimensional
output from the previous layers is attened into a one-
dimensional vector. For the two dense layers we used rst 128
units per neuron to learn the complex relationship between the
attened features followed by the last layer, another dense layer
with two units representing the output classes: “native” and
“chemically modied”. To extract all pixel information from the
images we used in the 2D convolutional layers a stride param-
eter of (1,1) and a kernel size of (3,3). Finally for the training, we
passed through the entire training dataset ten times (10 epochs)
in batch sizes of 32 samples where aer each batch the gradi-
ents were updated. A schematic representation of the network is
shown in Fig. 2D.

Discussion

In this study we have used periodically oscillating zigzag-shaped
microchannels to probe RBCs. Compared to many other studies
the spatially alternate design enables the interrogation of
viscous cell properties. In contrast, RBCs in cylindrical capillary
RSC Adv., 2023, 13, 28576–28582 | 28579
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ow adopt a constant shape and neither dynamic, viscous
properties of the RBC cell membrane nor the cytosol enter
because the cell moves as a xed object in ow. Here, we probed
cells at two separate locations in microow, at the widening and
the constriction. In between these extrema, the RBCs adopt an
intermediate shape. The transition between these shapes in the
wide and narrow section is controlled by the relaxation time of
the RBC as given by the ratio of viscous to elastic parameters.
Here, we tested native and chemically modied RBCs using
formalin at 0.3% volume ratio (formaldehyde in water solution).
Formalin is a xation agent and non-specically cross-links
proteins in the RBC thereby modifying the viscoelastic,
mechanical properties of the cell. Similar to glutaraldehyde
(GA), the aldehyde group binds and can interlink amino acids of
proteins and thereby mechanically stabilize the RBC
membrane. In GA mediated mechanical modication, the GA
can exist as a monomeric or polymeric form, both of which bind
to amino acids. Therefore, GA can link proteins over a variable
distance depending on the length of the polymer. Even though
formalin can also form formaldehyde polymers, the mechan-
ically reactive form with an aldehyde group is the monomer, i.e.
methylene hydrate. Only as monomer it can bind to proteins to
form a methylene cross-link. Therefore, the potential for cross-
linking with GA is much larger, rstly because of its two alde-
hyde binding sites and secondly due to the variable lengths.23

Hence, the effect of formalin is milder and slower than the one
of GA, facilitating chemical control of mechanical RBC prop-
erties. However, due to the small size formalin has been re-
ported to have a much higher permeation rate compared to
GA.27 It can potentially enter the RBC and link proteins in the
cytosol, such as hemoglobin.27

In AFM studies an increase in elastic modulus depending on
GA concentration has been reported as well as a reduction in
deformability (elongation index).23 AFM measurements using
formalin at a concentration of 5% have revealed a 10-fold
increase in Young modulus as compared to untreated cells.28

The difference in stiffness leads to less deformation and a lower
elongation index as obtained from a shape analysis.29

Stiffening of RBC membrane has also been achieved by
incubation in diamide.24,30,31 However, diamide has been re-
ported to only rigidify the membrane stiffness and uidity. It
provides disulphide bridges between specic thiol-group con-
taining amino-acids (cystine, methionine) and has a minor
effect on the cytosol. Its effect has been studied in microow
analysing the shape changes by using the cell width to length
ratio.32

In our experiments, the changes in viscoelastic properties
due to chemical treatment with formalin 0.3% are expected to
affect the morphology of the RBC in ow. However, we could not
detect any apparent shape changes in our micrographs by eye or
simple analysis such as analysing the deformation index or
projected area.

Instead of analysing the RBC shape and contour as we have
done in previous studies,33,34 here we have taken an AI based
approach.35

A few other authors have used AI based analysis in micro-
uidics channels. Lamoureux et al.36 used a microuidic ratchet
28580 | RSC Adv., 2023, 13, 28576–28582
channel to sort highly deformable RBCs and trained the
machine learning on the isolated cells. Darrin et al.44 have used
millimetre sized channels and observed red blood cells near the
wall at shear rates of 10 s−1 to study the motion from tumbling
to tank treading. The channel size used by Recktenwald et al.37

and Kihm14 et al. have similar dimensions as our geometry and
both are operating in the same velocity range of up to 10 mm
s−1. However, they use a straight channel and different ow
rates to investigate the shape transition of individual red blood
cells and therefore their device is mainly sensitive to elastic
parameters.

Alkrimi et al.15 have classied RBCs using machine learning
principal component analysis to reduce the correlation of
features. Yet, the morphological analysis was done on a blood
smear and not involving microuidic channels.

Using a TensorFlow based machine learning we categorize
native and chemically treated cells with high precision and with
less training data required because we use a pretrained model.

This goes beyond current literature that probe red blood cells
in simple capillary ow.16

We examined how the position of cells within an oscillating
microchannel affects the outcome of the categorization. Two
sets of red blood cell images were used, one in the channel's
wider section and the other in the narrower section. Using
TensorFlow, an image classier with two outputs was trained
and its objective was to generate one output close to one while
maintaining the other output close to zero, thus, effectively
distinguishing between “native” and “chemically modied”
cells. The training accuracy for images of both section in the
microchannel exceeded 99% aer only ve epochs, demon-
strating the fast and efficient training convergence of the
model. Similarly, the validation accuracy converges rapidly as
shown in Fig. 3A and B. As a second indicator we used the
training and validation loss, a parameter that quanties how
bad the prediction of the model is (penalty for poor prediction).
Both indicators rapidly converge to small value indicating a very
good prediction of the model. In both, the narrow and wide part
of the channel, the validation and training accuracies and loss
are monotonous increasing and decreasing, respectively and
the uctuation of their values with epochs is small. The value of
all indicators plateau within about 5 epochs, again showing
a very efficient categorization.

The trained model was then tested with previously unseen
data of native and chemically modied cells and yielded a 98%
accuracy rate for the narrow section and 97% for the wide
section. Apparently, the binary categorization of cells does only
weakly depend on the position of the cell and suggests that the
selection of the position is not critical to the prediction of the
image-based AI model.

Central to red blood cell diagnostics is the analysis of their
deformability and, thus, their ability to form different
shapes.16,36 For example, Kihm et al. divided the cells in two
groups called “Slippers” and “Croissants”,14 implemented
a CNN (Convolutional Neural Network) to train 4000 images and
classify the RBCs uniquely based on their shape characteristics.
Considering the increasing demand for advancements and the
potential for signicant impact and popularity in this eld,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Recktenwald et al.37 and its follow-up study38 adopted the
approach, proposed by Kihm et al. and Alkrimi et al.,14,15 to
benchmark different AI techniques classifying RBCs and simi-
larly to Kihm et al.,14 the classication was based fully on
morphology. Lee et al.39 uses not just shape but also texture
features to classify normal and abnormal RBCs and similarly to
Das et al.,12 they classify cells in more than two categories.
However, overall, these studies employ an intermediate step by
rst or exclusively focussing on morphology and then feeding
the pre-processed data into the nal classier for diagnosis.
However, this assumes that one knows which deformation,
shape or texture relates to a diseased cell and which one to
a healthy one. In contrast, we do pixel-to-disease-classication
(i.e., end to end) where the deep net learns the distinguishing
features by itself without 1st hand-craing features and only
then feeding them into a classier.

Oen raw microscopic images taken contain a large amount
of red blood cells which requires a segmentation process to
extract individual images.16,39 Due to the segmentation
processes and individual image extraction, the quality of the
image is oen seen reduced and as a consequence degrades the
classication accuracy. Other approaches to work with images
of many red blood cells are the Circular Hough transform40 or
region-based segmentation (ORBS).13 Das et al.12 also studies
segmentation of RBCs in image classication and similarly to
the other studies40 and the study of Shemona et al.,13 the images
analysed also contain many RBCs. In contrast to these studies
our work directly captures single red blood cells passing
through the microchannel and is not affected by image degra-
dation, low resolution aer cropping or wrong segmentation.

AI can be used to classify RBCs into more than two cate-
gories,12,39 for example Malaria, Thalassaemia, other abnormal
and normal.11 In our study we have used two categories as
a proof of concept but the TensorFlow classier can take any
number of classes where the only limit is the available
computing power and GPU memory. Future work will use more
than two categories.

Confounding factors are a signicant challenge in any AI
based learning algorithm which is at risk of learning just trivial
and supercial features from the training data. For instance,
Zech et al. explains that CNNs may not effectively identify
disease-specic nings but rather exploit confounding infor-
mation.41 This crucial issue is only addressed by Rizzuto et al.
which tries to eliminate any confounding structures cropping
the video to extract only a limited area of interest.16 No study has
explored the effect of confounding factors such as focal plane
on image classication of RBCs. In this study we discovered that
AI would use the focal plane to distinguish between native and
chemically modied RBCs when using one focal plane for the
native ones and one for the diseased ones. To overcome this
problem, we mixed images captured at different focal planes
and, in addition, removed the background from the images.

Conclusion

We have demonstrated an end-to-end classication of two
populations of red blood cells with an open-source AI image
© 2023 The Author(s). Published by the Royal Society of Chemistry
analyser based on TensorFlow. Cells of both populations ow
through a microchannel and images are taken at specic loca-
tions in the channel. Themodel very effectively classies the cell
into native and chemically modied and reaches a high level of
accuracy already aer 5 epochs. The fully trained model was
tested with an unknow sample, and the testing accuracy was
98% and 97% in the narrow and wide section of the channel,
respectively. The high level of accuracy and the quickly con-
verting low level of testing and validation loss justies our
approach. In the future we aim to extend the analysis to other
blood samples from patients for disease diagnostics and
combine the analysis with droplet based microuidics and red
blood cell encapsulation42 as well as acoustic approaches for
viscoelastic cell classication.43

Conflicts of interest

There are no conicts to declare.

Acknowledgements

The works was supported by the European Union's Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 813786 (EVOdrops).
Additionally, the authors acknowledge support from the UK
Engineering and Physical Sciences Research Council (EPSRC)
via grant EP/P018882/1. AL and TF thank Raj Kumar Rajaram
Baskaran for discussions of the Python code and its imple-
mentation in TensorFlow.

References

1 M. Gary, G. Knight and A. D. Blann, Haematology, Oxford
University Press, Oxford, 3rd edn, 2021.

2 T. M. Geislinger, S. Chan, K. Moll, A. Wixforth, M. Wahlgren
and T. Franke, Malar. J., 2014, 13, 375.

3 H. A. Cranston, C. W. Boylan, G. L. Carroll, S. P. Sutera,
J. R. Williamson, I. Y. Gluzman and D. J. Krogstad, Science,
1984, 223, 400–403.

4 M. Kohno, K. Murakawa, K. Yasunari, K. Yokokawa, T. Horio,
H. Kano, M. Minami and J. Yoshikawa,Metabolism, 1997, 46,
287–291.

5 J. Radosinska and N. Vrbjar, Physiol. Res., 2016, 65, S43–S54.
6 M. J. Simmonds, H. J. Meiselman and O. K. Baskurt, J.
Geriatr. Cardiol., 2013, 10, 291–301.

7 G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli and
S. Guido, So Matter, 2009, 5, 3736–3740.

8 H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. U. S. A.,
2005, 102, 14159–14164.

9 S. Braunmüller, L. Schmid and T. Franke, J. Phys.:
Condens.Matter, 2011, 23, 184116.

10 S. Braunmüller, L. Schmid, E. Sackmann and T. Franke, So
Matter, 2012, 8, 11240–11248.

11 Y. Hirimutugoda and G. Wijayarathna, Sri Lanka J. Biomed.
Inform., 2010, 1, 35.

12 D. K. Das, C. Chakraborty, B. Mitra, A. K. Maiti and A. K. Ray,
J. Microsc., 2013, 249, 136–149.
RSC Adv., 2023, 13, 28576–28582 | 28581

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra04644c


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
28

/2
02

5 
12

:3
0:

28
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
13 J. S. Shemona and A. K. Chellappan, IET Image Process., 2020,
14, 1726–1732.

14 A. Kihm, L. Kaestner, C. Wagner and S. Quint, PLoS Comput.
Biol., 2018, 14, e1006278.

15 J. A. Alkrimi, S. A. Tome and L. E. George, Eur. J. Sci. Res.,
2019, 4, 17–22.

16 V. Rizzuto, A. Mencattini, B. Álvarez-González, D. Di
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