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The thyroid stimulating hormone receptor (TSHR) is crucial in thyroid hormone production in humans, and

dysregulation in TSHR activation can lead to adverse health effects such as hypothyroidism and Graves'

disease. Further, animal studies have shown that binding of endocrine disrupting chemicals (EDCs) with

TSHR can lead to developmental toxicity. Hence, several such chemicals have been screened for their

adverse physiological effects in human cell lines via high-throughput assays in the ToxCast project. The

invaluable data generated by the ToxCast project has enabled the development of toxicity predictors, but

they can be limited in their predictive ability due to the heterogeneity in structure–activity relationships

among chemicals. Here, we systematically investigated the heterogeneity in structure–activity as well as

structure–mechanism relationships among the TSHR binding chemicals from ToxCast. By employing

a structure–activity similarity (SAS) map, we identified 79 activity cliffs among 509 chemicals in TSHR

agonist dataset and 69 activity cliffs among 650 chemicals in the TSHR antagonist dataset. Further, by

using the matched molecular pair (MMP) approach, we find that the resultant activity cliffs (MMP-cliffs)

are a subset of activity cliffs identified via the SAS map approach. Subsequently, by leveraging ToxCast

mechanism of action (MOA) annotations for chemicals common to both TSHR agonist and TSHR

antagonist datasets, we identified 3 chemical pairs as strong MOA-cliffs and 19 chemical pairs as weak

MOA-cliffs. In conclusion, the insights from this systematic investigation of the TSHR binding chemicals

are likely to inform ongoing efforts towards development of better predictive toxicity models for

characterization of the chemical exposome.
Introduction

The thyroid stimulating hormone receptor (TSHR) plays an
important role in the hypothalamic–pituitary–thyroid axis
where it mediates the production of thyroid hormone upon
activation by the physiologic agonist, thyroid stimulating
hormone (TSH).1–3 The hypothalamic–pituitary–thyroid axis is
crucial for development and metabolism, and is prone to
disruption by endocrine disrupting chemicals (EDCs)4–6 in the
human exposome. EDCs can bind to an endocrine receptor and
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umbai 400094, India
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and the MOA-cliffs. See DOI:
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the Royal Society of Chemistry
dysregulate the hormonal activity in the human body, thus
affecting the metabolism, immune system and reproductive
system.7 In particular, animal studies have shown that EDCs
binding to TSHR disrupt the thyroid system, ultimately leading
to developmental toxicity.8–10 In humans, the overproduction of
thyroid hormone caused by the binding of M22 autoantibody
with TSHR can lead to Graves' disease,11 and underproduction
of thyroid hormone caused by the binding of K1-70 autoanti-
body can lead to hypothyroidism and Hashimoto's disease.12

Consequently, screening of environmental chemicals in the
human exposome that can bind to TSHR is important for their
proper management.

The assessment of adverse effects of environmental chem-
icals on physiological targets is a laborious, time-consuming
process and might involve animal testing. In this direction,
the ToxCast program has screened nearly 10 000 chemicals for
their adverse effects on various biological targets including
TSHR, and characterized them based on their bioactivity and
mechanisms of action.13,14 The ToxCast dataset has greatly
enabled the development of several quantitative structure–
RSC Adv., 2023, 13, 23461–23471 | 23461
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activity relationship (QSAR) models that aim to predict toxicity
of chemicals and aid in prioritization of chemicals for further
testing.15,16 In particular, the ToxCast library has been used to
develop machine learning based QSAR models to predict
chemicals that bind to TSHR.17,18 However, the heterogeneity of
the structure–activity landscape of chemicals that bind to TSHR
has not been explored while developing such models, which
could lead to uncertainties in associated predictions.19

The heterogeneity in the structure–activity landscape of
chemicals arises due to the presence of activity cliffs.20 Activity
cliffs are formed by chemical pairs that have similar structures
but signicantly differ in their activity values.21 The identica-
tion of activity cliffs in a chemical dataset is necessary as it
limits the predictive power of QSAR models.22 Many methods
have been developed for the analysis of the structure–activity
landscape of chemicals and identication of activity cliffs.23–27

Medina-Franco and colleagues have extensively used the
chemical ngerprint-based structure–activity similarity (SAS)
map to identify activity cliffs in diverse chemical datasets.28–30 In
an earlier contribution, some of us had extended this approach
to identify and characterize activity cliffs in androgen receptor
binding chemicals.31 Independently, Bajorath and colleagues
have developed a substructure-based matched molecular pair
(MMP) approach to identify activity cliffs.32 This approach has
been extended by Hao et al.33 to identify the differences in the
mechanisms of action of chemical pairs with similar structures,
and moreover, introduced the concept of mechanism of action
cliffs (MOA-cliffs). Like activity cliffs, the presence of MOA-cliffs
highlights the heterogeneity in the structure–mechanism rela-
tionships among chemicals. Importantly, an exploration of the
heterogeneity in the structure–activity landscape in conjunction
with the structure–mechanism relationships has not been
conducted on the ToxCast chemical library to date, in partic-
ular, for the chemicals that can bind to TSHR.

In this study, we performed a systematic investigation of the
structure–activity landscape and structure–mechanism rela-
tionships in datasets of TSHR agonist and TSHR antagonist
compiled from ToxCast chemical library. We employed both
SAS map and MMP based approaches to identify the activity
cliffs in the structure–activity landscape of these chemical
datasets. We classied the identied activity cliffs into different
categories using the information on their chemical structures.
Further, we leveraged the mechanism of action (MOA) annota-
tions for chemicals common to both TSHR agonist and TSHR
antagonist datasets to identify MOA-cliffs. To the best of our
knowledge, we present the rst systematic study leveraging
ToxCast chemical library and employing multiple chem-
informatics approaches for the identication and character-
ization of activity cliffs along with MOA-cliffs among chemicals
that can bind to TSHR.

Methods
Chemical dataset comprising of agonists and antagonists of
the thyroid stimulating hormone receptor

The objective of this investigation is the analysis of the struc-
ture–activity landscape of the agonists and antagonists of the
23462 | RSC Adv., 2023, 13, 23461–23471
thyroid stimulating hormone receptor (TSHR) (Fig. 1). For this
investigation, we retrieved the chemicals, their corresponding
activity values, and endpoints from Tox21 assays (assay source
identier 7) within ToxCast version 3.5 (ref. 34) using level 5 and
6 processing. First, we used an in-house R script to lter the
Tox21 multi-concentration summary le in order to identify
chemicals based on their endpoint being either TSHR agonist
(assay endpoint identier 2040) or TSHR antagonist (assay
endpoint identier 2043) screened in HEK293T cell line. TSHR
agonist is a chemical that binds to TSHR and fully activates it,
whereas TSHR antagonist is a chemical that binds to TSHR but
does not activate it and can additionally block the activation by
any other agonist. Next, we ltered chemicals annotated as
representative samples (i.e., gsid_rep is 1) and with reported
activity value (i.e., modl_ga value is present) (Fig. 1a). Subse-
quently, for these shortlisted chemicals, we accessed the two-
dimensional (2D) structures provided by ToxCast version 3.5,
or PubChem (https://pubchem.ncbi.nlm.nih.gov/) if the 2D
structures were not provided by ToxCast. Thereaer, we used
MayaChemTools35 to remove salts, mixtures, invalid structures
and duplicated chemicals (Fig. 1a). We also removed linear
chemicals using the scaffold denition employed in our
previous work.31 Finally, we curated a TSHR agonist dataset of
509 chemicals (ESI Table S1†) and a TSHR antagonist dataset
of 650 chemicals (ESI Table S2†). For each chemical in the
two datasets, we additionally compiled the Chemical Abstracts
Service (CAS) registry number or PubChem compound
identiers, reported biological activity (i.e., either active: hit_c
is 1; or inactive: hit_c is 0), and the chemical concentration
that generates the half maximal response (modl_ga, i.e.,
logarithm of AC50 values in micromolar concentration).
Molecular representation and annotation

We annotated chemicals in both TSHR agonist and TSHR
antagonist datasets using molecular scaffolds and chemical
classications and their presence in different databases
(Fig. 1a). Following our previous work,31 we used the Bemis–
Murcko denition36 to compute the molecular scaffolds from
chemical structures. Next, we relied on ClassyFire37 to provide
the corresponding chemical classications. Further, we used
DEDuCT38,39 database which compiles information on 792
endocrine disrupting chemicals (EDCs) curated from published
literature with supporting evidence for endocrine disruption
from experiments in humans and rodents, to identify the
known EDCs among chemicals in the TSHR agonist or TSHR
antagonist dataset. We also used Organisation for Economic
Co-operation and Development High Production Volume
(OECD HPV) (https://www.oecd.org/chemicalsafety/risk-
assessment/33883530.pdf) or United States High Production
Volume (USHPV) (https://comptox.epa.gov/dashboard/
chemical-lists/EPAHPV) databases to identify high production
volume chemicals in our datasets. Additionally, we leveraged
the CAS identiers of the chemicals in TSHR agonist and
TSHR antagonist datasets, which are also compiled in
Distributed Structure-Searchable Toxicity (DSSTox) database,
to retrieve annotations such as functional uses, occupational
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Summary of structure–activity landscape analysis and activity cliff identification in a chemical dataset curated from ToxCast library. (a)
Curation and annotation of thyroid stimulating hormone receptor (TSHR) agonist and antagonist datasets. (b) Structure–activity similarity (SAS)
map based approach to identify the activity cliffs in a chemical dataset. (c) Steps involved in generation of a matched molecular pair (MMP) and
associated MMP-cliff. (d) Classification of activity cliff pairs based on respective structural information. (e) Mechanism of action (MOA) based
classification of the chemical pairs (common to both TSHR agonist and antagonist datasets and having Tanimoto coefficient based similarity of
>0.35) into three different categories.

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 23461–23471 | 23463
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health hazard reports and product use composition from
Chemical and Products Database (CPDat) (Fig. 1a).40
Computation of activity difference

The activity difference for a pair of chemical is considered as the
difference between their corresponding pAC50 values, where
pAC50 is the negative logarithm of AC50 value in molar
concentration.28,33,41 The activity values of the chemicals in the
compiled TSHR agonist and TSHR antagonist datasets are re-
ported as the logarithm of AC50 values in micromolar concen-
trations (modl_ga). Therefore, we converted the modl_ga value
to pAC50 value using the following formulae:

AC50(M) = 10modl_ga × 10−6

pAC50 = −log10(AC50(M)) = 6 − modl_ga

Thereaer, we calculated the activity difference between two
chemicals i and j using the following formula:

Activity difference = j(pAC50)i − (pAC50)jj

wherein the (pAC50)i and (pAC50)j are the pAC50 values of
chemicals i and j respectively.
Identication of activity cliffs using structure–activity
similarity (SAS) map

We independently analyzed the activity landscape of the
chemicals in TSHR agonist and TSHR antagonist datasets using
structure–activity similarity (SAS) map (Fig. 1b).28–31 SAS map is
a 2D representation where the structural similarity between the
chemicals is plotted along the x-axis and the activity difference
between the chemicals is plotted along the y-axis (Fig. 1b). We
computed structural similarity between chemical pairs based
on Tanimoto coefficient between the corresponding extended-
connectivity ngerprints with diameter 4 (ECFP4) of the
chemicals. As there is no strict rule to choose a threshold for
high structural similarity,42we considered a similarity threshold
of 0.35 which was close to three standard deviations from
median of the computed Tanimoto coefficient for chemical
pairs in both TSHR agonist and TSHR antagonist datasets. We
considered an activity difference threshold of 100 fold change
which is equivalent to 2 logarithmic units. The scaffold hops
region (region I in Fig. 1b) corresponds to the chemicals which
are structurally different but activity-wise similar. The smooth
region (region II in Fig. 1b) corresponds to chemicals which are
structurally similar and activity-wise also similar. The uncertain
region (region IV in Fig. 1b) corresponds to chemicals which are
structurally different and activity-wise also different. Impor-
tantly, we designated the highly similar chemical pairs (Tani-
moto coefficient > 0.35) with high activity difference ($2) as the
activity cliffs in both TSHR agonist and TSHR antagonist data-
sets (region III in Fig. 1b). Additionally, we considered chem-
icals which form at least 5 activity cliff pairs as activity cliff
generators (ACGs).29,31
23464 | RSC Adv., 2023, 13, 23461–23471
Identication of activity cliffs based on matched molecular
pairs (MMPs)

In addition to SAS map based activity landscape analysis, we
employed the matched molecular pairs (MMP) based approach
to identify the activity cliffs (MMP-cliffs)32 independently in
TSHR agonist and TSHR antagonist datasets (Fig. 1c). We used
mmpdb platform43 to generate MMPs for chemicals in both
datasets. First, the mmpdb fragment module was used to frag-
ment the chemical structure with ‘none’ value for both
maximum number of non-hydrogen atoms and maximum
number of rotatable bonds arguments. Next, the mmpdb index
module was used to generate an exhaustive list of MMPs with
‘none’ value for maximum number of non-hydrogen atoms in
the variable fragment argument. This gave us an exhaustive list
of MMPs with detailed information on the constant part and
transformations containing the exchanged fragments between
chemical pairs. Further, to generate size-restricted MMPs, we
implemented the following four criteria (Fig. 1c):32

(i) The difference in number of heavy atoms of the exchanged
fragments in transformation should not exceed 8.

(ii) The constant part should be at least twice the size of each
fragment in the transformation.

(iii) The number of heavy atoms of each fragment in the
transformation should not exceed 13.

(iv) For a chemical pair with multiple MMPs, the trans-
formation with the least difference in the number of heavy
atoms between the exchanged fragments is considered.

Finally, we identied MMP-cliffs among the size-restricted
MMPs by selecting those pairs with an activity difference $ 2
in logarithmic units (i.e., 100 fold change) (Fig. 1c).
Activity cliff classication

In this study, we followed the activity cliff classication described
in Vivek-Ananth et al.,31 to classify the activity cliffs by consid-
ering their molecular scaffolds, R-groups, R-group topology, and
chirality of chemical structures. Further, we modied the work-
ow in Vivek-Ananth et al.31 to also check for topologically
equivalent scaffolds (cyclic skeleton) when a pair of chemicals do
not share the same scaffolds (Fig. 1d).24 We used the R-group
decomposition module available in RDKit44 to decompose the
chemical structure into its core structure (scaffold) and R-groups.
Further, we used the modied workow (Fig. 1d) to manually
classify the activity cliffs into the following 7 types:

(i) Chirality cliff: chemical pairs having the same scaffold, R-
groups and R-group topology.

(ii) Topology cliff: chemical pairs having different R-group
topologies while their scaffolds and R-groups remain
unchanged.

(iii) R-group cliff: chemical pairs having different R-groups
while their scaffolds remain unchanged.

(iv) Scaffold cliff: chemical pairs having different scaffolds
while their cyclic skeletons, R-groups and R-group topologies
remain unchanged.

(v) Scaffold/topology cliff: chemical pairs having different
scaffolds and R-group topologies while their cyclic skeletons
and R-groups remain unchanged.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(vi) Scaffold/R-group cliff: chemical pairs having different
scaffolds and R-groups while their cyclic skeletons remain
unchanged.

(vii) Unclassied: chemical pairs having different scaffolds
and cyclic skeletons.
Mechanism of action (MOA) based classication of chemical
structures

In addition to the activity cliffs in TSHR agonist and TSHR
antagonist datasets, we were interested in identifying chemical
pairs in which the chemicals have similar structures but differ
in their mechanism of action (MOA). Such chemical pairs are
designated as MOA-cliffs.33 We considered chemicals which
were common to both the TSHR agonist and TSHR antagonist
datasets, and removed those chemicals which were reported as
inactive MOA in both assays. We then computed the structural
similarity of chemical pairs by using the Tanimoto coefficients
between the ECFP4 ngerprints of the shortlisted chemicals.
We chose 0.35 as the similarity threshold (which is the struc-
tural similarity threshold used in SAS map analysis) to lter
similar chemical pairs. Based on their MOA annotations in
TSHR agonist and TSHR antagonist datasets, we classied these
chemical pairs into 3 types (Fig. 1e):

(i) Strong MOA-cliff: chemical pairs in which the chemicals
have opposite MOA annotations.

(ii) Same MOA: chemical pairs in which both the chemicals
have same MOA annotations.

(iii) Weak MOA-cliff: chemical pairs which could not be
classied as either strong MOA-cliff or same MOA.
Results and discussion
Exploration of the chemical space of TSHR agonist and
antagonist datasets

From ToxCast library, we curated 509 chemicals in TSHR
agonist (ESI Table S1†) and 650 chemicals in TSHR antagonist
(ESI Table S2†) datasets, and thereaer, annotated the chem-
icals in the two datasets with information on their molecular
scaffolds, chemical classications, and their presence in public
documentation or databases (Methods; Fig. 1a). Notably, there
were 89 chemicals common between TSHR agonist and TSHR
antagonist datasets. Additionally, we observed that chemicals in
both TSHR agonist and TSHR antagonist datasets are struc-
turally diverse (median Tanimoto coefficient based similarity
using ECFP4 ngerprints of ∼0.11), which could be attributed
to the diverse composition of environmental chemicals in the
ToxCast chemical library, which are assessed for their adverse
biological effects.13,15

For the 509 chemicals in the TSHR agonist dataset, aer
computing the molecular scaffolds we observed that the
benzene scaffold is highly represented (as it is found in 122
chemicals). Many of the chemicals in TSHR agonist dataset are
also categorized under the chemical class of ‘benzene and
substituted derivatives’ (195 chemicals) (ESI Table S1†).
Importantly, 79 chemicals in the TSHR agonist dataset are
documented in DEDuCT38,39 as endocrine disrupting chemicals
© 2023 The Author(s). Published by the Royal Society of Chemistry
(EDCs) with experimental evidence, of which 29 EDCs have
category II evidence (supporting evidence from in vivo rodent
and in vitro human experiments but not from in vivo human
experiments), 28 EDCs have category III evidence (supporting
evidence from only in vivo rodent experiments), 21 EDCs have
category IV evidence (supporting evidence from only in vitro
human experiments) and 1 EDC has category I evidence (sup-
porting evidence from in vivo human experiments). Among the
79 identied EDCs, 21 chemicals are also documented as high
production volume chemicals as per OECD HPV or USHPV
databases (Methods; ESI Table S1†). Chemical and Products
Database (CPDat) provided various functional use annotations
for 102 chemicals, of which biocides, fragrance and antioxi-
dants are the major reported functional categories (ESI Table
S1†). CPDat also provided the product use composition data for
70 chemicals, of which personal care, and cleaning products
and household care are the major categories (ESI Table S1†).
Additionally, 4 chemicals namely, 3-carene, butylated hydrox-
ytoluene, hydroquinone and triphenyl phosphate have been
documented in various occupational health hazard reports (ESI
Table S1†).

Similarly, for the 650 chemicals in the TSHR antagonist
dataset, we observed that benzene scaffold is the most repre-
sented molecular scaffold (as it is found in 127 chemicals),
while ‘benzene and substituted derivatives’ is the most repre-
sented chemical class (254 chemicals) (ESI Table S2†). Notably,
65 chemicals in the TSHR antagonist dataset are documented as
EDCs in DEDuCT, of which 26 EDCs have category III evidence
(supporting evidence from only in vivo rodent experiments), 22
EDCs have category II evidence (supporting evidence from in
vivo rodent and in vitro human experiments but not from in vivo
human experiments) and 17 EDCs have category IV evidence
(supporting evidence from only in vitro human experiments).
Among the 65 identied EDCs, 13 are also documented as high
production volume chemicals in OECD HPV or USHPV data-
bases (ESI Table S2†). CPDat provided functional uses for 156
chemicals, of which biocides, fragrance and antioxidants are
reported as the major functional categories (ESI Table S2†).
CPDat also provided the product use composition data for 107
chemicals, of which personal care, pesticides, and cleaning
products and household care are the major categories (ESI
Table S2†). Additionally, 4 antagonists namely, 2,2′,4,4′,5-pen-
tabromodiphenyl ether, 2,2′,4,4′-tetrabromodiphenyl ether,
bibenzyl and styrene are documented in various occupational
health hazard reports (ESI Table S2†).
Activity landscape analysis of TSHR agonist dataset

The structure–activity similarity (SAS) map has been employed
in the literature to identify activity cliffs by investigating the
structure–activity relationship.28–31 Accordingly, we analyzed the
activity landscape of the TSHR agonist dataset using the SAS
map approach (Methods; Fig. 2a). We observed that themajority
of chemical pairs show similar activity while they are structur-
ally diverse (see SAS map region 1 in Fig. 2a). Importantly, we
identied 79 chemical pairs showing high activity difference
while being structurally similar (see SAS map region III in
RSC Adv., 2023, 13, 23461–23471 | 23465
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Fig. 2 Activity landscape analysis of TSHR agonist dataset. (a) Structure–activity similarity (SAS) map for TSHR agonist dataset. SAS map is divided
into 4 quadrants by considering a similarity threshold of 0.35 and activity difference threshold of 2. Further, the density of data points in different
regions of the SAS map is shown using a color gradient. (b) MMP-cliffs formed by N,N′-diphenyl-p-phenylenediamine (CAS identifier 74-31-7)
with N-phenyl-1,4-benzenediamine (CAS identifier 101-54-2) [DpAC50 = 2.09] and triphenyl phosphate (CAS identifier 115-86-6) with triphe-
nyltin acetate (CAS identifier 900-95-8) [DpAC50= 2.11]. The transformed fragments resulting in MMP-cliff are highlighted in red color. (c) Activity
cliff classifications for the activity cliff generators, triphenyltin hydroxide (CAS identifier 76-87-9; 10 activity cliff pairs) and isoproterenol (CAS
identifier 7683-59-2; 5 activity cliff pairs). The activity value (pAC50) is mentioned below for each chemical.

23466 | RSC Adv., 2023, 13, 23461–23471 © 2023 The Author(s). Published by the Royal Society of Chemistry

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 4

:4
7:

50
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra04452a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 4

:4
7:

50
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Fig. 2a). We designated these 79 chemical pairs (formed by 60
unique chemicals) as activity cliffs (ESI Table S3†), of which 9
chemicals are additionally identied as activity cliff generators
(ACGs) (Methods; ESI Table S4†). The chemicals forming
activity cliffs are represented by 34 unique scaffolds with
benzene and triphenyltin scaffolds being the highly represented
scaffolds, and are categorized under 13 chemical classes with
‘benzene and substituted derivatives’ class being the largest
category. Moreover, triphenyltin scaffold is highly represented
in chemicals forming ACGs. The chemicals forming pairs in the
region I (scaffold hops) and region IV (unknown) are dominated
by ‘benzene and substituted derivatives’ chemical class fol-
lowed by ‘prenol lipids’ chemical class. Similarly, the chemicals
forming pairs in the region II (smooth) are dominated by
‘benzene and substituted derivatives’ chemical class followed
by ‘steroids and steroid derivatives’ chemical class.

Matched Molecular Pair (MMP) based activity landscape
analysis has been alternatively employed in the literature to
identify the activity cliffs.32,33 We also used the MMP approach
to analyze the activity landscape of the TSHR agonist dataset.
We identied 523 MMPs formed by 170 chemicals in the TSHR
agonist dataset (Methods; ESI Table S5†), of which 38 MMPs
(formed by 19 unique chemical pairs) are identied as MMP-
cliffs based on an activity difference threshold consideration
similar to SASmap (Methods; ESI Table S3†). Notably, the MMP-
cliffs identied by the MMP approach are a subset of the activity
cliffs identied by the SAS map approach, which could be
attributed to the highly restrictive fragment transformation
conditions imposed in the generation of MMPs.32 Interestingly,
the constant part containing three benzene rings identied in
14 of the 38 MMP-cliffs is similar to the highly represented
triphenyltin scaffold among the chemicals forming activity
cliffs identied through SAS map. Fig. 2b shows chemical pairs
of N,N′-diphenyl-p-phenylenediamine (CAS identier 74-31-7)
and N-phenyl-1,4-benzenediamine (CAS identier 101-54-2),
triphenyl phosphate (CAS identier 115-86-6) and triphenyltin
acetate (CAS identier 900-95-8) that are identied as MMP-
cliffs. N,N′-Diphenyl-p-phenylenediamine is an ACG which is
documented as an EDC in DEDuCT and present in the OECD
HPV or USHPV databases. Notably, triphenyl phosphate and
triphenyltin acetate are documented as EDCs in DEDuCT and
triphenyl phosphate is also present in the OECD HPV or USHPV
databases.

Subsequently, we classied the 79 activity cliffs and identi-
ed 11 as R-group cliffs, 1 as scaffold cliff, 11 as scaffold/R-
group cliffs and 56 as unclassied (Methods; ESI Table S3†).
Fig. 2c shows the different classications of the activity cliffs
formed by triphenyltin hydroxide (CAS identier 76-87-9) and
isoproterenol (CAS identier 7683-59-2). Triphenyltin hydroxide
forms 10 activity cliff pairs where 2 are scaffold/R-group cliffs
(same cyclic skeleton but differ in the scaffold as well as R-
group), 1 is scaffold cliff (same R-group, R-group topology and
cyclic skeleton but differ only in scaffold) and remaining are
unclassied (differ in scaffold as well as the cyclic skeleton).
Similarly, isoproterenol forms 5 activity cliff pairs where all are
R-group cliffs (same scaffold and cyclic skeleton but differ in R-
groups). Further, we noted that majority of the identied
© 2023 The Author(s). Published by the Royal Society of Chemistry
activity cliffs (56 of 79) are classied under the unclassied
category as the chemicals forming these cliffs differ in their
scaffolds as well as their scaffold topology (cyclic skeleton).

Activity landscape analysis of TSHR antagonist dataset

Similar to the activity landscape analysis of the TSHR agonist
dataset, we analyzed the TSHR antagonist dataset through both
SAS map and MMP approaches. From the SAS map approach,
while most chemical pairs show similar activity despite having
diverse structures (see SAS map region I in Fig. 3a), 69 chemical
pairs showed high activity difference while they are structurally
similar (see SAS map region III in Fig. 3a). We designated these
69 chemical pairs as activity cliffs, and observed that they are
formed by 75 unique chemicals (ESI Table S6†), of which 4
chemicals are ACGs (Methods; ESI Table S7†). The chemicals
forming activity cliffs are represented by 39 unique scaffolds
with benzene and biphenyl scaffolds being the highly repre-
sented scaffolds, and are categorized under 17 chemical classes
with ‘benzene and substituted derivatives’ class being the
largest category. Similar to the activity cliff region, chemicals
forming pairs in other three regions (region I, II and IV) are also
dominated by ‘benzene and substituted derivatives’ chemical
class followed by ‘steroids and steroid derivatives’ chemical
class.

From the MMP approach, we identied 590 MMPs (formed
by 195 chemicals), of which 3 are MMP-cliffs (Methods; ESI
Table S8†). Notably all the MMP-cliffs are also activity cliffs
identied through SAS map approach. Fig. 3b shows chemical
pairs of styrene (CAS identier 100-42-5) and phenylmercuric
chloride (CAS identier 100-56-1), and styrene and beta-
nitrostyrene (CAS identier 102-96-5). Styrene is an ACG
which is documented as an EDC in DEDuCT and present in the
OECD HPV or USHPV databases.

Further, we classied the 69 activity cliffs and identied 18
as R-group cliffs (same R-group but differ in scaffold), 1 as
scaffold/R-group cliff (same cyclic skeleton but differ in both
scaffold and R-group) and 50 as unclassied (differ in both
scaffold and cyclic skeleton) (Methods; ESI Table S6†). Fig. 3c
shows 6 activity cliffs formed by styrene, 5 R-group cliffs, and 1
unclassied (differ in both scaffold and cyclic skeleton) and 1
scaffold/R-group cliff formed by norgestimate (CAS identier
35189-28-7) and testosterone propionate (CAS identier 57-85-
2). Finally, similar to the activity cliff classication in the TSHR
agonist dataset, we noted that majority of the activity cliffs in
the TSHR antagonist dataset (50 of 69) are classied under the
unclassied category.

Mechanism of action (MOA) cliffs

Apart from the differences in activity, structurally similar
chemicals also show a difference in their identied mechanism
of action (MOA). Hao et al.33 have earlier explored the MMPs
with different MOAs from androgen receptor agonist and
antagonist datasets, and designated them as MOA-cliffs. We
shortlisted 75 chemicals which have endpoints in both TSHR
agonist and TSHR antagonist datasets and identied 38
chemical pairs which have high structural similarity (Methods;
RSC Adv., 2023, 13, 23461–23471 | 23467
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Fig. 3 Activity landscape analysis of TSHR antagonist dataset. (a) Structure–activity similarity (SAS) map for TSHR antagonist dataset. SAS map is
divided into 4 quadrants by considering a similarity threshold of 0.35 and activity difference threshold of 2. Further, the density of data points in
different regions of the SASmap is shown using a color gradient. (b) MMP-cliffs formed by styrene (CAS identifier 100-42-5) with phenylmercuric
chloride (CAS identifier 100-56-1) [DpAC50 = 2.48] and with beta-nitrostyrene (CAS identifier 102-96-5) [DpAC50 = 2.07]. The transformed
fragments resulting in MMP-cliff are highlighted in red color. (c) Activity cliff classifications for the activity cliff generator, styrene (6 activity cliff
pairs) and an activity cliff pair of norgestimate (CAS identifier 35189-28-7) with testosterone propionate (CAS identifier 57-85-2). The activity
value (pAC50) is mentioned below for each chemical.
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ESI Table S9†). We classied these 38 chemical pairs based on
their MOA annotations and identied 3 as strong MOA-cliffs, 16
as same MOA and 19 as weak MOA-cliffs (Methods; Fig. 1e; ESI
Table S9†). Notably, 1 strong MOA-cliff and 8 weak MOA-cliffs
are also classied as activity cliffs identied through the SAS
map approach. Fig. 4 shows examples of different MOA based
classications of highly similar chemical pairs (Tanimoto
23468 | RSC Adv., 2023, 13, 23461–23471
coefficient > 0.35). 3,3′-Diaminobenzidine (CAS identier 91-95-
2; inactive agonist and active antagonist) and 3,3′-dime-
thylbenzidine (CAS identier 119-93-7; active agonist and
inactive antagonist) form strong MOA-cliff, triphenyltin chlo-
ride (CAS identier 639-58-7; active agonist and active antago-
nist) and triphenyltin hydroxide (CAS identier 76-87-9; active
agonist and active antagonist) form same MOA, and endosulfan
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Examples for three different mechanism of action (MOA) based
classifications of chemical pairs. (a) Strong MOA-cliff formed by 3,3′-
diaminobenzidine (CAS identifier 91-95-2) with 3,3′-dimethylbenzi-
dine (CAS identifier 119-93-7). (b) Same MOA formed by triphenyltin
chloride (CAS identifier 639-58-7) with triphenyltin hydroxide (CAS
identifier 76-87-9). (c) Weak MOA-cliff formed by endosulfan sulfate
(CAS identifier 1031-07-8) with endosulfan I (CAS identifier 959-98-8).
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sulfate (CAS identier 1031-07-8; active agonist and active
antagonist) and endosulfan I (CAS identier 959-98-8; active
agonist and inactive antagonist) form weak MOA-cliff.
Conclusions

In this study, we explored and analyzed the activity landscape of
chemicals in curated datasets of thyroid stimulating hormone
receptor (TSHR) agonists (TSHR agonist dataset) and antago-
nists (TSHR antagonist dataset) compiled from the ToxCast
library. By leveraging the established ngerprint-based
approach and a substructure-based approach, we identied 79
activity cliffs in the TSHR agonist dataset and 69 activity cliffs in
the TSHR antagonist dataset. Furthermore, we classied the
resultant activity cliffs based on the information on chemical
structures. Additionally, we analyzed the differences in the
mechanism of action (MOA) of the TSHR binding chemicals
and identied 3 strong MOA-cliffs and 19 weak MOA-cliffs
© 2023 The Author(s). Published by the Royal Society of Chemistry
based on the difference in their annotated bioactivity
outcomes. Notably, this is the rst study to report the hetero-
geneity of the structure–activity landscape as well as the struc-
ture–mechanism relationships of the TSHR binding chemicals
compiled from ToxCast chemical library.

However, our workow does not account for the stereoiso-
meric information of the chemical structures in identication
of activity cliffs and MOA-cliffs. Moreover, we were unable to
quantify the differences in binding affinities of chemicals
forming MOA-cliffs as their affinity values are obtained from
two different assays. We were also unable to explore molecular
mechanisms behind the formation of activity cliffs as well as
MOA-cliffs as there are no experimentally determined co-
crystallized TSHR protein–ligand complexes available in the
public domain.

Nonetheless, our efforts highlight the presence of activity
cliffs and MOA-cliffs in a large chemical dataset such as Tox-
Cast, and their identication will aid in development of robust
toxicity predictors.22,45 In the future, one can use the newly
developed chemical similarity methods such as extended
similarity indices (n-ary comparison)46,47 to deal with the
computational complexity arising from pairwise comparison for
large chemical datasets. In conclusion, this is the rst investi-
gation that combines SAS map andMMP approaches along with
large-scale datasets from ToxCast chemical library to identify
and characterize activity cliffs and MOA-cliffs among TSHR
agonist and TSHR antagonist datasets. We believe that these
insights will aid in development of better toxicity prediction
models, and thereby, contribute towards characterization of the
human exposome.
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