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i2WO6/rGO/SnFe2O4

heterojunction nanocomposites and their
photocatalytic efficiency towards 4-nitrophenol
reduction†

Vani Narayanan and Badal Kumar Mandal *

In this study, tin ferrite (SnFe2O4-spinel) and bismuth tungstate (Bi2WO6) encapsulated on reduced

graphene oxide (rGO) were synthesised using the hydrothermal method. This heterostructure

nanocomposite was characterised using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-

visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), FT-

Raman Spectroscopy (FT-Raman) and X-ray photoelectron spectroscopy (XPS) methods. The powder

XRD results showed an increase in lattice parameters and a decrease in size when SnFe2O4 and Bi2WO6

were encapsulated on rGO. The catalytic activity of the type-II ternary Bi2WO6/rGO/SnFe2O4

heterojunction nanocomposite was checked using a model reduction reaction of 4-nitrophenol (4-NP)

to 4-aminophenol (4-AP) in the presence of NaBH4 as the reducing agent under light exposure. Bi2WO6/

rGO/SnFe2O4 showed better catalytic efficiency than the individual components like SnFe2O4, rGO/

SnFe2O4, Bi2WO6, rGO/Bi2WO6 and Bi2WO6/SnFe2O4 nanocomposites. Thus, the type-II ternary Bi2WO6/

rGO/SnFe2O4 heterojunction nanocatalyst with better surface area and lower surface energy could be

considered as a promising UV-light sensitive catalyst for the detoxification of various environmental

pollutants and for other environmental remediations.
1 Introduction

Water pollution is one of the top ten problems faced by us in
this century. Industrialization was one of the important things
that happened to our world as a part of development. Due to
industrialization, the growth of industries and factories rapidly
increased. Among all the industries textile, pharmaceuticals,
and agro-chemical industries are dominant and evident every-
where. As these industries are greater in number, the amount of
effluents coming out into the environment is also very large.
Due to their poisonous and carcinogenic nature, the excessive
presence of organic pollutants such as synthetic dyes, benzene
hydrocarbons, sulfonamides, polychlorinated biphenyls (PCBs),
phthalates, and aromatic nitro compounds poses major health
risks.1 One of the major pollutants among them is para nitro-
phenol (4-NP), which is majorly found in industrial effluents.2

Numerous products, including synthetic colours, rubber,
fungicides, pesticides, herbicides, and insecticides, are made
using 4-nitrophenol (4-NP) and its derivatives.3 Many conven-
tional methods are used for the removal of these phenolic
d Sciences, Vellore Institute of Technology,

andal@vit.ac.in

tion (ESI) available. See DOI:

2629
compounds, but these methods are not so efficient and cost-
effective. The reduction of 4-NP to para-amino phenol (4-AP)
by NaBH4 is one of the most efficient and effective methods
reported so far. The catalyst would speed up the reduction of 4-
NP to 4-AP using NaBH4.4–6

The reduction of 4-NP using ferrites has gained much
attention in the past few years. Spinel ferrites are composed of
transition metal ions and Fe ions, which are distributed on the
divalent (tetrahedral) and trivalent (octahedral) sites of the
lattice structure, respectively. Their typical formula is MFe2O4

(M: Fe, Co, Ni, Mn, etc.). Spinel ferrites have been investigated
for a variety of applications, including magnetic recording,
microwave devices, and biological materials because of their
enhanced magnetic and electrical properties.7 Recently spinel
ferrites such as Fe3O4,8,9 CoFe2O4,10 ZnFe2O4,11 MnFe2O4,12 and
NiFe2O4

13 have been effectively used for the removal of
contaminants from water. Among different ferrites, tin-based
ferrites have been focused more. SnFe2O4, which has a face-
centered cubic lattice structure, is a typical inverse-spinel. In
SnFe2O4, Fe

3+ ions are uniformly distributed on the tetrahedron
and octahedron sites, whereas Sn2+ ions occupy the octahedral
sites.14 SnFe2O4 has been reported less so far in 4-nitrophenol
reduction studies. SnFe2O4 is a typical p-type semiconductor.15

The nanostructure of spinel ferrites completely depends on the
synthesis conditions used. The crystallinity and magnetic
© 2023 The Author(s). Published by the Royal Society of Chemistry
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properties of ferrites play a crucial role in their catalytic activi-
ties which could be tuned via compositing or doping.16

One of the simplest Aurivillius oxides that can be easily
doped is Bi2WO6 having a layered structure with wide physical
characteristics that resemble WO6, a perovskite.17,18 It has
strong oxidising power, better stability, and less band gap which
makes them active in visible light. They are also nontoxic in
nature which shows high catalytic properties.18–23 Even though
Bi2WO6 has better catalytic properties, it is reported that due to
its high recombination of photogenerated carriers, it gives low
quantum efficiency resulting in reduced catalytic efficiency.24,25

Because of their smaller size and high surface energy, Bi2WO6

shows aggregation issues. This can be overcome by the good
dispersion of Bi2WO6 on nanosheets. It has been reported that
Bi2WO6 doped with carbon, nitrogen, and graphene oxide
shows better physical and catalytic properties.26 Among them,
graphene oxide-based compositing is preferred due to the two-
dimensional layered structure of graphene oxide which
enhances their photoinduced charge transfer resulting in
improved catalytic activity.27 Reduced graphene oxide (rGO) is
one of the promising materials that can act as a supporting
matrix or material with residual oxygen attached to the edges.
They are composed of graphene layers with better surface area
and low defects. Reduced graphene oxide has a high surface
area. Due to this high surface area, it would help to increase the
catalytic property.28,29 In this work, we have focused to
composite tin ferrite (SnFe2O4) and Bi2WO6 with rGO to form
a ternary nanocomposite. It was synthesised via hydrothermal
method. The photocatalytic activity of Bi2WO6/rGO/SnFe2O4

was studied using the reduction of 4-nitrophenol to 4-amino-
phenol using NaBH4 as the reducing agent in an aqueous
medium under UV-light exposure.
2 Experimental section
2.1. Chemicals

Graphite powder (crystalline, 50 mm, 99%), Bismuth nitrate
pentahydrate (Bi (NO3)3$5H2O), sodium tungstate dihydrate
(Na2WO4$2H2O) were purchased from Sisco Research Labora-
tories (SRL). Sodium nitrate (NaNO3) was purchased from
Qualigens ne chemicals. Potassium permanganate (KMnO4),
hydrogen peroxide (H2O2) and Tin chloride (SnCl2$2H2O) were
purchased from SD Fine chemicals. Sulphuric acid (H2SO4),
Ferric chloride hexahydrate (FeCl3$6H2O), and Ammonia (25%)
were purchased fromMerck, while 4-nitrophenol and hydrazine
hydrate were procured from Avra chemicals, Hyderabad-India.
2.2. Synthesis

2.2.1 Synthesis of graphene oxide (GO). Graphene oxide
synthesis was done by modied Hummer's method.30 About 2 g
of graphite powder, 2 g of NaNO3 and 90 mL of H2SO4 were
added to a 1000mL round bottom ask which was kept in an ice
bath condition (temp less than 15 °C) and stirred for 4 h. To the
above mixture, 12 g of KMnO4 was added very slowly followed by
the addition of 184 mL of distilled water. The mixture was
continued to stir in ice bath condition for 2 h followed by
© 2023 The Author(s). Published by the Royal Society of Chemistry
another 2 h stirring at room temperature. The above mixture
was heated up to 98 °C to obtain a brown-coloured mixture,
then reduced to 35 °C and stirred at room temperature for 2 h.
To this mixture, 40 mL of H2O2 was added very slowly to obtain
a green-coloured solution. The above mixture was equally
separated into two 500 mL beakers and 200 mL distilled water
was added separately to each beaker. This solution was stirred
at room temperature for 1 h and kept overnight to settle down
the residue formed. The residue was collected by centrifugation
and washed using 10%HCl to make the pH neutral. The residue
was then dried at 80 °C and pulverized to obtain GO powder.

2.2.2 Synthesis of reduced graphene oxide (rGO). 320 mg of
powdered graphene oxide (GO) synthesised via modied
hummer's method were well dispersed in 120 mL of distilled
water using ultrasonication method. Then 32 mL of hydrazine
hydrate was added to the suspension and transferred into
a 100 mL Teon reactor and it was then kept at 180 °C for 18 h
reaction. The black-coloured precipitate was collected, washed
several times, dried at 80 °C, and pulverized to get rGO.

2.2.3 Synthesis of rGO/SnFe2O4. 100 mg of powdered rGO
was well dispersed in 100 mL of distilled water. To the above
solution, 1.2 g of FeCl3$6H2O and 0.8 g of SnCl2$2H2O were
added and stirred until the metals salts dissolves completely.
This mixture was heated up to 80 °C and 10 mL of ammonium
hydroxide (2 M) solution was added dropwise to adjust pH to 10.
Then the precipitate formed was centrifuged and washed
several times with an ethanol–water mixture to remove the
impurities and dried at 80 °C followed by pulverizing to get the
powder sample.

2.2.4 Synthesis of Bi2WO6/rGO/SnFe2O4. 50 mg of synthe-
sized rGO/SnFe2O4 was well dispersed in 50 mL of distilled
water. Then 9.0 mg of sodium tungstate dihydrate (Na2WO6-
$2H2O) and 26.7 mg of bismuth nitrate pentahydrate
(Bi(NO3)2)$5H2O were added to the above solution and stirred
continuously for 5–6 h. Then the mixture was transferred into
a Teon reactor and kept at 180 °C for 12 h to form Bi2WO6/rGO/
SnFe2O4. The formed precipitate was centrifuged and washed
thoroughly with ethanol–water mixture to remove the impuri-
ties and then dried at 80 °C followed by pulverizing to get the
ne powders. This powder was calcined at 700 °C for 3 h at
a ramp temperature of 4 °C min−1 to get Bi2WO6/rGO/SnFe2O4

nanocomposite. Similarly, SnFe2O4 and Bi2WO6/SnFe2O4 were
also synthesised following the same procedure without rGO.
The schematic diagram for facile hydrothermal synthesis of
type-II ternary Bi2WO6/rGO/SnFe2O4 heterojunction nano-
composite is shown in Scheme 1.

3. Catalytic activity

The catalytic activity of the prepared nanocomposites was done
by the reduction of 4-nitrophenol to 4-aminophenol with NaBH4

as the reducing agent under a light source. 50 mL of 4-NP
(0.0001 M) was taken in a beaker and 0.01 M of NaBH4 and the
required amount of catalyst were added and magnetically stir-
red in the dark condition for 10 minutes to obtain the
adsorption/desorption equilibrium. Then the above mixture
was transferred to photoreactor quartz tubes and kept under
RSC Adv., 2023, 13, 22616–22629 | 22617
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Scheme 1 The schematic diagram for the synthesis of type-II ternary Bi2WO6/rGO/SnFe2O4 heterojunction nanocomposite by hydrothermal
method.
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UV-light irradiation. 1 mL of the mixture was taken before
irradiation of UV-light and aer every 10 min interval samples
were collected, centrifuged and analysed using UV-Vis spec-
troscopy at lmax of 365 nm. The below-mentioned formula was
used to determine the catalytic efficiency of the nanocomposites
for the reduction of 4-nitrophenol to 4-aminophenol.

h ¼ C0 � Cf

C0

� 100

where C0 is the initial concentration of 4-NP and Cf is the nal
concentration of 4-NP at time t, h is catalytic efficiency in
percentage.

4. Characterization

Material characterizations were done using X-ray diffraction
methods (XRD-Bruker D8 advance), Fourier transform infrared
spectroscopy (FT-IR-Shimadzu IR affinity-1), UV-visible spec-
trophotometer (Jasco V-670 PC), Scanning electron microscopy
(SEM-Carl Zeis EVO/18 research), eld emission scanning
electronmicroscopy (FE-SEM-Thermo Fischer Quanta 250 FEG),
thermogravimetric analysis (TGA-TA instruments USA, SDT
Q600), X-ray Photoelectron spectroscopy (Omicron Nanotech-
nology Ltd, Germany). Photocatalytic reactions were carried out
using a photoreactor (Heber-visible annular type photoreactor).

5. Results and discussion
5.1 Powder XRD analysis

Powder XRD analysis was done to know the phase purity and
crystallinity of the catalyst prepared. It helps to determine the
22618 | RSC Adv., 2023, 13, 22616–22629
orientation of a single crystal or grain and measures the average
distances between layers or rows of atoms.31 Fig. 1 shows the
powder XRD patterns of GO, rGO, SnFe2O4, rGO/SnFe2O4,
Bi2WO6, Bi2WO6/rGO/SnFe2O4. Fig. 1a is the XRD pattern of GO
synthesised via modied Hummer's method and rGO using
hydrazine hydrate as the reducing agent. The sharp peak at
10.2° indicates the complete and successful oxidation of
graphite into GO followed by oxidation and exfoliation. It is
evidence of an increase in d-spacing value from 0.34 nm to
0.82 nm.31 Aer reduction using hydrazine hydrate the 2q value
of GO has shied to 24.4° which conrms the complete
reduction of GO to rGO. The XRD peaks of individual binary
composites are also well matched with the standard ref. 30. In
Fig. 1b the broadened peak of SnFe2O4 from the lattice plane
(222) represents the monophasic inverse spinel structure which
shows a lattice constant like that of Fe3O4. The diffraction peaks
of SnFe2O4 are much better aer calcination at 700 °C and
above which could be due to an increase in crystallite size and
a decrease in lattice parameters. The peaks with hkl values of
(220), (222), (511), (440), (442) given in Fig. 1b are the charac-
teristic peaks of SnFe2O4 which match with the JCPDS data card
no of JCPDS-01-071-0695. When it comes to rGO/SnFe2O4, there
is a slight shi in the characteristic peaks of SnFe2O4. But no
impurity phases are observed, which means the introduction of
rGO and high-temperature calcination does not affect the
crystal structure of SnFe2O4.32 We can observe the main peak of
rGO at 25° and other characteristic peaks of SnFe2O4 with
a slight red shi in peaks of rGO/SnFe2O4. This slight peak shi
could be due to change in particle size and crystallinity aer
calcination. The particle sizes were calculated using Scherrer's
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Powder XRD patterns of (a) GO and rGO, (b) SnFe2O4, rGO/SnFe2O4, Bi2WO6 and Bi2WO6/rGO/SnFe2O4.

Table 1 Lattice parameters and crystallite sizes of type-II ternary
Bi2WO6/rGO/SnFe2O4 heterojunction nanocomposite
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equation. Sharp and crystalline peaks are observed in the
Bi2WO6 XRD diffractogram. The peaks at hkl values of (131),
(200), (222), and (143) are the characteristic peaks of Bi2WO6

that matches with the JCPDS data card no of JCPDS-01-079-
2381. In the nal ternary nanocomposite both the character-
istic peaks of Bi2WO6 and SnFe2O4 are seen, but the intensity of
Bi2WO6 and rGO peaks are diminished which could be due to
the interaction of Bi2WO6 with rGO/SnFe2O4. The lattice
parameter of the catalysts was calculated using the formula
given below as

a = [h2 + k2 + l2]1/2

where, h, k and l are Miller indices, d is the inter-planar distance
and a is the lattice parameter. In addition, the average crystallite
size was calculated using the given below formula.33

D = kl/(b cos q)

where, D is the average crystallite size, l is the X-ray wavelength,
b is the full width at half maximum (FWHM) and q is the Bragg's
angle. Lattice parameters of each peak of the nal catalyst
(Bi2WO6/rGO/SnFe2O4) and average crystallite sizes are given in
Table 1.
Peaks
Lattice parameters
(Å)

Crystallite
size (nm)

002 6.56 28.5
060 16.38 24.5
222 8.59 19.4
062 12.23 14.3
191 15.04 14.5
511 8.59 11.1
444 8.59 10.5
551 8.60 10.2
5.2 FT-IR analysis

FT-IR analyses were used to get the infrared spectrum of the
catalysts synthesised. It helps to identify the functional groups
and various types of bonding present in the compound. Fig. 2a
and b is the FT-IR spectra of GO, rGO, and various catalysts
synthesised. Both GO and rGO have an almost similar spec-
trum. The peak at 1037.63 cm−1 corresponds to the C–O group
which conrms the complete oxidation of graphite to GO. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
peak between 1600 cm−1 and 1700 cm−1 corresponds to the
C]C bond which is one of the prominent peaks in GO. A broad
peak between 2800 cm−1 and 3800 cm−1 is due to the O–H
stretching peak of water molecules. All these peaks conrm the
formation of GO and rGO. In Fig. 2b the peaks between 500 and
600 cm−1 could be due to the stretching vibrational modes of
Fe–O and Bi–O. The narrow peaks within 700–800 cm−1 shows
the W–O stretching.
5.3 Optical studies

UV-DRS analyses were carried out to understand the optical
properties of the catalysts prepared. Based on Kubelka–Munk
theory, the equation given below helps to interpret the spectra
by combining reectance data and the absorption coefficient.

ahn = A(hn − Eg)
n/2

where, a: absorption co-efficient, h: Planck's constant, n: light
frequency, Eg: Band gap, A: proportionality constant.34 On
RSC Adv., 2023, 13, 22616–22629 | 22619

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03647b


Fig. 2 FT-IR spectra of (a) GO and rGO, (b) SnFe2O4, SnFe2O4–Bi2WO6, rGO-SnFe2O4, and Bi2WO6-rGO-SnFe2O4.
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extrapolation of the plot (ahn)2 versus energy the band gap
energy of the materials synthesised were calculated. Fig. 3a is
UV-DRS plot of Bi2WO6/rGO/SnFe2O4.The wider peak at higher
wavelength shows that the ternary composite can be activated at
visible light region. Fig. 3b and S1–S5 in the ESI† are the Tauc
plots that give the band gap energy of each catalyst prepared.
Based on Tauc plot results, the band gap energies of SnFe2O4,
rGO/SnFe2O4, Bi2WO6, rGO/Bi2WO6 Bi2WO6/SnFe2O4, and
Bi2WO6/rGO/SnFe2O4 are 1.5 eV, 1.5 eV, 1.8 eV, 1.4 eV, 1.67 eV
and 1.27 eV respectively.24,25 GO and rGO has band gap energies
of 1.6–2.5 eV and 1.1–1.4 eV. Here type-II heterojunction
Bi2WO6/rGO/SnFe2O4 is showing the least band gap energy
which could be due to the interaction of Bi2WO6 with SnFe2O4

with the help of rGO via compositing, where rGO acts as
a matrix to enhance light adsorption capacity in the visible light
region with a redshi.
Fig. 3 (a) UV-DRS absorption spectrum of Bi2WO6/rGO/SnFe2O4, (b) Tau
SnFe2O4.

22620 | RSC Adv., 2023, 13, 22616–22629
5.4 Morphological studies

SEM analysis were done to understand the surface morphology
of the catalysts prepared. Fig. 4a–c show the SEM micrographs
and EDX spectra of GO and rGO and Bi2WO6/rGO/SnFe2O4. In
the GO micrograph we can see a wrinkled and layered ake-like
structure which conrms the complete oxidation of graphite to
GO,35 whereas in rGO crumbled layered akes in a disordered
arrangement can be seen which could be due to reduction by
hydrazine hydrate which matches with the results published.36

Fig. S6† shows that the synthesised SnFe2O4 via in situ prepa-
ration method has a spherical morphology on the surface. The
SEM micrograph of rGO/SnFe2O4 (Fig. S7†) shows spherical
structures of SnFe2O4 on layered akes of rGO. The SEM
micrograph of Bi2WO6 (Fig. S8†) shows spherical structures of
Bi2BO6. Zhang et al. (2016) reported that Bi2WO6 also possesses
well dened spherical structure on the surface.37 The SEM
c-plot for band gap calculation energy of the composite Bi2WO6/rGo/

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03647b


Fig. 4 SEM-EDX images of (a) GO, (b) rGO and (c) Bi2WO6/rGO/SnFe2O4.
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micrograph of Bi2WO6/rGO/SnFe2O4 (Fig. 4c) shows more
spherical structures on layered akes of rGO which could be due
to Bi2WO6 and SnFe2O4. This conrms that no structural
damages occurred on rGO aer compositing with Bi2WO6 and
SnFe2O4. The EDAX also conrms the presence of all elements.
5.5 XPS analysis

To conrm the presence of all elements and valence states of
them XPS analysis were carried out. The full scan survey
Fig. 5 XPS spectra of (a) total survey, (b) Bi 4f, (c) W 4f, (d) O 1s, (e) Sn 3

© 2023 The Author(s). Published by the Royal Society of Chemistry
spectrum shows the peaks of Sn, Fe, Bi, W, O, and carbon
(Fig. 5a). In the Bi spectrogram the peaks at binding energies of
160.31 eV and 163.50 eV correspond to Bi 4f7/2 and Bi 4f5/2
doublet which conrms the presence of Bi3+ (refs. 38 and 39)
(Fig. 5b). In the spectrogram of W, the peaks at binding energies
of 36.43 eV and 38.56 eV show the peaks of 4f7/2 and W 4f5/2
doublet which proves that tungsten exists in the W+6 oxidation
state in the nanocomposite40 (Fig. 5c). The O 1 s spectrogram
shows a peak at a binding energy of 530.35 eV which indicates
the Sn–(Fe)–O bonding (Fig. 5d). In the spectrum of Sn 3d
d, (f) Fe 2p, (g) C 1s.

RSC Adv., 2023, 13, 22616–22629 | 22621
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region (Fig. 5e), the two prominent peaks with binding energies
of 486.83 eV and 494.95 eV represent the Sn 3d5/2 and Sn 3d3/2
doublet which suggests that Sn exist in Sn2+ state.41 In Fe 2p
(Fig. 5f) spectrogram, the peaks at binding energies of 710.10 eV
and 723.02 eV matches with the Fe 2p3/2 and Fe 2p1/2 doublet
which conrms the presence of octahedral and tetrahedral sites
of Fe3+ of spinel ferrite42 (Fig. 5g). The peak of C 1s at a binding
energy of 284.24 eV represents the C–C/C–H bond.43 All these
data conrm the presence of all elements in the ternary nano-
composite with the predicted oxidation sates and thus the
successful formation of Bi2WO6/rGO/SnFe2O4 nanocomposites
was nalised. Table 2 summarises the valence states of each
element obtained through XPS with respect to literature.
Fig. 6 Thermogravimetric analysis of the catalyst Bi2WO6/rGO/
SnFe2O4.
5.6 Thermal studies

Thermogravimetric analysis (TGA) was done to know the thermal
stability of the synthesized nanocomposite i.e. the changes in
weight of the composite with respect to temperature differential
thermal analysis (DTA) helps to know the type of changes that
a sample undergoes on temperature variation and it also deter-
mines the change in temperature between a reference object and
a sample during a heat-up or cool-down. The airow rate main-
tained in TGA analysis was 100mLmin−1 and the temperature of
the reactor was increased at a rate of 20 °C min−1. The testing
range of temperature was from room temperature to 800 °C.
Fig. 6a and S9† shows the TGA and DTA plots of the catalyst
Bi2WO6/rGO/SnFe2O4. In Fig. 6a it shows a steady decrease in
weight percentage with respect to the temperature till 95 °C with
a weight loss of 8.71% which could be due to desorption of water
molecules from the surface of the catalyst. From the temperature
95 °C till 525 °C we can observe another slow and steady decrease
in weight percentage with a nal weight loss of 10.42%. This
decrease of weight percentage at 525 °C could be due to the
removal of organicmaterials, adsorbed watermolecules, and due
to defect formation. This removal of hydroxyl ions from the
catalyst surface would be followed by crystallisation process.44 It
is clear that there is no decomposition of substance is noticed
above 550 °C with almost nil weight loss. So the calcination
temperature of the prepared catalyst was xed at 700 °C in this
study. The DTA graph (Fig. S9†) shows a deep endothermic peak
at 80.39 °C followed by a broad oxidation (exothermic) curve
from 300 °C to 500 °C.
5.7 Surface area analysis

BET analysis was done to know the N2-adsorption–desorption
isotherm of Bi2WO6/rGO/SnFe2O4.The ternary heterojunction
Table 2 XPS analysis results: spin–orbit splitting and valence states of
elements present in the synthesized nanomaterial

Element Spin orbit splitting Valence state References

Tin (Sn) 3d5/2, 3d3/2 +2 38
Iron (Fe) 2p3/2, 2p1/2 +3 39
Tungsten (W) 4f7/2, 4f5/2 +6 41
Bismuth (Bi) 4f7/2, 4f5/2 +3 42 and 43

22622 | RSC Adv., 2023, 13, 22616–22629
exhibits a typical type IV isotherm with a better adsorption
capacity and high relative pressure (P/P0 > 0.6). This gives an
evident picture of existence of abundant meso and macropores
on the surface of the composite (Fig. 7). The pore size distri-
bution curve Fig. S10† shows a sharp peak at 26.9 nm which
indicates the mesoporous nature of the pores present on the
surface of the ternary nanocomposite.
5.8 Raman spectroscopy

Raman spectral analysis was done to know the structural
changes and defects present in the catalyst. Fig. 8 is the Raman
spectrum of the composite Bi2WO6/rGO/SnFe2O4. The Raman
analysis was done in the wavenumber range of 50 cm−1 to
Fig. 7 BET graph of Bi2WO6/rGO/SnFe2O4.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Raman spectrum of ternary Bi2WO6/rGO/SnFe2O4 hetero-
junction nanocomposite.
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1800 cm−1. The strong peaks at 822.4 cm−1 and 793.22 cm−1

correspond to the symmetric and antisymmetric stretching
vibrational modes of O–W–O. The appearance of a small peak
between 690 cm−1 and 750 cm−1 represents the asymmetric
bridge mode of WO6. A sharp peak at 413.44 cm−1 stands for the
asymmetric bending vibration of Bi–O. The small peaks below
150 cm−1 are basically due to the transitional movement of W6+

and Bi3+.45,46 All carbon structures exhibit the G-band which is
produced by C–C stretching, and the D-band due to structural
defects. The peak intensity of D band and G band decreased due
to the reduction process of graphene oxide.47 The ID/IG ratio is
found to be 1.3138 which means rGO is formed with better
defects. The peaks at 499.60 cm−1 and 659.42 cm−1 are the
prominent ngerprint peaks for Sn–Fe–O vibrations.48 Since all
the peaks matched with the reported literature the structure
and vibrational modes of the catalyst prepared were conrmed.
5.9 Photocatalytic reduction study

The formation of the band structure is another important factor
of a catalyst to know the catalytic activity of the photocatalyst.
The conduction band edge potential (ECB) and valence band
edge potential (EVB) of both SnFe2O4 and Bi2WO6 were found
separately using the formula given below.49

ECB = X − Ee − 0.5Eg and EVB = ECB + Eg

where X is the electronegativity of the semiconductor; Ee is the
free energy of electrons according to the hydrogen scale (4.5 eV);
Eg is the band gap energy of the semiconductor. Using this band
gap energy values the conduction band edge potential (ECB) and
valence band edge potential were found separately. SnFe2O4

and Bi2WO6 have 0.1926 eV, 2.3926 eV as the ECB and the EVB of
SnFe2O4 and Bi2WO6 are 0.75 eV, 2.65 eV. Hence, SnFe2O4 has
low ECB and EVB compared to Bi2WO6. Thus it is considered as
© 2023 The Author(s). Published by the Royal Society of Chemistry
semiconductor 1 and Bi2WO6 as semiconductor 2 in the ternary
nanocomposite and rGO will act as a supporting matrix to hold
the tin based spinel and Bi2WO6 which also enhances the
catalytic activity of the catalyst. Based on this band structure
arrangement movement of electrons and other charge-carrying
species would be easier and degradation process would be more
feasible.

Nitrophenol may present in its different isomers (ortho,meta
and para nitrophenol), but 4-NPs are widely seen in industrial
effluents. The exposure to 4-NP and 4-AP causes various health
issues fervescence, cyanosis, methemoglobinemia, and liver
and kidney damage. On comparing the toxicity level of 4-NP and
4-AP, the LD50 (lethal dosage) value of 4-NP is 202 mg kg−1 BW
(rats) while it is 282 mg kg−1 BW (mice)50 and that of 4-AP is
375 mg kg−1 BW (rats).51 Since the LD50 of 4-AP is higher than
that of 4-NP, it is considered to be less toxic in nature. Thus the
photocatalytic property of the ternary heterojunction nano-
composite was studied through the model reaction of 4-NP
reduction to 4-AP using NaBH4 as the reducing agent in the
presence of UV-light at 365 nm. Although all three nano-
materials are visible light active, Bi2WO6 has less photocatalytic
activity due to its high recombination of photogenerated
carriers. Hence, UV-light of 365 nm was used in this study to get
better catalytic efficiency of the synthesized catalysts towards
the reduction of 4-NP to 4-AP. Fig. 9a shows the UV-visible
spectra of 4-NP and 4-AP at a concentration of 0.0001 M. The
peak around 400 nm is the prominent peak of 4-nitrophenol
and the peak at 316 nm corresponds to the 4-AP. Fig. S11†
shows the UV-visible spectrum of 4-NP at various concentration.
It is observed that all concentrations below 1 × 10−3 M give an
absorbance less than 1. So the concentration of 4-NP was xed
as 0.0001 M for initial studies. All controlled experiments with
the conditions (1) 4-NP + dark condition, (2) 4-NP + NaBH4 +
dark condition, (3) 4-NP + NaBH4 + dark condition + Bi2WO6/
rGO/SnFe2O4 and (4) 4-NP + NaBH4 + Bi2WO6/rGO/SnFe2O4 +
light were done to know the best reduction condition (Fig. 9b).
The combination of 4-NP + NaBH4 + Bi2WO6/rGO/SnFe2O4 +
light showed the best catalytic reduction property with an
increased absorbance peak of 4-AP at 316 nm in UV-Vis spec-
trogram (Fig. 9c) and thus it was xed as the reduction condi-
tion throughout the experiment. The photocatalytic reduction
of 4-NP to 4-AP was also carried out with SnFe2O4, rGO-SnFe2O4,
Bi2WO6, rGO/Bi2WO6, and Bi2WO6/SnFe2O4 individually under
UV-light irradiation in the presence of NaBH4. Different
parameters such as concentration of 4-NP, the dosage of cata-
lyst, time, and pH of the mixture prepared were optimised for
each catalyst prepared. Fig. S12–S16† shows the photocatalytic
reduction efficiency of each catalyst under optimised parame-
ters for 90 min in the presence of NaBH4 and light. The opti-
mised parameters were 1 × 10−3 M of 4-NP as concentration,
10 mg of catalyst prepared, and pH of 7 for time duration of
90 min. The colour of the mixture was pale yellow initially and it
changed to intense yellow colour aer 50 min. This intense
yellow colour indicates the formation of a 4-nitrophenolate ion,
but the reaction mixture turned almost colourless in the pres-
ence of ternary nanocomposite Bi2WO6/rGO/SnFe2O4 catalyst
aer 90 min. The reaction with Bi2WO6/rGO/SnFe2O4 followed
RSC Adv., 2023, 13, 22616–22629 | 22623

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03647b


Fig. 9 (a) UV-Vis spectrum of 4-NP and 4-AP, (b) UV-Vis spectrum of 4-NP reduction during various conditions, (c) UV-Vis spectrum of 4-NP
photocatalytic reduction to 4-AP using Bi2WO6/rGO/SnFe2O4, (d and e) kinetics plot, (f) bar graph showing the various rate constants of first
order kinetics.
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pseudo-rst-order kinetics with R2 value of near to 1. Also in
photocatalytic reduction of 4-NP to 4-AP (Fig. 9d–e) using
NaBH4 as a reducing agent, the concentration of NaBH4 was
very high in comparison to 4-NP which can be considered
negligible and remains constant.49 The reaction rate constant
(K) is higher for the ternary nanocomposite Bi2WO6/rGO/
SnFe2O4 (Fig. 9f). All results suggest that ternary nanocomposite
Bi2WO6/rGO/SnFe2O4 has better catalytic property towards 4-NP
reduction to 4-AP in the presence of light and NaBH4.
5.10 Stability of the catalyst

Recyclability and reusability is one of the factors to be consid-
ered for the synthesised catalyst. The stability of the nal
ternary nanocomposites (Bi2WO6/rGO/SnFe2O4) was carried out
under the optimized experimental conditions. The photo-
catalytic reduction efficiency was done for 6 consecutive cycles
(Fig. 10). The time taken for the reduction increased aer each
recycling process, but no change in the XRD pattern of the
recycled catalyst was noticed aer 6 consecutive cycles
(Fig. S17†) which clearly shows that no structural damage
happened to the catalyst during the experimental conditions.
Fig. 10 Catalytic stability of Bi2WO6/rGO/SnFe2O4 for 6 successive
cycles.
5.11 Possible reduction mechanism

(a) In the presence of NaBH4

The aqueous solution of 4-NP is a pale yellow solution having
an absorption peak at 316 nm, but it turns to a deep yellow
solution in the presence of excess NaBH4 solution with a lmax of
22624 | RSC Adv., 2023, 13, 22616–22629
400 nm due to the formation of 4-nitrophenolate ions in the
control experiment52–56 (Fig. S18†). In the presence of UV-
irradiation and NaBH4 there was no reduction of 4-NP to 4-AP
due to the high kinetic barrier among the two negatively
charged species, but in the presence of nanocomposites, the
electrons from the nucleophile borohydride ions (BH4

−)
migrate to rGO via semiconductor heterojunction
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Photoreduction efficiency of type-II ternary Bi2WO6/rGO/
SnFe2O4 heterojunction nanocomposite in the presence of different
radical trapping agents.
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nanocomposites where rGO behaves as an electrons sink.57,58

Simultaneously, BH4
− ions generates H2 in an aqueous medium

which forms metal hydride on the surface of nanocomposites.
Now, 4-NP is adsorbed on the catalyst surface and generates
a nanocomposite-4-nitrophenolate intermediate with H-
bonding to oxygen atoms of nitrate ions which is further
reduced to nitroso group (NO) and diffused out from the
surface. Further, nitroso compounds are adsorbed onto the
catalyst surface and form an H-bonding with the O-atom of the
NO group as well N-atom of the NO group which on reduction
forms hydroxylamine (NHOH). Finally, one hydride ion attacks
the N-atom of the NHOH group and forms the nal reduced
product of 4-AP. Given below is the scheme of possible mech-
anism for the photocatalytic reduction of 4-NP to 4-AP in the
presence of NaBH4 with a photocatalyst (Scheme 2).59–62

Scavenging studies were done to know the reactive oxygen
species that could be responsible for the photocatalytic activity
of the catalyst without reducing agents. EDTA, IPA, AgNO3, and
benzoquinone were used as the radical trapping agents. Fig. 11
shows the photocatalytic efficiency of 4-NP with catalyst and
radical trapping agents without NaBH4 in the presence of light.
The role of h+ was found using EDTA and it shows an efficiency
of 18.9%. Electron (e−) inuence was determined by the addi-
tion of AgNO3 and it shows an efficiency of 42.72%. The reaction
using IPA and benzoquinone shows the role of −OH and
superoxides. These results prove that Bi2WO6/rGO/SnFe2O4 can
Scheme 2 Plausible mechanism for the photocatalytic reduction of 4-N

© 2023 The Author(s). Published by the Royal Society of Chemistry
be used as an effective photocatalyst for degradation dyes and
other toxic compounds in the presence of light.

Table 3 summarizes some of the reported works related to 4-
NP reduction to 4-AP reduction in the presence of NaBH4

without light. All the reported studies mentioned the complete
P to 4-AP using Bi2WO6/rGO/SnFe2O4.

RSC Adv., 2023, 13, 22616–22629 | 22625

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03647b


Table 3 Reported literature on the reduction of 4-nitrophenol to 4-aminophenol

Material Synthesis method
Time duration
(min)

% of
reduction References

BaWO4/NRGO-g-C3N4 One pot microwave 60 ∼100 63
NiWO4–ZnO–NRGO Microwave irradiation 100 ∼100 64
RGO–Fe2WO4/Fe3O4 Microwave 45 ∼100 65
CuxNi100−x–CeO2 Liquid impregnation 25 ∼100 66
Pt–Ni/TiO2 Electrospinning 45 ∼100 67
NRGO–CoWO4–Fe2O3 Microwave 30 ∼100 68
Bi2WO6/rGO/SnFe2O4 Hydrothermal 90 ∼100 This study
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reduction of 4-NP to 4-AP within 100 min.63–68 Our study also
noticed complete reduction of 4-NP to 4-AP within 90 min. This
work would be more helpful in the future aspect due to the
increase in amount of 4-NP in the water bodies day by day.
Moreover the synthesised catalyst can be easily used for other
environmental remediations like removal of harmful
substances as well as detections of substances through sensing
which would be a help in waste water treatment and policy
makers.
6. Conclusion

In summary, Bi2WO6/rGO/SnFe2O4 spinel based heterojunction
nanocomposite was synthesised via hydrothermal method. The
prepared heterostructure nanocomposite was characterized
using XRD, FT-IR, UV-DRS, FESEM, BET, Raman spectroscopy,
and XPS. Individual composites SnFe2O4, rGO/SnFe2O4,
Bi2WO6, rGO/Bi2WO6 Bi2WO6/SnFe2O4 were also separately
synthesised for comparative studies and characterized. A simple
model study of reduction of 4-NP to 4-AP using NaBH4 in the
presence of light was carried out to understand the catalytic
efficiency of the synthesised catalysts. The nal ternary nano-
composite showed a better photocatalytic reduction efficiency
of 96% with pseudo-rst order kinetics and an R2 value of
0.97961. The scavenging study results suggest the degradation
efficiency of Bi2WO6/rGO/SnFe2O4 which could be utilised for
further degradation of dyes or organic compounds. Thus,
a highly efficient spinel-based ternary nanocomposite was syn-
thesised with good catalytic properties which could be used for
many applications, especially for environmental remediation
studies.
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