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A facile synthesis of a novel 4-hydroxyl-3-azo
coumarin based colorimetric probes for detecting
Hg?* and a fluorescence turn-off response of 3CBD
to Fe®>* in aqueous environment?
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Two azo dyes, (E)-3-(benzold]thiazol-2-yldiazenyl)-4-hydroxy-2H-chromen-2-one (3CBD) and (E)-4-
hydroxy-3-(quinolin-2-yldiazenyl)-2H-chromen-2-one (3CQD), were designed and synthesized using
facile methods. The structures were validated through FTIR and NMR spectroscopy. The photophysical
studied using UV-Vis and
Consequently, the absorption and emission spectra of 3CBD confirmed its selectivity of Hg?* and turn-
off response to Fe>*. On the other hand, the absorption spectra analysis of 3CQD demonstrated
selectivity in the presence of Hg®". The colorimetric investigations demonstrated a significant visual

property analyses were further fluorescence spectrophotometers.

response specifically for Hg?*, enabling real-time analysis in the corresponding solutions. The presence
of other coexisting metal ions does not interfere with the detection of the target metal ion. The
fluorescence studies of the two probes revealed that 3CBD was highly fluorescent, which was
significantly quenched by Fe3*, upon excitation at 340 nm. Utilizing Job plot analyses, it was determined
that the complexes 3CBD—Hg** and 3CQD—-Hg?* exhibit a binding stoichiometry of 1: 1. The association
constants for these complexes were measured to be 7.48 x 10° and 9.12 x 10° M~ respectively,
indicating a strong association between both probes and their respective metal ions. Both chemosensors
exhibited comparable limits of detection (LOD) and limits of quantification (LOQ) of 0.03 uM and 0.10
uM, respectively. Reversible studies confirmed that only chemosensor 3CQD could serve as a secondary
sensor for EDTA. The theoretical studies calculated using Density Functional Theory (DFT) program at
B3LYP/6-31G** (Spartan '10 package) level.
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1. Introduction

Chemosensing techniques have been gaining momentum in
the last few decades in the field of analytical chemistry, due to
their simplicity and practicality in applications."™ The increase
in human population density over past decades, triggered the
technological advancement in many fields of science, to
respond to basic needs essential for survival.>® Consequently,
these technological advancements come at the cost of envi-
ronmental pollution, which leads to new diseases and many
other implications in the ecosystem.®"® Industrial revolutions
have been at the center of environmental pollution, especially in
the areas such as agriculture for synthetic fertilizers®***> and
pesticides,***** food technology,”*™” film industries®'*>° and
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many others.***"** In essence, the ever-increasing presence of
dissolved cations and anions in environmental streams, has
become the main source of primary consumption of toxic
substances. The presence of dissolved substances in environ-
mental stream have become a serious concern with regard to
health hazards, raising concerns even on United Nation
agendas, the sustainable development goals.”® Heavy metals in
particular, have been the primary concerns, due to their adverse
effects on the ecosystem, mostly on human wellbeing, once
their concentration is above threshold.***** Moreover, heavy
metals such as dissolved elemental mercury are some of the
most toxic cations to human physiological systems, with effects
which can lead to sudden deaths.***”

Furthermore, mercury(u) ion, a heavy metal, poses signif-
icant environmental toxicity,**** even at low concentrations,
mercury(u) can cause severe harm to both animals and the
human body, usually leading to damage to vital organs like
the brain and the potential development of chronic diseases,
ultimately resulting in death. Mercury(u) enters the environ-
ment through various means, including municipal and
industrial wastes, mining activities, battery usage, and fuel
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combustion.*® Given the evident threat mercury poses to the
environment, its ongoing monitoring, control, and detection
remain crucial areas of focus.**® Based on these consider-
ations, the development of highly sensitive and selective
colorimetric sensors for mercury(i) has gained significant
attention. These sensors offer advantages such as simplicity,
cost-effectiveness, and ease of operation compared to
conventional elemental analytical techniques like Atomic
Absorption Spectroscopy (AAS) and Inductive Coupled
Plasma-Mass Spectroscopy (ICP-MS).*'-*?

Notably, chemosensing probes that are capable of selectively
discriminating target analytes in aqueous solution are highly on
demand. To date, a few aqueous based sensing probes have
been reported in literature, however, most are haunted by cross-
detection problem.***” Thus, the detection of heavy metal
cations in aqueous environments are still high on the priority
list, due to their prospective of developing field-based sensing
kits,'**** which can be readily used anywhere, including rural
areas. In addition, aqueous solution-based sensing probes can
be essential in physiological systems, for monitoring the pres-
ence and concentration of specific cations of concern, and be
able to regulate them. The mode of cation detection is largely
based on the design of the molecular framework, normally via
several interaction mechanisms,***** which in many cases
characterized by functional groups*>® and coordination
interaction.”"*

Commonly used binding units in colorimetric chemosensors
include bipyridines, Schiff bases, guanidine, rhodamine dyes,
and azo dyes.**®” Among these, azo dyes have gained promi-
nence due to their straightforward synthesis, distinctive pho-
tophysical properties, and strong affinity for various heavy
metal ions.*®** In this study, we present the synthesis of two
novel coumarin-based azo probes, namely (E)-3-(benzo[d]thia-
zol-2-yldiazenyl)-4-hydroxy-2H-chromen-2-one (3CBD) which
exhibits selectivity for Hg®" under UV-Vis and Fe®" in

Scheme 1 Reaction scheme of 3CQD and 3CBD.
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fluorescence, and (E)-4-hydroxy-3-(quinolin-2-yldiazenyl)-2H-
chromen-2-one (3CQD) which specifically detects Hg>" in UV-
Vis, both in aqueous solutions.

2. Experiment
2.1 Materials

All reagents and solvents employed for the synthesis of the
chemosensors were procured from Sigma Aldrich and Merck
and utilized without further purification. Metal solutions of
0.01 M were prepared from nitrates salts (Ag*, Na*, AI**, Ca*",
Ba*', Fe*", Fe?*, cr’', Hg”', cu®, Co*', Cd**, zn*", Li*, Pb*>" and
Ni**). UV-Vis and emission spectroscopy measurements were
carried out using a PerkinElmer Lambda 35 UV-Vis spectrom-
eter and a PerkinElmer LS 45 fluorescent spectrometer. The
spectroscopic analyses were performed in a standard 3.0 ml
quartz cuvette with a path length of 1 cm. Fourier Transform
Infrared (FT-IR) data was collected using a PerkinElmer FT-IR
180 spectrometer, employing KBr discs. Proton Nuclear
Magnetic Resonance (‘H NMR) and Carbon-13 Nuclear
Magnetic Resonance (">C NMR) analyses were conducted on
a Bruker Advance DPX 400 Spectrometer operating at 400 MHz.
The NMR experiments were carried out in CDCl; and de-DMSO
solvents at room temperature, with tetramethyl silane (TMS)
serving as the internal reference.

2.2 Synthesis and characterization 3BD and 3QD

The chemosensors 3CBD and 3CQD were synthesized in a one-
step reaction according to Scheme 1. The procedure involved
the dropwise addition of their respective diazonium salt solu-
tions (0.01 mol) to a coupling 4-hydroxy coumarin solution (0.01
mol) in a methanol/water mixture (30 ml) under ice conditions
for 0.5 h with continuous stirring. The products were obtained
after the addition of concentrated ammonia solution,®**
filtered, and recrystallized in ethanol to yield a brown 3CBD

(0] (0] N
P~ NéN
OH

3CQD
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precipitate and an orange 3CQD precipitate. The orange solid of
3CBD was obtained in a yield of 92%. Its FT-IR vy, (cm™") was
found to be 3393 (O-H), 3302 (=C-H), 1683 (C=0), and 1601
(C=C) (Fig. S47). The "H NMR (CDCI3, 400 MHz) showed peaks
at 6 = 15.53 (s, OH), 9.11 (d, J = 8.46 Hz, 1H), 8.29 (d, J = 8.84,
1H), 8.24 (d, 1H), 7.84 (d, 1H), 7.73 (d, 1H), 7.69 (d, 1H), 7.38 (d,
1H), and 7.32 (d, 1H) (Fig. S1 and S37). The brown solid of 3CQD
was obtained in a yield of 92%. Its FT-IR v, (cm ') was found
to be 3393 (0O-H), 3302 (=C-H), 1683 (C=0), and 1601 (C=C)
(Fig. S51). The "H NMR (CDCl;, 400 MHz) showed peaks at § =
15.53 (s, OH), 9.11 (d, J = 8.46 Hz, 1H), 8.29 (d, J = 8.84, 1H),
8.24 (d, 1H), 7.84 (d, 1H), 7.73 (d, 1H), 7.69 (d, 1H), 7.38 (d, 1H),
and 7.32 (d, 1H) (Fig. S1 and S27).

3. Results and discussions

3.1 Effect of metal ions on photophysical properties of 3CBD
and 3CQD

3.1.1. UV vis absorption assay: metal screening/selectivity.
The binding affinity of both 3CQD and 3CBD towards various
cations, including Ag*, Na*, A, Ca®*, Ba>", Fe*', Fe’", Cr*",
Hg>*, cu®*, Cco**, cd*, zn**, Li", Pb**, and Ni*', was
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investigated using UV-Vis spectroscopy. In its unbound state,
3CQD exhibited an absorption band at 450 nm in an aqueous
ethanol solution, and significant spectral changes were
observed upon the addition of 0.5 molar equivalents of Hg>"
and Co”" (Fig. 1A). The incremental addition of Hg>" to the
3CQD solution led to a decrease in the absorption band at
450 nm and the appearance of two peaks at 397 nm and 506 nm
(Fig. 1B). This was accompanied by a noticeable colour change
from yellow to pink. However, no spectral or colour changes
were observed when aliquots of Co®>" were added to 3CQD
(Fig. 2).

In the case of 3CBD, its spectral pattern exhibited an
absorption band at 464 nm in an aqueous acetonitrile solution.
Upon the addition of 1 molar equivalence of Fe**, Cu®", and
Hg™", new absorbance peaks were observed at 464 nm, 468 nm,
and 537 nm, respectively (Fig. 3A). The gradual addition of Hg>*
to the 3CBD solution led to the actual formation of the
absorption band at 537 nm and the disappearance of the
initially existing 3CBD peak at 430 nm (Fig. 3B). This was
accompanied by a significant colour change from yellow to pink
(Fig. 4). The selectivity of Hg>" over the other competitive
cations is ascribed to the chemistry of the cationic mercury with
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Fig.1 (A) Absorption spectra changes of 3CQD (1.56 x 10~* M) in the presence of 0.5 molar equivalence of different metal ions in water : ethanol
(2:1); (B) absorption spectra of 3CQD (1.56 x 10~% M) in 2 : 1 water : ethanol solution upon stepwise addition of Hg®>* 4 molar equivalences.
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Fig.2 Colour changes observed in solution of 3CQD (1.56 x 10~ M) in the presence of 0.5 equivalence of different metal ions in 2 : 1 water :

ethanol solution. Metal ion concentration 0.01 M.
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Fig. 3 (A) Absorption spectra changes of 3CBD (1.58 x 10™* M) in the presence of 1 molar equivalence of different metal ions in water:
acetonitrile; (B) absorption spectra of 3CBD (1.58 x 107 M) in 1: 1 (water : acetonitrile) upon stepwise addition of 4 molar equivalence of Hg?*.

Fig.4 Colour changes observed in solution of 3CBD (1.58 x 10~* M), in the presence of 1 molar equivalence of different metalions in 1: 1 water :
acetonitrile. Metal ion concentration 0.01 M.

regard to its atomic size, the chemical environment influenced which is specific, sensitive and selective only to a particular

by the solvent used, in relation to the complementary receptors ~ cation, Hg”" in this case.

of the ligands, matching the binding/coordinating cavities, 3.1.2. Competition studies of 3CBD and 3CQD. To evaluate
the selectivity of 3CQD for Hg>" over other interfering metal
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Fig.5 Absorption responses of 3CQD (1.56 x 10~ M) upon addition of 0.5 molar equivalent of various metal ions (red bar) and upon addition of

0.5 molar equivalent of Hg?" with 0.5 molar equivalent other metal ions (blue bars). The experiments were performed in 2 : 1 water : ethanol
solution. Metal ion concentration 0.01 M.
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cations, competition experiments were conducted. A solution of
3CQD containing 0.5 molar equivalence of a competing ion was
prepared, and then 0.5 molar equivalence of Hg”" was added
while monitoring the absorbance. The results, shown in the bar
diagram (Fig. 5), indicate that none of the tested metal ions
interfered with the detection of Hg>".

Similar experiments were carried out to assess the selectivity
of 3CBD for Fe*", Cu®", and Hg”*. Surprisingly, none of the
competing metal ions, including Fe*" and Cu**, were able to
compete with Hg>" (Fig. 6). This suggests that even in the
presence of Fe*” or Cu®", 3CBD consistently forms a complex
with Hg>", making it a highly selective chemosensor for Hg”".

3.1.3. Determining binding stoichiometry, association
constant, and limit of detection. The binding stoichiometry and
association constants (K;) of the complexes 3CQD-Hg>" and
3CBD-Hg>" were determined using the Jobs plot with the
continuous variation method* and the Benesi-Hildebrand
equation. Absorbance was plotted against the molar fraction of
Hg>". The 3CQD-Hg>" complex exhibited maximum absorbance
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at a molar fraction of 0.5, indicating a 1:1 stoichiometry of
complex formation (Fig. 7A). To evaluate the association
constants (K;), the absorbance data were further analyzed. The
1/A, — A values, where A is the absorption intensity in the
presence of different concentrations of Hg”* and 4, is the
absorption intensity in the absence of Hg”>*, were plotted
against 1/Hg?". The data were fitted linearly to the Benesi-Hil-
debrand equation, from which the association constants (K,)
were obtained using the slope and intercept of the line (Fig. 7B).

Similarly, the 3CBD-Hg>* complex exhibited maximum
absorbance at a molar fraction of 0.5, indicating a 1:1 stoi-
chiometry of complex formation (Fig. 8A), and the association
constant for Hg”* binding with 3CBD was determined to be 7.43
x 10° M~ (Fig. 8B). Furthermore, the limits of detection (LOD)
and quantification (LOQ) for both probes in detecting Hg** were
determined using the same method. Surprisingly, both probes
exhibited similar LOD and LOQ values of 0.03 uM and 0.10 uM,
respectively.®®

Q &Y & (P 9@ W 4O D 0 KD Q N
@‘z»eo‘bvm‘z *'ocooé@&@v

E3CBD + metal + Hg

Fig. 6 Absorption responses of 3CBD (1.58 x 10~* M) upon addition of 1 molar equivalent of various metal ions (red bar) and upon addition of 1
molar equivalent of ng* with 1 molar equivalent other metal ions (blue bars). The experiments were performed in 1:1 water : acetonitrile

solution. Metal ion stock solutions of 0.01 M.
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Fig. 7 (A) A Job's plot for 3CQD—-Hg?* binding in 2 : 1 water : ethanol with a constant total concentration of 1.56 x 10™* M; (B) Benesie—Hil-
debrand plot of 1/(A, — A) against 1/[Hg?*] to calculate the binding constant between 3CQD and Hg>" and the limit of detection of 3CQD.
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Fig. 8 (A) A Job's plot for 3CBD—Hg?* binding in 1: 1 water : acetonitrile solution with a constant total concentration of 1.58 x 10~ % M; (B)
Benesie—Hildebrand plot of 1/(A, — A) against 1/[Hg?*] to calculate the binding constant between 3CBD and Hg?" as well as the limit of detection
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Fig. 9 Reversibility studies of the binding process between 3CQD-
Hg?* upon addition of 0.5 molar equivalence of EDTA.

3.1.4. Reversibility studies of 3CQB. The reversibility of
the binding mechanisms is a crucial aspect for the practical
application of the sensing system, as it enables reusability.
Therefore, the reversibility of 3CQD was examined in the
presence of ethylenediaminetetraacetic acid (EDTA), a versa-
tile ligand. Upon the addition of an excess of EDTA to the
solution of 3CQD-Hg?* complex in ethanol: water, the
absorbance of the complex reverted back to the original
absorbance of 3CQD (Fig. 9). This observed reversal could be
attributed to the dissociation of the carboxylic acid groups of
EDTA ligand, which release protons to protonate the lone pair
of electrons involved in Hg”" binding.®’

3.2 Fluorescence assay

In its unbound state, 3CBD exhibited a maximum emission at
410 nm (dex = 340 nm). To demonstrate its potential as

31546 | RSC Adv, 2023, 13, 31541-31553

a fluorescent chemosensor, a fluorescence titration was per-
formed by adding 3.5 molar equivalence of various cations
(Ang, Na*, A13+, Ca”, Ba”, F62+, Fe‘“, CI‘3+, Hg2+, Cu2+, C02+,
cd*, zn**, Li*, Pb*", and Ni**) to a solution of 3CBD in
ethanol: water at pH 7.0. Among the tested cations, only the
addition of Fe** resulted in a decrease in fluorescence emis-
sion (Fig. 10). Interestingly, 3CQD exhibited low emission
intensity in its ground state, indicating the absence of
a highly conjugated system due to the delocalization of the
lone pair of oxygen in the hydroxyl group attached to the
coumarin moiety. None of the tested metal ions were able to
activate the intramolecular charge transfer process (ICT) to
restore conjugation, which would trigger a “turn-on”
response in the emission spectra through chelation-enhanced
fluorescence of the molecule.®®

3.2.1. Fluorescence titration of 3CBD with Fe**. Fluores-
cence titration experiments were performed by progressively
adding Fe** ions, which resulted in a gradual decrease in the
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Fig. 10 Emission spectra of 3CBD (1.58 x 10~* M) in the presence of
the aliquot (6.67 x 10~* M) of different metal ions. The experiments
were conducted in ethanol : water solution, excited at 340 nm.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Emission spectra of 3CBD (1.58 x 10~* M) in the presence of the aliquot 60 molar equivalence of different metal ions.
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Fig. 12 Fluorescence responses of 3CBD (1.58 x 10~* M) upon addition of 127 molar equivalence of various metal ions (blue bar) and upon
addition of Fe3* with 127 molar equivalents of other metal ions (red bars) in water: acetonitrile solution. Metal ion stock solutions (0.01 M).

Excitation of 340 nm.

emission intensity at 412 nm, as depicted in Fig. 11. Subse-
quently, the limit of detection, limit of quantification, and the
association constants for the binding of Fe** with 3CBD were
calculated using the Benesi-Hildebrand equation based on the
obtained emission intensity results.

3.2.2. Competition studies. The selectivity of 3CBD towards
Fe®" was assessed through competition experiments. In these
experiments, 3.5 molar equivalents of various competing metal
ions were added to the probe, followed by the addition of an
equivalent amount of Fe**, while monitoring the changes in
emission. Among the tested cations (Na*, AI**, Ca®*, Ba>", Fe*",
Fe**, Cr’*, Hg™", Cu®*, Co**, €d**, Zn*", Li*, Pb*", and Ni*", only

© 2023 The Author(s). Published by the Royal Society of Chemistry

Ag") demonstrated significant interference with the detection of
Fe**, as illustrated in Fig. 12.

3.3 Computation calculations

To gain further insights into the electronic transitions, the struc-
tures of the uncomplexed forms (3CBD and 3CQD) as well as the
complexed forms (3CBD-Hg>" and 3CQD-Hg”") of the sensors
were calculated in gas phase using molecular mechanics (MMFF)
and semi empirical (PM3) methods with Spartan '10 molecular
modelling software. The calculations revealed a significant
decrease in the energy gap (HOMO-LUMO) from the uncom-
plexed to the complexed forms, as shown in Table 1. This decrease

RSC Adv, 2023, 13, 31541-31553 | 31547
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Table 1 The summary of HOMO-LUMO orbitals and the energy gaps of 3CBD and 3CQD in the absence and presence of and Hg?*

C=0 N=N c=0 Coumarin-N=N N=N-R C=N

bond bond (Mulliken charge) (Mulliken charge) (Mulliken charge) (Mulliken charge)
Compound length (A) length (A) (electrostatic charge) (electrostatic charge) (electrostatic charge) (electrostatic charge)
3CBD 1.212 1.227 —0.340, —0.525 +0.058, +0.015 +0.004, —0.026 —0.080, —0.385
SCBD—Hg2+ 1.264 1.247 —0.365, —0.717 +0.118, —0.046 +0.084, +0.100 +0.081, —0.641
3CQD 1.209 1.232 —0.308, —0.501 +0.040, +0.370 +0.001, —0.295 —0.041, —0.632
3CQD-Hg?" 1.242 1.250 —0.352, —0.827 +0.279, +0.285 +0.133, —0.142 +0.181, —0.660

in the energy gap is consistent with the observed spectral changes
of both 3CBD and 3CQD upon complexation with Hg>", indicating
a red shift.* The energy levels of both the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) decreased upon the addition of Hg>" to 3CBD and
3CQD, which is indicative of stable orbital sets (LUMO and
HOMO). The substantial reduction in the band gap between
HOMO and LUMO of the chemosensors is attributed to the
chemosensor-to-metal charge transfer between 3CBD and Hg?", as
well as 3CQD and Hg>". These observations suggest that the

3CB

3CQ

LUMO

HOMO

31548 | RSC Adv, 2023, 13, 31541-31553

complexation of both chemosensors with Hg>" results in the
formation of stable complexes.”

The chemical interaction between the chemosensors and Hg>*
induced structural distortion. For example, in the case of 3CBD,
complexation with Hg>" resulted in lengthening of the carbonyl
and azide bonds by 0.052 A and 0.020 A, respectively. A similar
trend was observed in 3CQD, with the carbonyl bond length
increasing by 0.0033 A and the azide bond length increasing by
0.018 A. These changes indicate the interaction of these functional
groups with Hg”*. The presence of electron-donating groups such

3CBD-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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as carbonyls in the complexation with cations affects the stability 3.4 Proposed binding mechanisms
of the complex. This increased electron-accepting property of the
system leads to a reduction in the band gap and consequently
a bathochromic effect or a decrease in emission.

Molecular modelling was utilized to validate the complexation
of 3CBD with Hg** (Fig. 13A) and 3CQD with Hg*" (Fig. 13B).
The presence of the azo functionality in both compounds

3CBD o
3CBD-Hg

Fig. 13 (A) 3CBD-Hg?* complex; (B) 3CQD-Hg?* both at PM3 level using Spartan ‘10 V1.10.

Table 2 Comparative study on the proposed method and the existing fluorogenic Hg?* probes

Method LOD References
3CBD 0.10 uM Current work
3CQD 0.10 uM Current work

T

7 AN

B0 N \O\ 9.45 x 107> uM 7
-

ﬁ | \/\/O/N\
1.1 x 107 uM 70
5/”\©)ku/”\ N

Q 9.45 x 107> uM 72

(FL&Q

Oy ™
L

4.89 uM 73
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creates a more electron-dense region that readily accommo-
dates the dication. Upon complexation, it is evident that the rest
of the molecule becomes electron-deficient as electrons are
drawn towards the Hg>" ion, particularly in the azo region. The
hydroxyl group in 3CBD and the carbonyl group in 3CQD both
contribute to the electron density in the complexation region,
facilitating the accommodation of Hg>" (Table 2).

4. Conclusion

In conclusion, the synthesis and characterization of two highly
stable and sensitive chemosensors, 3CBD and 3CQD, were
successfully performed. The sensitivity of these chemosensors
towards various cations was evaluated in ACN-H,O and EtOH-
H,O solutions. Remarkably, both chemosensors exhibited
a strong affinity for Hg** ions, which was confirmed through
UV-Vis titration and visual observations of a distinct colour
change from yellow to light pink. The binding stoichiometry of
the chemosensors with Hg>" was determined to be predomi-
nantly 1:1 using the job's plot method. The selectivity of the
chemosensors relies primarily on charge-charge interactions
and the involvement of electron-rich groups such as C=0 and
N=N in the binding process.
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