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Metabolomics and molecular networking approaches have expanded rapidly in the field of biological
sciences and involve the systematic identification, visualization, and high-throughput characterization of
bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The
popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with
a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four
medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the
biochemical characteristics of which remain unclear owing to the inherent complexity of their plant
metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in
inhibiting the enzymatic activity of a-amylase and a-glucosidase, respectively, followed by the
annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest
a-amylase inhibition with an 1Cso of 46.8 + 1.8 g mL~, whereas the water fraction of Terminalia
chebula fruits demonstrated the most significant a-glucosidase inhibition with an ICsq value of 1.07 +
0.01 ng mL™. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-
Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary
metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS)
platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160
individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively.
Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were
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Introduction

Despite considerable advancements in synthetic chemistry, the
search for new and innovative pharmaceuticals is perpetual,
and nature continues to be a crucial source of potential new
medicines. Recent instances of natural product drug develop-
ment have highlighted the use of genomic and metabolomics
methodologies to supplement conventional methods of natural
product research. Medicinal plants contain a range of bioactive
metabolites with therapeutic properties. Therefore, robust
techniques and technological advancements have been used to
explore phytochemistry.

The field of metabolomics has been rapidly growing over the
past two decades owing to its ability to provide information on
dozens to hundreds of metabolites in a single experiment. It
includes the identification and quantification of endogenous
and exogenous metabolites present in biological samples using
highly sensitive analytical tools and bioinformatics.* Significant
advancements in metabolomics have enhanced its applicability
to biomarker investigations, toxicological analysis, drug
discovery, and natural product chemistry.> The metabolic data
acquired in plant metabolomics using single analytical tools are
often insufficient and incomplete, which has led the scientific
community to utilize MS-based techniques such as GC-MS and
LC-MS.?> Complex MS/MS data acquired in metabolomics
experiments can be visualized and analyzed using a computer-
based approach, such as molecular networking. The Global
Natural Product Social Molecular Networking (GNPS) is an
online bioinformatics platform currently being utilized in
research to perform molecular networking. It tends to detect
possible similarities among all MS/MS spectra in the dataset
and extend annotation to unknown but closely related
metabolites.*?

Diabetes is an unassailable burden in low and high-income
countries.® Managing diabetes remains a significant challenge
for the scientific community since individuals with this condi-
tion are vulnerable to various health complications resulting in
the annual mortality of 1.5 million people.” Consequently,
promoting research on medicinal plants for the identification of
new alternative therapeutics for diabetes is currently relevant
due to favorable outcomes associated with plant-based thera-
peutics in terms of long-term safety, mode of action, and
metabolic activity.

Based on their ethnobotanical pharmaceutical properties,
four medicinal plants, namely C. operculatus, T. chebula, F.
lacor, and F. semicordata, were selected in this study. Although
these plants have a wide range of pharmacological applications,
this study intended to investigate the applicability of these
species and their related metabolites as anti-diabetic drugs. The
efficacy and toxicity of herbal formulations must be thoroughly
explored even though they are prepared and consumed locally.
Finding viable drug candidates from crude extracts is more
challenging due to the complexity of biological samples.?

Various classes of drugs like insulin, a-glucosidase inhibi-
tors (acarbose, miglitol, voglibose), biguanides (metformin,
phenformin), thiazolidinediones, sulfonylureas, dipeptidyl-
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peptidase-4 inhibitors, meglitinides, dopamine agonists have
currently being used to treat diabetes. However, these are re-
ported to have several side effects such as allergic reactions,
increased risk of bladder cancer, hypoglycemia, bloating, flat-
ulence, etc.® As a result, the issue demands the development of
new potent drugs with no or minimal human side effects.

The purpose of this research was to explore secondary
metabolites using a mass spectrometry-based metabolomics
approach with the GNPS platform and to evaluate the possible
enzyme inhibitory activity of C. operculatus, T. chebula, F. semi-
cordata, and F. lacor in targeting diabetes and its complications.

Materials and methods
Chemicals

Methanol, ethanol, ethyl acetate, dichloromethane, and hexane
were purchased from Thermo Fisher Scientific (India). Gallic
acid and quercetin were procured from HiMedia, an Indian
supplier. a-Glucosidase (Saccharomyces cerevisiae), 4-nitro-
phenyl-a-p-glucopyranoside (pNPG), pancreatic porcine o-
amylase (PPA), 2-chloro-4-nitrophenyl-a-p-maltotrioside
(CNPG3), and acarbose were ordered from Sigma-Aldrich
(Germany).

Medicinal plants

Medicinal plants were collected from four distinct locations in
Nepal, and the herbarium of each plant was submitted to the
Central Herbarium of the Central Botany Department at Trib-
huvan University, where voucher specimens were subsequently
registered (Table 1). The entire collection of plant samples was
shade-dried and pulverized into powder.

Methanolic extracts and fractionation

Methanolic extracts of four plants (Cleistocalyx operculatus,
Terminalia chebula, Ficus lacor, and Ficus semicordata) were
prepared using the cold percolation method, which involves the
absorption of the powder for a day in methanol before perco-
lation. The same procedure was repeated continuously for 3
days, and the collected solvent was dried at temperatures below
50 °C in the rotary evaporator. After 50 g of methanolic extracts
were dissolved in distilled water for the fractionation process,
the extracts were separated using the following solvents:
hexane, DCM, and ethyl acetate in order of polarity to obtain
four fractions from each plant. This procedure was performed
three times for each solvent.>®

Determination of polyphenolic and flavonoid contents

Total polyphenol and flavonoid contents (TPC and TFC) were
quantified using standard Folin-Ciocalteu and aluminum tri-
chloride methods.>*° Both reactions were performed in 200 pL
final volume, and absorbance was measured using a microplate
reader (SynergyLX, BioTek, Instruments, Inc., USA). Calibration
curves were generated by using various concentrations of gallic
acid and quercetin. The extract concentrations were calculated
and expressed as gallic acid and quercetin equivalents (mg GAE
per g and mg QE per g, respectively).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Medicinal plants used in the study and their ethnobotanical uses and reported chemical constituents
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Voucher specimen Medicinal plant Family Ethnobotanical uses Chemical constituents

TUCH 210018 Terminalia chebula Combretaceae It is used for antidiabetic, Gallic acid, digallic acid,
anticancer, cardioprotective, ellagic acid, caffeic acid,
neuroprotective, anti- pyragallol, rutin, quercetin,
inflammatory, and isoquercetin, chebulagic
antiarthritic activities.'® It is acid, chebulinic acid,
also used to treat dyspepsia, chebulic acid, eugenol,
piles, hepatosplenomegaly, terflavin A, terchebulin®
irritable bowel syndrome,
and heart failure."

TUCH 210017 Cleistocalyx operculatus Myrtaceae It is used for its cytotoxic,'> 2',4’-Dihydroxy-6-methoxy-
antitumor,? 3',5-dimethylchalcone and
antihyperglycemic,"* ursolic acid, 5,7,8,4"-
cardiotonic,"” and anti- tetrahydroxy-3"-5"-
inflammatory'® activities dimethoxyflavone-3-O-3-p-

galactopyranoside,
gossypetin-8, 3’-dimethyl
ether-3-O-B-p-galactoside,
myricetin-3"-methyl ether-3-
O-B-p-galactopyranoside,
myricetin-3"-methyl ether,
quercetin, kaempferol'®

TUCH 201022 Ficus lacor Moraceae The powdered ripe fruit is B-Sitosterol, lupeol, a-
utilized as an anti-diabetic."” amyrin, B-amyrin,

It is also used for wound stigmasterol, campesterol,
healing'® ulcers,'® hay fever, scutellarein glucoside,
dysentery, and stomach scutellarein, infection,
disorder."®*! sorbifolin, bergaptol, and
bergapten®>*
TUCH 201020 Ficus semicordata Moraceae For headaches and diarrhea, Catechin, rutin, quercetin,

Antioxidant assay

The antioxidant assay was performed as described previously in
literature.?® The reaction was performed using an equal volume
of plant extracts with 0.1 mM DPPH to maintain a final volume
of 200 pL. After 15 min of incubation at room temperature in
the dark, the absorbance was recorded at 517 nm. The
percentage scavenging activity was determined using the
following formula:

A, — A,
S0 2100
y X

o

% scavanging =

where A, = optical density of the negative control (50% DMSO),
and A, = optical density of the test or reference sample.

Assay of a-glucosidase inhibition

The a-glucosidase inhibition was performed by dissolving the
enzyme and substrate in a 50 mM phosphate buffer (pH 6.8).
The process was initiated by mixing 20 pL of plant extracts of

© 2023 The Author(s). Published by the Royal Society of Chemistry

dodecane, indole, linalool,
gallic acid and germacrene®

raw fruit juice and fruits are
employed. Fruits are also
used for visceral ulcers,
jaundice, colic pain, and
hepatitis. Externally, the
juice of the leaves is useful to
treat scabies. It has been
shown to have antioxidant,
antibacterial, and anticancer
properties.**

varying concentrations with 20 pL enzyme (0.2 units) along with
120 pL phosphate buffer followed by 10 min incubation at 37 °©
C. After incubation, pNPG substrate was added (0.7 mM) and
incubated for 15 min at the same temperature.*® The absor-
bance of the released p-nitrophenyl was measured at 405 nm
using Synergy LX (BioTek Instruments, Inc., USA). Each test was
performed in triplicate. The following formula was used to
calculate the % a-glucosidase inhibitory activity

A, — A

% inhibition = L% 100

o

where A, is the optical density of the negative control with 30%
DMSO and 4; is the optical density of the test/positive control.

Assay of a-amylase inhibition

The reaction was performed by dissolving the enzyme and
substrate in 50 mM phosphate-buffered saline (pH; 0.9% Nacl,
PH 7.0). The assay was inducted by mixing 20 puL plant extracts
at different concentrations and adding 80 pL PPA (1.5 units per
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mL) followed by 10 min incubation at 37 °C. After incubation,
CNPG3 (0.5 mM) was added and the cells were incubated for
15 min.*® The absorbance was measured at 405 nm using
a microplate reader (Synergy LX, BioTek Instruments, Inc.,
USA). The percentage of inhibition was determined using the
following formula:

Ao_Al

% inhibition = x 100

o
where 4, is the optical density of the negative control with 30%
DMSO and 4 is the optical density of the test/positive control.

Liquid chromatography-mass spectrometry analysis

LC-HRMS of the ethyl acetate and water fractions of 7. chebula
fruits, C. operculatus, and F. lacor, F. semicordata were analyzed at
the Sophisticated Analytical Instrument Facility (SAIF), CSIR-
Central Drug Research Institute, Lucknow (Lot No. 1607642300
and 1606747677). Compounds were identified using an Agilent
1200 series HPLC system (Agilent Technologies, Santa Clara, CA,
USA) equipped with an Agilent 6520 I Accurate-Mass Q-TOF LC/
MS system (Agilent Technologies, Santa Clara, CA, USA). An
Agilent 6520 Accurate-Mass Q-TOF Mass Spectrometer equipped
with a G1311A quaternary pump, G1329A autosampler, and
G1315D diode array detector (DAD) was used for further analysis.
The elution solvent comprised a mixture of acetonitrile, 5 mM
acetate buffer, and water flowing at 1.5 mL min ", following
a gradient from 5% to 30% acetonitrile over 10 minutes, reaching
80% acetonitrile over 32 minutes, and returning to the initial
conditions, with the column temperature consistently held at
30 °C throughout the process. For positive mode analysis of
electrospray ionization, the source gas temperature was main-
tained at 30 °C, with a gas flow rate of 11.01 L min ", and
a nebulizer pressure of 40 psi. VCap voltage was set to 3500 V,
fragmentor at 175 V, skimmer at 65.0 V, and Octapole RF peak at
750 V. The MS data acquisition was done in the range of 100-
2000 Da at a scan rate of 1.03 for T. chebula (fruit), C. operculatus,
F. lacor, and F. semichordata.®* Moreover, the molecular annota-
tion of the methanolic extract (AT1) and ethyl acetate fraction
(AT2) of T. chebula bark was completed in SIRIUS 5.6.3, using the
CSI: FingerID interface, where the efficiency of the predicted
molecular formula, functional group, and fragmentation pattern
was evaluated in terms of the Sirius score.*

HRMS and GNPS-based metabolomic analysis

Samples of AT1 and AT2 were prepared for MS/MS analysis by
dissolving them in HPLC-grade (1 mg mL '), and then 150 pL
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volume of each sample was transferred to an HPLC autosampler
vial. Metabolomic profiling of the two samples was performed
using an Agilent G6545B quadrupole time-of-flight (Q-TOF) mass
spectrometer (Agilent Technologies, Santa Clara, CA, USA)
equipped with a heated electrospray ion source (HESI). For
chromatographic separation, an Acquity® UPLC BEH reverse-
phase column C18 (150 mm x 2.1 mm, 1.7 pM) was used. The
mobile phase was acidified with 0.1% formic acid and comprised
of H,O (A) and acetonitrile (B). The composition of organic
solvent was 5% at 0.00-2.00 min, 20% at 5.00 min, 100% at
20.00 min, and back again to 5% at 23.00-25.00 min. The
injection volume of two samples was kept at 3 uL and a flow rate
of 0.5 mL min~" was maintained. MS/MS analysis was performed
using electrospray ionization (ESI) in positive ion mode. Spectral
hits were performed using a modified version of the method re-
ported by Bashir et al. (2021)** with an m/z range of 50-1200,
collision energies of 15 eV and 40 eV, and a full width at half
maximum (FWHM) of 3000. The RAW files were converted to
open-source ‘mzXML’ file format using the MSConvert tool of
ProteoWizard MSConvert Version 3 software. The files were
uploaded to the GNPS platform using WinSCP, the recom-
mended FTP client. The acquired MS> data were visualized using
a GNPS-based visualization following an established procedure
(accessed on January 17, 2023). The molecular networks gener-
ated were further exported from GNPS to Cytoscape in ‘.graphml’
format to enable customized visualization.

Data analysis

The collected data were processed using Gen5 Microplate
Software, followed by MS Excel. GraphPad Prism Software
version 8 was used for ICs, calculation and data were repre-
sented as a mean = standard error of the mean of triplicate. The
Mnova software ver. 12.0 (Mestrelab Research, Santiago de
Compostela, Spain) was used to process the raw data files ob-
tained from the HPLC-QTOF-MS.

Results
Estimation of polyphenol contents and antioxidant potential

Phytochemical and antioxidant assays of the medicinal plants
were performed in triplicate using methanolic extracts. The
total phenol, flavonoid, and antioxidant activities of the plants
are shown in Table 2. T. chebula (Bark and Fruit) showed the
highest TPC (164.534 + 3.70 mg GAE per g) and TFC values
(158.67 + 14.68 mg QE per g), respectively. Similarly, T. chebula
(bark) showed the lowest ICs, value of 5.144 + 0.06 pg mL ™" for

Table 2 Phytoconstituents and antioxidant activity of the methanol extracts of medicinal plants

TFC (mg QE per g) Antioxidant ICs, values (ug mL ")

Sample TPC (mg GAE per g)
Terminalia chebula (fruit) 161.56 + 0.39
Terminalia chebula (bark) 164.53 £ 3.70
Cleistocalyx operculatus 154.26 + 1.01
Ficus lacor 108.67 £ 6.37
Ficus semicordata 107.76 + 3.21

Quercetin (control) —

30668 | RSC Adv, 2023, 13, 30665-30679

158.67 + 14.68 34.82 +£1.12
115.34 £ 4.07 5.144 £ 0.06
69.17 £ 0.73 30.34 £ 1.12
131.16 + 7.75 130 £ 1.02
77.18 £ 0.73 22.76 = 0.19
— 6.3 £+ 1.00

© 2023 The Author(s). Published by the Royal Society of Chemistry
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DPPH radical scavenging activity as compared with the control
candidate, quercetin (6.3 + 1.0 ug mL ™).

Inhibition of diabetic targets a-amylase and a-glucosidase

Preliminary screening was performed using 500 pg mL " of the
extracts to determine the percentage inhibition of a-glucosidase
and o-amylase, respectively. Only fractions with more than 50%
inhibition were used to determine the ICs, values. As compared
to the positive control, acarbose (6.1 + 0.10 pg mL™"), and the
lowest ICs, value towards a-amylase inhibition was found for F.
semicordata in methanolic extract (46.8 & 1.8 ug mL™"). Simi-
larly, the lowest ICs, value for a-glucosidase inhibition was
observed for T. chebula (fruits) in aqueous fraction (1.07 £ 0.01
ug mL ") and for C. operculatus in methanolic extract (1.26 +
0.03 pg mL™Y). The results of a-glucosidase and a-amylase
inhibition by different plant fractions are shown in Table 3.

Liquid chromatography and molecular annotation

Compound identification and characterization were based on
the comparison of molecular masses, retention times, and MS
spectra via authentic databases (PubChem, and Dictionary of
Natural Products), as well as relevant literature. Because of the
potent anti-diabetic activity exhibited by the ethyl acetate and
water fractions of the four plants, the ethyl acetate and water
fractions were selected for further molecular annotation anal-
ysis. Thirty-two compounds were identified from the ethyl
acetate and water fraction of plant species, and the mass spectra
of these compounds showed peaks at m/z 357.0455 (ESI
Fig. S1f), 371.0619 (Fig. S2), 303.0140 (Fig. S3), 619.0970
(Fig. S4), 385.0788 (Fig. S5), 667.4054 (Fig. S6), 657.3627
(Fig. S7), 471.0197 (Fig. S8), 323.0762 (Fig. S9), 489.3570

(Fig. $10), 519.3313 (Fig. S11), 505.3529 (Fig. S12), 443.0978
(Fig. S13), 563.1549 (Fig. S14), 503.3363 (Fig. S15), 273.0759
(Fig. S16), 307.0815 (Fig. S17), 331.0463 (Fig. S18), 465.1023
(Fig. $19), 291.0859 (Fig. S20), 579.1504 (Fig. S21), 435.0578
(Fig. $22), 193.0705 (Fig. S23), 487.22 (Fig. S24), 467.0872
(Fig. $25), 649.1082 (Fig. S26), 393.0435 (Fig. S27), 279.1601
(Fig. S28), 387.1817 (Fig. $29), 293.1736 (Fig. $30), 331.2842

(Fig. S31), and 463.3794 (Fig. S32t) as protonated molecular
ions [M + H]" as shown in Table 4. In ESI figures, ESI (+) indi-
cates data collected in the positive mode of electrospray ioni-
zation mass spectrometry, centroid TIC and centroid MS
indicate the data are presented in centroid mode only where in
centroid mode each ion's mass and intensity are presented as
discrete values, while profile mode indicates the entire distri-
bution of intensity of ions recorded at each m/z value. Therefore,
centroid MS data offers simpler spectra and helps in the inter-
pretation of spectra. The annotated compounds and their
fragment's peak were compared with previous findings as listed
in Table 4. The structures of annotated molecules were drawn
by using http://www.chemspider.com/. The structures of the
annotated secondary metabolites are shown in Fig. 1.

GNPS-based metabolomic profiling

Based on the anti-diabetic activity of the methanol extract and
ethyl acetate fraction of the bark of T. chebula, a comprehensive

© 2023 The Author(s). Published by the Royal Society of Chemistry

Table 3 o-Amylase (A) and a-glucosidase (G) activities of various solvent fractions from medicinal plants®

Minimum inhibitory concentration, ICs, (ug mL™")

Ethyl acetate fr. Water fr.
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76.6 + 9.7
5.0 = 0.2

<50%
<50%

94.2 + 8.1
34.7 £ 1.1

240.1 + 3.4

<50%
<50%

355.2 £ 11.2

<50%

76.57 £ 0.5
<50%

<50%
<50%

33.78 £ 3.6

485.6 + 1.8

Ficus lacor

13,
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241.7 £ 4.3

344.23 + 1.03 (a-glucosidase)

46.3 + 3.07

6.1 £ 0.10 (a-amylase)

46.8 + 1.8

Ficus semicordata
¢ Extract: ext. Fraction: fr.

Acarbose
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and detailed phytochemical profile was investigated using MS/MS
and a GNPS-based metabolomics platform. A total of 205 and 160
individual ion species (MS/MS spectra) were present as nodes in
the network map for the methanol extract and the EA fraction,
respectively. Moreover, 22 compounds were tentatively identified
from T. chebula bark, belonging to various groups of phyto-
chemicals including phenolic compounds, diterpenoids-O-glyco-
sides, triterpenoids, triterpenoid-O-glycosides, flavonoids,
flavonoid-O-glycosides, fatty acids, and ceramides (Fig. 2, Table 5).

Molecular networking analysis involves representing each
metabolite as a node labeled with its m/z value. The metabolites
were then grouped into several clusters based on the similarity
of their fragmentation patterns, indicating similarities in their
core chemical structures.*® From molecular networking and
chart of categorized compounds (Fig. 2A), the major clusters
included diterpenoid-O-glycosides, triterpenoids (Fig. 2B),
flavonoid derivatives (Fig. 2C), and triterpenoid-O-glycosides
(Fig. 2D).

The terpenoid clusters, characterized by precursor ions at m/
z 471.3449, 485.3109, and 487.3403, were identified as arjunic
acid, B-p-galactopyranoside, and madecassic acid, respectively.
The flavonoids were annotated for m/z 291.0869 and 307.0736
clusters of epicatechin and epigallocatechin, respectively.
Moreover, the neutral loss of 152 Da from both precursor ions at
m/z 443.0947 and 459.0964 indicated the presence of gallate
substitution, suggesting the presence of catechin gallate and
epigallocatechin gallate. Finally, the networking of glycosylated
triterpenoids, namely arjunglucoside I and arjunetin, was
attributed to the presence of intense product ion signals at m/z
527.3334 and 511.3390, respectively, originating from the agly-
cone moiety. Additionally, the fragmentation patterns exhibited
prominent neutral losses of 162 Da owing to the elimination of
glucose. The various constituents observed in the two fractions
from T. chebula bark are listed in Table 5 along with their m/z
values in positive ion mode, retention times, MS/MS fragmen-
tation patterns, and molecular formulas.

Discussion

This study aimed to explore the secondary metabolites, TPC,
TFC, and antioxidant activities of extracts of C. operculatus, T.
chebula, F. semicordata, and F. lacor. In addition, the enzyme
inhibitory activities of the different fractions against a-gluco-
sidase and a-amylase were determined and are presented in
Tables 2 and 3. The results suggest that methanolic extracts,
ethyl acetate, and water fractions showed potent activity against
diabetic enzymes, which might be due to the synergistic effects
of different chemical constituents. The ethyl acetate fractions
exhibit a high flavonoid content, thereby attributing to their
role in the inhibition of enzymes.***” Previous studies have also
suggested that the methanolic, ethyl acetate, and water frac-
tions significantly inhibit the activities of both a-glucosidase
and o-amylase, respectively.**

High blood glucose levels lead to the formation of free
radicals that damage macromolecules within the cell and
increase the risk of complications related to hyperglycemia.
Thus, compounds with antioxidant properties can aid in the

RSC Adv, 2023, 13, 30665-30679 | 30671
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Exact Mass: 648.0915
EA fraction of C. operculatus

o
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20 o OH
lasiodiplodin 1-monopalmitin
Exact Mass: 292.1669 Exact Mass: 330.2764
EA, Water fraction of F. lacor Water, EA fraction of F. lacor

Fig. 1 Structure of annotated compounds from T. chebula, F. lacor, C. operculatus, and F. semicordata based on LC-HRMS.

mitigation of diabetes-related problems.*® Phenolic compounds form in natural products. The patterns of hydroxyl and
are an important class of secondary metabolites with antioxi- methoxyl groups on aryl rings A and B of flavonoids were re-
dants as well as antidiabetic activity. Polyphenols with several ported to be closely associated with their biological activity
hydroxyl groups can act as a source of hydrogen and electron towards enzymes. The hydroxylation of flavonoids at positions
donor to radicals to stabilize them and hence reduce oxidative C3, C6, C3’, and C4’ all exhibited better inhibitory activity on a-
stress which plays an important role in the mitigation of dia- glucosidase than the unhydroxylated forms at the correspond-
betes.** The introduction of hydroxyl and methoxyl groups to ing positions.* The antidiabetic effect of flavonoids also can be
different positions of flavonoid structures is the most common increased by replacing the hydroxyl groups at the C3 position
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Fig.2 Molecular networking and identification of natural compounds from the extract of T. chebula bark. (A) Molecular networking and chart of
categorized compounds in this study. (B) Zoomed-in molecular networking of triterpenoids and diterpenoids. (C) Zoomed-in molecular
networking of flavonoids and flavonoid-O-glycosides. (D) Zoomed-in molecular networking of triterpenoid-O-glycosides.

with various functional group moieties, such as methoxy, sugar-
like rhamnose, galloyl group, and chlorine atom. However, the
glycosyl and geranyl moieties at C7 can suppress the antidia-
betic effect. The presence of a C2=C3 double bond, along with
the C4-oxo group and aryl ring A, is essential for maintaining
the planar structure of flavonoids. Hydrogenation of this double
bond weakens the enzyme's inhibitory activity likely because
the planar molecular structure significantly influences the
binding conformation within the enzyme's active site
(Fig. 3).20%

Among four selected medicinal plants, T. chebula (bark) has
shown excellent free radical scavenging activity with ICs, values
of 5.144 4 0.06 pg mL~" corresponding to control quercetin (6.3
+ 1.00 ug mL ™). This may be due to the presence of high TPC
and TFC values in T. chebula. Such promising antioxidant
potential could be ascribed to ellagic acid (IC5, = 2.012 + 0.10
ng mL~Y), catechin (ICs, = 6.7 uM), epicatechin (IC5o = 6.8

© 2023 The Author(s). Published by the Royal Society of Chemistry

uM),* arjunglucoside I, quercitrin, flavogallonic acid,** barto-
genic acid and arjunic acid identified in the T. chebula bark
extracts.

Since a-glucosidase and a-amylase enzymes are thought to
be promising targets for the treatment of diabetes mellitus,** we
assessed the antidiabetic potential of four medicinal plants.
The promising inhibitory activity towards a-glucosidase was
observed in the water fraction of T. chebula (fruits) with an ICs,
value of 1.07 + 0.01 pg mL ™" followed by methanolic and water
fraction of C. operculatus (IC5o = 1.26 & 0.03 pug mL ™ and IC5, =
4.91 + 0.02 pg mL ™" respectively). Moreover, the water fraction
of F. semicordata (ICso = 5.0 + 0.2 ug mL™") and ethyl acetate
fraction of the T. chebula bark (ICso = 6.633 + 1.82 pg mL ™)
displayed excellent activity as compared to acarbose (positive
control, IC5, = 344.23 % 1.03 ug mL™"). The high polyphenol
and flavonoid contents in these plant extracts may be respon-
sible for their promising o-glucosidase-inhibitory activity.

RSC Adv, 2023, 13, 30665-30679 | 30673
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Table 5 Details of the identified constituents in T. chebula bark fractions using MS/MS and GNPS analysis

Methanol (AT1) and EA (AT2) extract of the bark of T. chebula

Comp. name RT m/z MS? fragmentation pattern Molecular formula ~ Exact mass  Fractions
Epigallocatechin 4.87  307.07 181.04, 139.03 Cy5H,40- 306.07 AT2
Epicatechin 7.42  291.09 165.05, 139.04, 123.04 Cy5H,,06 290.08 AT1, 2
Catechin 7.44 291.09 162.05, 139.04, 123.04 C15H1406¢ 290.08 AT1, 2
Procyanidin B2 7.50  579.15 409.09, 287.05, 247.06, 163.04, 127.04 C30H26012 578.14 AT1, 2
Arjunglucoside I 10.47  689.39 527.33, 185.04, 89.06 C36Hs5014 666.40 AT1, 2
Arjunetin 11.66  673.39 511.34, 185.04 C36Hs5010 650.40 AT1, 2
Sesamin 15.60 337.11 319.09, 289.08, 267.06, 203.08, 185.06, 135.04 C,0H 1506 354.11 AT1
Epigallocatechin gallate 7.93 459.09 139.04 Cs,H13011 458.08 AT2
Quercitrin 8.34  449.09 303.04, 85.02 Cy1H,0014 448.10 AT1, 2
Ellagic acid 8.53  303.01 291.09, 273.07, 153.02 C14HeOg 302.01 AT1
(—)-Catechin 3-gallate 8.93 443.09 273.08, 153.02, 123.04 C,H15010 442.09 AT1, 2
Epicatechin gallate 8.99  443.10 273.07, 139.04, 123.04 Cy,H15010 442.09 AT1, 2
Arjunic acid 11.66  471.35 407.33, 201.16, 107.08 C30oH,505 488.35 AT2
Madecassic acid 12.19 487.342 451.32, 187.15, 145.10, 119.08, 95.08 C30H4506 504.35 AT1, 2
B-p-Galactopyranoside 12.25  485.31 199.15, 171.12, 145.10, 105.07, 81.07 Cyp6H,4404 484.30 AT2
Phytosphingosine 15.38  318.30 282.28, 60.04 C15H3oNO; 317.29 AT1
Palmitic acid 17.38  402.36 283.26 Cy,H,506 402.30 AT1
Dibutyl phthalate 18.64  279.16 149.02, 121.03 C16H2,0,4 278.15 AT1, 2
Linolenic acid 20.53  279.23 109.10, 95.05, 81.07, 67.05 C15H300, 278.22 AT1, 2
Oleanolic acid 20.74 439.36 249.18, 217.19, 191.18, 95.08 C30H4503 456.36 AT1
Dioctyl phthalate 22.52  391.28 167.03, 149.02, 71.08, 57.07 Cy4H350, 390.28 AT1
Erucamide 23.80 675.67 338.34, 321.31 Cy,H,43NO 337.33 AT1, 2

Fig. 3 Structure—activity relationship of a-glucosidase inhibitory
activity of flavonoids.

Previously, a-glucosidase inhibitory activity was observed with
an ICs, value of 38.2 ug mL ™" (methanolic extract), and 9.0 pg
mL " (water extract) for T. chebula, 68.2 + 3.4 ug mL™" for C.
operculatus,"* 4.226 + 0.43 pg mL " (ethyl acetate) for F.
semicordata.®

Similarly, the significant a-amylase inhibitory activity was
shown by the methanolic extract of F. semicordata (ICs5, = 46.8 +
1.8 pg mL ") followed by water and methanolic extract of C.
operculatus (53.2 + 1.0 ug mL™" and 62.49 + 1.89 pg mL™"
respectively) corresponding positive control acarbose (6.1 +
0.10 pg mL~Y). In previous work, a-amylase inhibitory activity
was observed in ethyl acetate fraction of F. semicordata and T.
chebula extract with ICs, values of 4.861 + 0.41 and 15.1 + 1.4 pg
mL ™" respectively.*>* The variation between our results and the
literature data might be attributed to various factors, including
the degree of ripeness at the time of harvesting, environmental
factors, processing, and storage.*

The MS-based metabolomics approach was employed in our
study to putatively identify all the secondary metabolites

30674 | RSC Adv, 2023, 13, 30665-30679

present in the plant extracts responsible for the anti-diabetic
activity. Most of the compounds annotated in our study were
similar to those in the literature; the ethyl acetate extract of T.
chebula showed a base peak at 357.0455 [M + H]" and fragment
peaks at 339, 321, 293, and 203 corresponding to chebulic
acid.*® It has been reported as a potent compound for prevent-
ing the vascular complications associated with diabetes.*” The
base peak at 371.0619, with fragment peaks at 191, 163, and
145, was predicted to be 2-O-caffeoyl hydroxy citric acid, which
correlates with the fragmentation pattern reported in the liter-
ature.®® The molecular formula C;,H¢Og, with a base peak of
303.0140, has been proposed to be ellagic acid based on
a comparative analysis of the spectral findings of Wu et al.>* As
per the existing literature, ellagic acid demonstrates anti-
diabetic effects by targeting the B-cells in the pancreas.®* Simi-
larly, [M + H]" at m/z 619.0970 along with a fragment peak at 153
was annotated as trigalloevaloglucosan IX based on the results
of Abu-Reidah et al.* Likewise, molecular ion [M + H]" at m/z
385.07 was annotated as 2-O-feruloyl hydroxy citric acid with
fragment peaks at 385, 209, and 195. The spectral data were
consistent with the literature.*®

A molecular ion at m/z 667.4054 [M + H|" detected at reten-
tion time 10.33 min was identified as arjunglucoside I in T.
chebula bark, isolated previously from 7. arjuna.** Previous
study indicates that arjunglucoside I exhibits potential antidi-
abetic effects against the a-glucosidase enzyme (ICs5, = 1074 +
32 pM).* Similarly, a protonated ion detected at m/z 657.3627
[M + H]" was tentatively identified as galloylterminolic acid
which was reported already in 7. albida.*® Another molecular ion
at m/z [M + H]" was identified as flavogallonic acid, and was
consistent with the literature found in the negative ESI-mode of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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T. chebula.”” The results of HPLC-MS analysis of T. chebula
(fruits) showed a protonated ion with m/z 323.0762 [M + H]" and
sodiated ion as adduct at m/z 345.0580 [M + Na]'. Based on the
literature, this compound was putatively identified as leuco-
delphidin.*® Arjunolic acid, previously identified in the T.
arjuna,” was also identified in (+)-ESI-MS/MS analysis at m/z
489.3570 [M + H]'. Against a-glucosidase isolated from S. cer-
evisiae, arjunolic acid demonstrated anti-diabetic activity (ICs,
= 18.63 £ 0.32 g mL™').*° In addition, bartogenic acid was
annotated for a molecular ion at m/z 519.3313 [M + H]|'. This
compound has demonstrated anti-diabetic properties against
intestinal-glucosidase (ICs, = 168.09 pg mL™').* Another
molecular ion at m/z 505.3529 [M + H]" was identified as
arjungenin, previously reported by Honda and coworkers.> It
has been reported to show moderate antibacterial activity and
beta-glucuronidase inhibitor activity.®»*® From T. chebula bark
extract, a molecular ion with m/z 443.0978 [M + H]" was tenta-
tively annotated as (—)-epicatechin-3-O-gallate which was
already reported by Singh et al.** Based on a literature survey,
gambiriin B1 was identified as a molecular ion with m/z
563.1549 [M + H]" in the T. chebula bark.®® Similarly, rotundioic
acid was isolated and identified.**®” These data are consistent
with our results, molecular ion peaks at 503.3363 [M + H]" for
rotundioic acid and 273.0759 [M + H]" for butin. From the data
obtained from the extract of C. operculatus and T. chebula bark,
a protonated ion was detected at m/z 307.0815 and putatively
identified as epigallocatechin or gallocatechin, which is similar
to the study carried out by Lee and colleagues.®® Its efficacy for
the treatment of prostate cancer is being currently studied and
completed in phase 2 trial.®* It has been reported that epi-
gallocatechin modifies glucose and lipid metabolism in rat
hepatoma cell line H4IIE and notably enhances glucose toler-
ance in diabetic rodents.”

The compound exhibiting a base peak of 465.1023 and
fragment peaks at 303 and 137 was annotated as isoquercitrin
sourced from F. lacor.”* Isoquercitrin is currently being studied
in a phase 2 clinical trial for its efficacy on Coronavirus Disease
2019.”> Moreover, it has been reported to demonstrate
a prophylactic impact on diabetes mellitus.” Similarly, from F.
semicordata and T. chebula (bark) molecular ions at m/z
579.1504 and at m/z 291.0866 were annotated as procyanidin B2
and catechin based on the result analysis.”*” In vitro-glucosi-
dase activity showed that procyanidin B2 could be used to
reduce blood glucose levels.” Whereas, in the a-glucosidase
inhibitory assay, it has been found that catechin has possessed
significant antidiabetic activity (ICso = 87.55 & 2.23 ug mL™").””
We annotated quinic acid from F. semicordata and F. lacor with
a protonated ion at m/z 193.0705 which was similar to those
reported in the literature.” A previous study showed that quinic
acid potentially stimulates insulin secretion and enhances
glucose tolerance.” Hydroxyl-6-gingerol-O-B-p-glucuronide was
annotated for a protonated ion with m/z 487.22 from the extract
of F. semicordata with comparison to the spectral results from
Zeng et al.*® The compound with molecular ion at m/z 435.0578
[M + H]" was tentatively identified as ellagic acid-O-pentoside
from C. operculatus based on the results obtained by Di Stefano
and co-workers.*" Similarly, a compound with protonated ion at
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m/z 467.0872 [M + H]" was identified as 3-O-galloylnorbergenin,
which was previously reported.** Moreover, molecular ions at m/
Z 649.1082 and 393.0435 were annotated as 3,4,5-tri-O-galloyl-
quinic acid and tri-O-methoxyellagic acid, respectively from C.
operculatus, as reported by Bindra et al. and Maldini et al.®** A
molecular ion at m/z 279.1601 [M + H]" and sodiated ion as
adduct at m/z 301.1 [M + Na]" was tentatively annotated as butyl
isobutyl phthalate from C. operculatus, T. chebula, and F. lacor.
This was previously reported by Bu et al. through LC/MS anal-
ysis, which was further supported by ESI-MS and NMR anal-
ysis.** It was observed that butyl isobutyl phthalate exhibits
a hypoglycemic effect when tested in living organisms, and
therefore, acts as a non-competitive inhibitor of a-glucosidase
(ICso = 10.6 + 1.1 pg mL~").** Likewise, molecular ion at m/z
387.1817 with retention time at 17.45 min was tentatively
annotated as eudesmin from the water fraction of F. lacor and
was already reported.® Furthermore, based on literature data,
a molecular ion at m/z of 293.1736 [M + H|" was annotated as
lasiodiplodin,® while the compound analyzed in the ESI-MS (+)
mode molecular ion at m/z 331.2842 was tentatively identified as
1-monopalmitin.®” Similarly, molecular ion at m/z 463.3794 was
putatively identified as a-tocospiro B from the water fraction of
F. lacor, as per the analysis performed by Chiang et al.*®

GNPS-based molecular networking can be performed to
validate manually annotated compounds and aid in the explo-
ration of secondary metabolite derivatives according to simi-
larities in the core chemical structure.*® Hence, this approach
improves the visualization of the chemical constituents present
in biological samples, forming clusters in molecular
networking. In this study, the methanolic extract and EA frac-
tion of the bark of T. chebula was subjected to comprehensive
phytochemical profiling using MS/MS and a GNPS-based
metabolomics platform, resulting in the identification of 22
compounds based on GNPS analysis and previous reports.
Among these, 11 compounds, including linolenic acid, phytos-
phingosine, sesamin, dioctyl phthalate, palmitic acid, oleanolic
acid, quercitrin, epigallocatechin gallate, arjunic acid, B-p-gal-
actopyranoside, madecassic acid, and arjunetin, were anno-
tated based on GNPS that were not identified by manual
annotation. These compounds were categorized into three
distinct molecular network clusters: diterpenoid-O-glycosides,
triterpenoids, flavonoid derivatives, and triterpenoid-O-glyco-
sides clusters (Fig. 2B-D). All compounds were previously re-
ported to be isolated from T. chebula, indicating that further
investigation is necessary for the unknown nodes and edges of
T. chebula.

Conclusion

Since ancient times, many traditional plants have been used by
various ethnic groups to manage diabetes. Consequently, their
scientific exploration is necessary. Four ethnically selected plants
C. operculatus, T. chebula, F. lacor, and F. semicordata, exhibited
significant enzyme inhibitory activity. In addition, LC/MS-based
metabolomics and GNPS-based molecular networking were
employed to explore and correlate secondary metabolites with the
observed activities in these medicinal plants. Metabolic profiling
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revealed the presence of different classes of bioactive metabolites,
including phenolic compounds, diterpenoids-O-glycosides, tri-
terpenoids, triterpenoid-O-glycosides, flavonoids, flavonoid-O-
glycosides, fatty acids, and ceramides. Additional investigation is
recommended to isolate and identify potential inhibitors from the
active fractions of plant extracts to develop a therapeutic candi-
date for diabetes and to explore the underlying mechanisms
responsible for the observed anti-diabetic action.
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