Open Access Article. Published on 13 July 2023. Downloaded on 1/23/2026 2:43:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

#® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: RSC Adv., 2023, 13, 21231

Received 31st May 2023
Accepted 7th July 2023

DOI: 10.1039/d3ra03651k

rsc.li/rsc-advances

Microwave-accelerated cross-dehydrogenative-
coupling (CDC) of N-(quinolin-8-yl)amides with
acetone/acetonitrile under metal-free conditions¥

Chao Zhou, Yunwei Liu, Qi Luo, Yicheng Zhang,* Jingwen Zhou, Haoyu Zhang
and Jie Liu@*

A highly selective remote C(sp®)—H acetonation of N-(quinolin-8-yllamide scaffolds at the C5-position
under microwave irradiation has been developed. In the absence of a transition-metal-catalyst, benzoyl
peroxide (BPO)-promoted cross-dehydrogenation coupling (CDC) of N-(quinolin-8-yllamides with
acetone/acetonitrile occurred smoothly to generate the corresponding 5-acetonated/acetonitriled N-
(quinolin-8-yl)amides in good yields. The transformation is operationally simple, rapid, easily scaled-up
to the gram scale, and shows a broad substrate scope.

Quinolines play an important role as nitrogen-containing
heterocyclic compounds in natural products, pharmaceuticals
and pesticides (Fig. 1).* As a particular member of the quinoline
compounds, N-(quinolin-8-yl)benzamide has an irreplaceable
role in the C-H bond activation reaction system as a classical
bidentate directing group or as a ligand auxiliary.> In recent
years, brilliant achievements have been made in C-H bond
functionalization reactions accomplished at the C-2,* C-3,* C-4,°
C-5 and C-8 (ref. 6) positions of quinoline and its derivatives. It
is worth mentioning that the C-5 position functionalization
reactions of N-(quinolin-8-yl)benzamide have a certain medic-
inal value with high activity and involve more types of reactions,
such as amidation,” sulfonylation,® cyanoalkoxylation,® allyla-
tion," alkylation,' halogenation'* and so on."

In the past decades, with the boom in the area of inert C-H
bond activation, cross-dehydrogenation coupling (CDC)
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Fig. 1 Representative drug candidates and natural products with
quinoline skeleton.
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reactions involving inert C-H bond activation have been
developed,™ which was pioneered by Li in 2014."* Currently,
their group has not only constructed intermolecular C-C bond
reactions by CDC of inert C(sp*)-H bonds,* but also achieved
CDC reactions of C(sp®)-H heteroarylation between alkanes and
heteroarenes by visible light irradiation.'” Subsequently, CDC-
type reactions have been widely used and rapidly developed
(Scheme 1). Among the CDC reactions, there are even rarer
dehydro-coupling reactions in which acetonitrile/acetone was
used as a reaction substrate, for example, oxidant-promoted
CDC reactions reported by Kianmehr,'® and Tan et al.*’
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Scheme 1 The C-5 position functionalization reactions of N-(quino-
lin-8-yl)lamide.
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Table 1 Optimization of the reaction conditions®

o ° o q

N N )k Oxidant (1.5 equiv.) N IS)
H | Me™ "Me  mwi, time, T °C H |
Ny Ny

1a 2a 3a

Entry Oxidant Time (min) T (°C) Yield® (%)
1 BPO 20 100 62

2 H,0, 20 100 n.r.

3 DTBP 20 100 n.r.

4 LPO 20 100 Trace
5 TBHP 20 100 n.r.

6 BPO (1.0 equiv.) 20 100 41

7 BPO (2.0 equiv.) 20 100 71

8 BPO (2.5 equiv.) 20 100 73

9 BPO (3.0 equiv.) 20 100 72

10 BPO (2.0 equiv.) 30 100 69

11 BPO (2.0 equiv.) 15 100 60

12 BPO (2.0 equiv.) 10 100 47

13 BPO (2.0 equiv.) 20 110 70

14 BPO (2.0 equiv.) 20 120 71

15 BPO (2.0 equiv.) 20 90 40

16 BPO (2.0 equiv.) 20 80 32

17 BPO (2.0 equiv.) 12 (h) 100 18°

“ Reaction conditions: N-(quinolin-8-yl)benzamide (1a, 0.10 mmol),
BPO, acetone (2a, 3.0 mL) under microwave irradiation. ” Isolated
yield. “In an oil bath at 100 °C for 12 h [DTBP = di-tert-butyl
peroxide; TBHP = tert-butyl hydroperoxide; LPO = dilauroyl peroxide;
n.r. = no reaction].

Since microwave contain many advantages such as short
reaction time and environmental friendliness which have been
used in organic reactions, it has already attracted the attention
of chemists and achieved remarkable results in the field of C-H
bond activation.”® In the past few years, microwave-facilitated
organic synthesis has developed into one of the most power-
ful tools in organic chemistry. Herein we wish to report
a microwave-accelerated cross-dehydrogenative-coupling (CDC)
of N-(quinolin-8-ylJamides with acetone/acetonitrile in the
presence of benzoyl peroxide (BPO) as oxidant under metal-free
conditions, delivering good yields of C-5-acetonated N-
(quinolin-8-yl)amides as products.

We initiated our study with microwave irradiation of N-
(quinolin-8-yl)benzamide (1a) and acetone (2a) in the presence
of benzoyl peroxide (BPO). After 20 min at 100 °C, the desired
acetonation product 3a was obtained in 62% yield (Table 1,
entry 1). The reaction did not proceed with other oxidants such
as H,0,, DTBP, TBHP and LPO (entries 2-5). Screening of
oxidant loading indicated that 2.0 equiv. is the most effective
choice for the reaction, afforded the product 3a in 71% yield
(entries 6-9). Investigation of the reaction time and temperature
gave no obvious improvement in the product yield of 3a (entries
10-16). Interestingly, when the model reaction was carried out
in an oil bath at 100 °C for 12 h, only 18% yield of 3a was ob-
tained (entry 17). For detailed optimization of reaction condi-
tions, please see the (Tables S1-S4 in ESI).}

Under optimal reaction conditions, we next investigated the
substrate scope of acetonation reaction (Scheme 2). A variety of
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Scheme 2 The substrates scope of N-(quinolin-8-yl)arylamides
[reaction conditions: 1 (0.10 mmol), BPO (2.0 equiv.) and acetone (2a,
3.0 mL) under microwave irradiation at 100 °C for 20 min; isolated
yield of the product].

N-(quinolin-8-yl)arylamides with para-substituents, such as Me,
MeO, ‘Bu, CO,Me, F, Cl and Br groups, in differed electronic
properties are well tolerated (3a-3h), affording the desired C-5-
acetonated N-(quinolin-8-yl)arylamides in good yields. Some
meta-substituted groups including Me, F and CF; on the
benzene ring in N-(quinolin-8-yl)arylamides were examined,
and exhibited good reactivity in the reaction, providing the
corresponding products (3i-3k) in 46-53% yields. When
disubstituted N-(quinolin-8-yl)arylamide 11 was employed in
this transformation, the corresponding product 31 was afforded
in 40% yield. In addition, the reactions with an electron-
donating group (Me or OMe) or an electron-withdrawing
group (F or Cl) at the C2-position of the aryl rings generated
the products 3m-3p with 49-71% yields. Notably, N-(quinolin-8-
yl)-1-naphthamide reacted with acetone, affording the desired
product 3q in 43% yield.

It is gratifying that the aliphatic-derived N-(quinolin-8-yl)
amides reacted acetone under optimal conditions, indicating
that it is not affected by the length of the aliphatic carbon chain,
and the corresponding products 3r-3w were isolated in 69-81%
yields (Scheme 3). It is also worth mentioning that the presence
of a methyl substituent at the C-6 or C-3 position of the quin-
oline ring could also formed the desired products (3x and 3y) in
54% and 69%, respectively. Additionally, cyclopropanamide
and cyclohexanamide also participated in the reaction and the
acetonation products 3z and 3aa could be obtained in good
yields (71% and 83%, respectively). It should be noted that N-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 The substrates scope of N-(quinolin-8-yl)aliphatic amides
and N-(quinolin-8-yl)heteroarylamides [reaction conditions: 1 (0.10
mmol), BPO (2.0 equiv.) and acetone (2a, 3.0 mL) under microwave
irradiation at 100 °C for 20 min; isolated yield of the product].

(quinolin-8-yl)nicotinamide 1ab underwent the reaction
smoothly with 2a to give the corresponding product 3ab in 60%
yield. Encouragingly, when the quinoline moiety was replaced
with naphthalene one, the obtained compounds were also

compatible with this reaction, giving the anticipated products

H M
i o BPO (2.0 equiv.) it | ‘
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N * M )kM - > N o
H | €™ "Me  Mwi, 20 min, 100 °C H |
Ny N
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Scheme 4 Gram-scale reaction.
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Scheme 5 The substrates scope of N-(quinolin-8-yl)arylamides and

N-(quinolin-8-yl)aliphaticamides [reaction conditions: 1 (0.10 mmol),
BPO (2.0 equiv.) and acetonitrile (3.0 mL) under microwave irradiation
at 100 °C for 20 min; isolated yield of the product].
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3ac-3ae in 59-65% yields. Moreover, the optimized conditions
were also suitable for the reaction of N-(5-bromonaphthalen-1-
yl)picolinamide with acetone (2a), and the expected product
(3af) was formed in 43% yield. Furthermore, when 1.0 g of 1a
was subjected to the reaction, the targeted product 3a was ob-
tained in 78% yield (Scheme 4).

Remarkably, the reaction system was also capable of cyano-
methylation reaction under optimal conditions, the results of
which were summarized in Scheme 5. We were delighted to
observe the acetonitrile was good coupling partner, enabling
the production of 4a in 71% yield. Additionally, this reaction
can tolerate functional groups such as N-(quinolin-8-yl)
arylamides with para-Me (1b) and aliphatic-derived N-
(quinolin-8-yl)amides can afford the corresponding products in
66%, 75%, and 67% yield, respectively.

To gain insight into the reaction mechanism, the radical
trapped experiments were conducted (Scheme 6). When
a radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) or butylated hydroxytoluene (BHT) was added, no
desired product was detected under the standard conditions,
suggesting that a free radical was involved in this trans-
formation. The TEMPO adduct 5 and BHT adduct 6 were
detected by HRMS analysis (ESI).

Based on the control experiment, a plausible mechanism is
proposed as in Scheme 7. First, the benzoate radical A is
generated as a result of microwave irradiation from BPO, and it
then captures a hydrogen atom from the substrate acetone 2a to
form the carbon radical B, which is trapped by TEMPO or BHT
to its adducts 5 or 6. The obtained acetone radical B reacts with

substrate  N-(quinolin-8-yl)benzamide 1a to afford an

PhCOOH

o ‘Me
Y °
Ny

3a

HRMS Detected !

Scheme 7 The proposed mechanism.
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intermediate C, which further reacts with benzoate radical A to
generate the final product 3a.

Conclusions

In summary, we have developed a microwave-accelerated cross-
dehydrogenative-coupling (CDC) of N-(quinolin-8-yl)amides
with acetone/acetonitrile under metal-free conditions. In the
presence of benzoyl peroxide (BPO) as promoter, a cross-
dehydrogenation coupling (CDC) of N-(quinolin-8-yl)amides
with acetone underwent smoothly to generate the correspond-
ing 5-acetonated/acetonitriled N-(quinolin-8-yl)amides in good
yields. Compared with the traditional strategy for C-5 position
coupling reactions, this reaction provides an environmentally
friendly, efficient, and convenient access to C-5 position func-
tionalization of N-(quinolin-8-yl)amides. Moreover, a plausible
reaction mechanism is proposed based on a radical trapped
experiment and HRMS studies. Further attempts to apply
microwave acceleration coupling reactions are -currently
underway in our laboratory.
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