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In recent years, there has been a rapid increase in demand for wearable sensors, particularly these tracking

the surroundings, fitness, and health of people. Thus, selective detection in human body fluid is a demand

for a smart lifestyle by quick monitoring of electrolytes, drugs, toxins, metabolites and biomolecules,

proteins, and the immune system. In this review, these parameters along with the main features of the

latest and mostly cited research work on nanostructured wearable electrochemical and biosensors are

surveyed. This study aims to help researchers and engineers choose the most suitable selective and

sensitive sensor. Wearable sensors have broad and effective sensing platforms, such as contact lenses,

Google Glass, skin-patch, mouth gourds, smartwatches, underwear, wristbands, and others. For

increasing sensor reliability, additional advancements in electrochemical and biosensor precision, stability

in uncontrolled environments, and reproducible sample conveyance are necessary. In addition, the

optimistic future of wearable electrochemical sensors in fields, such as remote and customized

healthcare and well-being is discussed. Overall, wearable electrochemical and biosensing technologies

hold great promise for improving personal healthcare and monitoring performance with the potential to

have a significant impact on daily lives. These technologies enable real-time body sensing and the

communication of comprehensive physiological information.
1. Introduction

A wearable electrochemical biosensor (WEB) is an effective
point-of-care (POC) diagnostic tool with excellent electrical
signal response in normal physiological conditions. A wide
range of platforms containing the properties of exible,
convenient, and light weighted materials that are sensitive to
detect the target biomolecules have been reported for WEB
applications.1,2 WEB as a POC diagnostic tool has a great
demand for its comfort physiological signal sensing of electro-
lytes, drugs, toxins, metabolites and biomolecules, protein, and
immune assay.3,4 In addition, wearable biosensor platforms can
be easily attached to the body by using daily wearable items,
such as glasses, clothes, shoes, gloves, and watches.5–8 Most
wearable sensors can be easily controlled using bluetooth-
driving smartphones or remote servers.9–16 Examples of the
major wearable platforms are Google Glass, contact lenses,
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polyethylene terephthalate (PET) contact lenses, mouthguards,
cotton underwear, cotton yarn, elastomeric stamps, and
temporary tattoos.17,18 Currently, researchers are actively
working on developing wearable biosensors to measure signif-
icant small molecules and biomarkers present in common body
uids.19 Up to date, skin, tears, and sweat-based electro-
chemical sensors and biosensors have been developed to
monitor a few electrolytes and biomolecules with a selective and
sensitive detection output.

Bio-receptors are utilized to modify the wearable sensing
platforms depending on the physicochemical properties of the
targeted analytes. In electrochemical analysis, the current is
own through the sensing platform by signaling for the oxida-
tion or reduction of electroactive bio-nutrients. The modied
working electrode is the key component, which is preferably
prepared from poly(vinyl alcohol), silicones (e.g., PDMS, Ecoex,
and Solaris), or inert plastics (e.g., PET and PEN)20 to create
a conductive base and then was decorated by using recognition
agent to ensure better chemical responses. As an alternative to
the exible base, the metal-decorated conductive base becomes
stretchable and bendable.21 To avoid this barrier, nanoparticles
and graphene-processed conductive ink or tunable conductive
polymers can be easily printed on a exible base using
conventional printing and binding methods.22–24 In the poten-
tiometric and impedimetric sensors, no current is own and
RSC Adv., 2023, 13, 22973–22997 | 22973
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further, the electrode is usually functionalized with commercial
ionophores. Conversely, an enzymatic redox reaction is
required to modify the working electrode, which is relatively
complex and time-consuming. Besides, enzymes have high
reduction potential and hierarchical structure, which is
responsible for lower electron transfer from the enzyme pocket
to the electrode. A mediator is required to reduce the working
potential and increase electron mobility, such as Prussian blue
(PB) and tetrathiafulvalene (TTF).25–27 Due to the toxicity of the
mediator, alternatives, such as carbon-based materials, metal
nanoparticles, and conductive polymers have been explored to
mediate electron transfer in amperometric systems.28,29

Although enzymatic-recognized biosensors have a few limi-
tations, they have wide applications in sensing metabolites in
human sweat. In immune sensor studies, the bio-recognition
elements have a strong affinity towards target analytes, but
these bio receptors are not suitable for continuous monitoring
in the human body for the lack of their irreversible nature. It is
worth mentioning that, the surrounding is the reason for
degradation and becoming unable to measure the target ana-
lyte.17 Self-life enzyme-modied electrodes were prepared by
selected encapsulation technique and polymer-enzyme
composites.30 Additionally, in wearable biosensors, molecu-
larly imprinted polymers (MIPs) are intriguing replacements for
enzymatic recognition elements because they are suitable
ligand environments for specic analytes.31 Nanoparticles and
organic frameworks have also been proposed as articial
receptors.32 In textiles and garments, modied wearable bers
can be used with a three-electrodes system to continuously
measure electrochemical signals and avoid intermediate inter-
actions.33 Furthermore, Wang et al. created a ber-based
working electrode by electrodepositing active materials onto
carbon bers and integrating these bers into a sensing array.34

In another work, a thin gold ber was prepared by dry-spinning
gold nanowires for glucose sensing.35 Recently, ber-based
working electrodes and interconnected sensing systems have
been reported through versatile research work on carbon
bers,36 stainless steel yarns,37 metallic bers,38 and silver-
coated nylon threads.39

This review surveys the modication of wearable electro-
chemical sensors and biosensors to detect ions, drugs, toxins,
metabolite and biomolecules, proteins, and immune assay. The
discussion about the previously reported research work along
with the working principles, fabrication approaches, and ex-
ible electrochemical biosensors based on nanoparticles and bio
receptors to target analyte detection are presented. Further-
more, nanoparticles, MXene, composite materials, polymers,
and biological receptors recently created extremely sensitive
and selective electrochemical sensing devices and contributed
to the modication of electrodes in electrochemical-based
research work worldwide. The discussion and analysis in this
work will be helpful to reach a concrete decision for the fabri-
cation of wearable biosensor electrodes to detect a denite
analyte. Furthermore, the insights are expected to become basic
principles for upgrading next-generation wearable electro-
chemical bio-sensing devices.
22974 | RSC Adv., 2023, 13, 22973–22997
2. Wearable sensor and biosensor
platform

Body uids are rich sources of important biomarkers including
ions (e.g. Na+, K+, Ca+, NH4

+, and Cl−), drugs and toxins (e.g.
levodopa, caffeine, methyl xanthine, p-cresol), metabolites and
biomolecules (e.g. glucose, lactate, uric acid, cortisol, ascorbic
acid), protein and immune assay (e.g., AFP, CA125, CA153,
ferritin, and E. coli), participate in many physiological diseases
such as diabetes, gout, Parkinson's diseases, hepatitis, and
myopia. The latest wearable electrochemical sensors and
biosensors are designed according to their site of application.
Joohee Kim et al. reported research on multifunctional contact
lenses, which are applicable to both in vivo and in vitro analysis
of live rabbits and bovine eyeballs.40,41 Contact lens would be an
ideal vehicle for continuous tear glucose monitoring.42 Another
wearable rapid diagnostic tool (RDT) is Google Glass, which is
capable of both qualitative and quantitative analysis based on
a hands-free voice-controlled interface and then digitally
transmitted to a server for digital processing.41

The textile-based screen-printed carbon electrode cotton
underwear offers voltammetric and chronoamperometric
measurements of 0–3 mM ferrocyanide, 0–25 mM hydrogen
peroxide, and 0–100 mM NADH.43 In sports and military appli-
cations, it brings great benets to make digitalized human
power. Another easily worn and replaceable biosensor is the
mouthguard.43 This saliva monitoring biosensor can detect
without any interruption or little occurrence. Additionally,
conductive yarns can be prepared by simple dyeing with carbon
nanotube ink. Aerwards, an ion-selective potentiostat was
prepared by coating a polymeric membrane. This potentio-
metric yarn can easily sense pH, K+, and NH4+.44 Furthermore,
conductive and insulating ink-mediated elastomeric stamps are
well-suited for the formation of electrochemical sensors by
following conventional screen-printed techniques.45 The elas-
tomeric stamp preparation methods can be extended to
epidermal electrochemical sensors. Temporary tattoos were
used in several parts of the human body with individual plat-
forms such as printed temporary transfer tattoos on the skin to
monitor lactate in human perspiration.46 Windmiller et al.
demonstrated the use of potentiometric ion-selective electrodes
to monitor the pH level.47 Similarly, two research studies re-
ported the detection of sodium47 and ammonium48 in sweat. In
addition, a complete self-driven smartwatch can monitor
glucose levels in a simple and easy way and further maintains
safety and infection risk. It made a correlation between the
sweat composition and human body dynamics.49

Jungil Choi et al. demonstrated the use of a pressure-induced
skin-mounted microuidic network for the quantication of
lactate, sodium, and, potassium by chrono-sampling of
device.50 Another so microuidic-based research work was
performed using a microsystem designed with a biocompatible
electronic-based electrochemical biosensor.51 Reectance pulse
oximetry is a miniature exible device that can facilitate the
mounting on the external (e.g. skin) and internal (e.g. heart and
brain) of the human body. This exible platform incorporated
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with optoelectronic functionality can be used for wireless
capture and transmission of quantitative information on blood
oxygenation, heart rate, and heart rate variability.52 The NFZ-
GQDs@GOx platform was fabricated to construct a bio-
electronic tongue to continuously monitor glucose with
a detection limit of 14 mM53 (Scheme 1).
3. Nanostructured wearable
biosensor
3.1 Biosensor for ions

Electrolytes play an important role in the body when they
remain in body uids as charged ions. They regulate the
osmotic pressure in cells, help maintain the function of muscle
and nerve cells, and transmit neural signals, body water
content, and others. The main electrolytes include sodium,
chlorine, potassium, calcium, and magnesium. A literature
survey summarizing human body uid concentration
measurements is presented in Table 1. Gao et al. demonstrated
research work for the detection of Na+ and K+ ions in human
sweat samples using amperometric detection. A Na+ selective
membrane cocktail mainly consisting of Na ionophore X (1% w/
w), Na-TFPB (0.55% w/w), PVC (33% w/w), DOS (65.45% w/w),
and tetrahydrofuran was used to disperse the cocktail for the
purpose of drop casting. The drop casting electrode was deno-
ted as Na+ selective electrode.68 On the other hand, the K+

selective membrane cocktail constructed from a mixture of
Scheme 1 (A) Contact lens (https://xtalks.com/postech-researchers-de
2232/), (B) elastomeric stamp,45 (C) Google Glass (https://time.com/366
physicsworld.com/a/wearable-patch-could-predict-risk-of-stroke-and
innovationtoronto.org/index.php/2022/08/28/new-wearable-microflui
many-health-conditions/), (F) mouthguard,54 (G) pulse-oximeter,52 (H
www.wionews.com/science/tattoo-as-health-monitoring-device-sout
underwear,43 and (L) wristband (https://www.medicaldesignandoutsou
chemical-composition/). Figure is adopted from all reference sources w

© 2023 The Author(s). Published by the Royal Society of Chemistry
valinomycin (2% w/w), Na-TPB (0.5%), PVC (32.7% w/w), DOS
(64.7%), and cyclohexane was used to disperse and drop cast on
a working electrode. Here, PVB modied electrode was used as
a reference electrode.58 In both cases, poly(3,4-
ethylenedioxythiophene) PEDOT:PSS polymerized lm was
rst considered as an ion–electron transducer to minimize the
potential dris of the ISEs.59 Another study of Na+ selective
membrane followed the same procedure with PVB reference
electrode. The FeCl3 injected Ag/AgCl electrode was used as a Cl-
selective electrode and PEDOT:PSS was chosen as the ion-
selective transducer.60 Furthermore, AuNPs were electro-
deposited on chips from 5 mM HAuCl4 and 0.5 M H2SO4

mixture at a constant potentiostatic voltage. Thereaer, Na+ ISE
was also prepared from the same procedure reported by Ban-
dodkar et al.57 An advanced-level research work detected the
three electrolytes Na+, K+, and Ca+ using carbon nanotube-
modied weaving fabric and was reported by Wang et al. In
this fabric, Na+-ISE was prepared from a mixture containing Na-
TFPB, high molecular weight PVC, DOS, sodium ionophore X in
tetrahydrofuran, and Na+-ISE was prepared by replacing sodium
ionophore X with potassium ionophore. The Ca+-ISE was also
prepared following the same way as Na+ and K+-ISE, whereas,
the ionophore was replaced with Ca ionophore II.34 The detec-
tion ranges of Na+, K+, and Ca+ ions were reported to be 10–160
× 10−3 M, 2–32 × 10−3 M, and 0.5–2.53 × 10−3 M, respectively.
This study was conducted using sensing ber weaving fabric in
amperometric detection as represented in Fig. 1.
velop-smart-contact-lenses-that-can-diagnose-and-treat-diabetes-
9927/google-glass-explorer-program-ends/), (D) skin-patch (https://
-heart-attacks/), (E) microfluidic device (https://
dic-sensing-technology-can-provide-continuous-monitoring-for-
) potentiostat,55 (I) smart watch,56 (J) temporary tattoo (https://

h-korean-scientists-develop-unique-technology-502791), (K)
rcing.com/wristband-detects-analyzes-real-time-changes-in-sweat-
ith permission.
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Table 1 A comparative electrolyte measurement study using wearable electrochemical sensorsa

Sensing material Analyte Detection range Detection limit Method of detection Bio-uid Ref.

ISE-K+ membrane K+ 2–16 × 10−3 M N/A Amp Sweat 68
ISE-Na+ membrane Na+ 20–120 × 10−3 M N/A Amp Sweat 68
ISE-Na+ membrane Na+ 10–80 × 10−3 M N/A Amp Sweat 60
ISE-Cl− membrane Cl− 10–80 × 10−3 M N/A Amp Sweat 60
AuND-ISE-Na+ membrane Na+ 0–40 × 10−3 M 0.8 × 10−6 M Poten Sweat 61
Electrochemical fabric-CNT fabric
substrate

Na+ 10–160 × 10−3 M N/A Amp Sweat 34

Electrochemical fabric-CNT fabric
substrate

K+ 2–32 × 10−3 M N/A Amp Sweat 34

Electrochemical fabric-CNT fabric
substrate

Ca+ 0.5–2.53 × 10−3 M N/A Amp Sweat 34

Ag/AgCl Cl− N/A N/A Poten Sweat 55
Bare gold Electrolytes N/A N/A Conduc Tears 69
Graphene-doped Au mesh pH N/A Poten Sweat 70
Carbon/rGO-Na+ membrane Na+ 10–160 mM N/A Poten Sweat 63
Carbon/rGO-K+ membrane K+ 2–32 mM N/A Poten Sweat 63
AuNP/PANI pH 3–8 mM N/A Poten Sweat 63
PEDOT:PSS/carbon ber thread Na+ 0.1–100 mM N/A Poten Sweat 71
PEDOT:PSS/carbon ber thread K+ 0.1–100 mM N/A Poten Sweat 72
CNT NH4

+ N/A N/A Poten Sweat 73
PANI conducting polymer pH N/A N/A Poten Wounds 65
CNTs pH 8.51–2.69 N/A Poten Sweat 74
rGO-PANI pH 75.09 nm pH−1 at pH 11.35 N/A Poten Sweat 75
Graphite/Ag/AgCl pH pH range 6–9 N/A Poten Sweat 76
Bi Cd+ <100 mg L−1 N/A CV Sweat and urine 77
Bi, Au Pb+ <100 mg L−1 N/A CV Sweat and urine 77
Au Cu2+ 100–100 mg L−1 N/A CV Sweat and urine 77
Au Hg+ <100 mg L−1 N/A CV Sweat and urine 77
Ammonia ionophore NH4

+ 10−4 to 0.1 M N/A Poten Sweat 65
Lanthanum uoride Fluoride 0.19–1.9 ppm N/A Poten Saliva 78
ISE/uorinated alkyl silane/GO K+ 0–6.5 mM N/A Poten Sweat 79
ISE/uorinated alkyl silane/GO Na+ 0–49.5 mM N/A Poten Sweat 79
ISE/uorinated alkyl silane/GO Cl− 0–61.4 mM N/A Poten Sweat 79
ISE/uorinated alkyl silane/GO pH 0–6.91 mM N/A Poten Sweat 79
PEDOT Na+ 1.89–2.97 mM N/A Amp Sweat 2
PEDOT K+ 3.31–7.25 mM N/A Amp Sweat 2
PEDOT:PSS/Au Na+ 10–160 mM N/A Poten Sweat 68
PEDOT:PSS/Au K+ 1–32 mM N/A Poten Sweat 68
Polyaniline pH 3–8 N/A Poten Sweat 80
PEDOT:PSS Na+ 45.8 mV dec−1 N/A Poten Sweat 81
PEDOT:PSS K+ 35.9 mV dec−1 N/A Poten Sweat 81
PEDOT:PSS Ca+ 52.3 mV dec−1 N/A Poten Sweat 81
PANi/CNT bre pH N/A N/A Poten Sweat 81

a Abbreviations: Amp-amperometric, Pote-potentiometric, Conduc-conduct metric, CV-cyclic voltammetry, ISE-ion selective electrode, CNT-carbon
nanotube, rGO-reduced graphene oxide, PANI-polyaniline, PEDOT-poly(3,4-ethylenedioxythiophene), PSS-polystyrene sulfonate.
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Further detection of Na+ and K+ using all-solid-state ISEs was
fabricated using reduced graphene oxide (rGO) as the ion-to-
electron transducer between the ionophore and carbon
working electrode.63 The rGO-based electrode showed high
stability at low temperature without considering humidity. This
sensor fabrication involves a low-cost method.64 The pH was
measured by de-protonation from the surface of polyaniline
(PANI).63 Similarly, pH was also measured from wounds and
sweat in the human body.65 Additionally, Guinovart et al. re-
ported a research work to quantify ammonium ions in sweat
using a ower shaped potentiometric sensor similar to the
tattoo sensor, and the construction is represented in Fig. 2.65 To
make this temporary tattoo, a transparent insulator was printed
22976 | RSC Adv., 2023, 13, 22973–22997
on the tattoo paper. Thereaer, Ag/AgCl layer with a longer right
petal, a carbon layer a let petal, and a surrounding blue insu-
lator were printed. Aer the tattoo was printed and cured, the
reference and ion selective membranes were incorporated via
drop casting and drying methods.

Among the large classes of Na+, K+, and Cl− ion detection
methods paper-based ISEs are one of the reported methods. In
this study, high-quality graphene was dispersed in ethanol and
sprayed onto the modied C10

F paper through a stainless-steel
mask. Then, Na+, K+, Cl−, and reference electrode cocktails
were dropped on the graphene-modied electrode. Aer gra-
phene modication, the electrode gained high charge carrier
immobility, chemical stability, large surface area, increased
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Weaving carbon nanotube fiber to smart electrochemical fabric. Adopted from ref. 35 with permission from American Chemical Society,
Copyright© 2019.

Fig. 2 Stepwise potentiometric tattoo sensor fabrication. (A). Release
the fabrication layer by the insulator, carbon, Ag/AgCl, and insulator.
(B). Ion-selective and reference electrodes deposited onto the suitable
area [adopted from ref. 65 with permission from Wiley, Copyright©
2014].
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toughness, and stretchability.66,67 From the above literature
survey, it can be concluded that ISE-based ion detection can
play a vital role in the next generation rapid diagnostic tools.
3.2 Biosensor for drugs and toxins

Drug monitoring plays an important role in doping control, at
the right dose, for the right patient, and at the right time.82,83 It
helps physicians to obtain information about drug dosages,
compliance with prescriptions, and understanding the complex
pharmacokinetics of drugs for optimal benets.82 Normally,
blood is a conventional biouid source to monitor drugs, and
further urine, transdermal, and sweat source are reported
alternative sources for wearable electrochemical biosensing
platforms.82 A literature survey for the comparison is
© 2023 The Author(s). Published by the Royal Society of Chemistry
summarized in Table 2. A wearable instant kit can also prevent
the illegal accident of uptaking drug-related crimes, violence,
sexual assaults, infectious diseases, etc.84 The ongoing expec-
tation is that the continuous monitoring of the drug is
a mechanism of selective detection in body uidic samples.

Tai et al. reported research work on the fabrication of a PET
substrate with Cr and Au by photolithography and evaporation
method to detect levodopa, a medication to treat Parkinson's
disease.85 In this study, Au nano-dendrites were grown on the
electrode surface via a square wave of Gamry electrochemical
potentiostat and chloroauric acidic medium. The lowest
detected concentration of levodopa aer 6000 cycles of Au
deposition for 120 seconds was found to be 10 mM. Further-
more, a 1 × 3 pyramid-shaped hollow microneedle of 1500 mm
height and 425 mm diameter was fabricated to detect levodopa
in articial ISF using SWV. Two of these electrodes, WE1 and
WE2 were modied by carbon paste and the remaining elec-
trode, Ag/AgCl was used as a reference electrode. WE2, the
working electrode was further modied by tyrosinase mush-
room enzyme.86 The schematic representation for the detection
of levodopa is shown in Fig. 3.

Another research work was performed by fabricating a PET
substrate with silver, carbon, and nasion to quantitively
measure methyl xanthine drugs and caffeine in sweat samples.
In this study, Ag ink was mixed with 10% poly(vinyl butyral) in
terpineol and printed at a constant temperature of 23 ± 2 °C
and 35 ± 2%. Aerwards, carbon paste with 359 cP of viscosity
was printed and dried at 150 °C for 5 seconds. Finally, the
insulation was performed using polyethylene resin by annealing
at 150 °C for 1 hour.82 L-Histidine is an essential amino acid and
precursor of hormones and metabolites, as well as a drug for
eczema. The detection was performed using MOF particles and
chitosan-modied electrodes with a detection limit of L-histi-
dine at 5.3 mM.87

Alcohol is a psychoactive and toxic substance depending on
its producing properties. Ashlesha Bhide et al. published
RSC Adv., 2023, 13, 22973–22997 | 22977
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Table 2 A comparative drug and toxin measurement study using wearable electrochemical and biosensorsa

Sensing material Analyte Detection range Detection limit Method of detection Bio-uid Ref.

Au Levodopa <10 mM N/A Amp Sweat 85
Carbon paste/tyrosinase enzyme Levodopa 0.5–3 mM 0.5 mM SWV Articial-ISF 86
Carbon ink/CNT/Naon Caffeine <40 mM N/A Amp Sweat 82
Carbon ink/CNT/Naon Methyl xanthine 0–40 × 10−6 M 3 × 10−6 M DPV Sweat 82
Cu-MOF L-Histidine N/A 5.3 mM Living cell 87
Carbon ink/chitosan/BSA/AOx/PB Alcohol 0–36 × 10−3 M N/A Amp Sweat 89
Au–ZnO/AOx Alcohol 2.17 × 10−6 to 43.4 × 10−3 M 2.17 × 10−6 M EIS Sweat 88
Pt wire/Chitosan/AOx Alcohol 0–80 × 10−3 M N/A Amp Transdermal 12
Au-electro needle p-Cresol 1 × 10−6 to 1 × 10−3 M 1.8 × 10−6 M N/A Transdermal 90

a Abbreviations: Amp-amperometric, SWV-square wave voltammetry, EIS-electrochemical impedance spectroscopy, DPV-differential pulse
voltammetry, CNT-carbon nanotube, MOF-a metal–organic framework, BSA-bovine serum albumin, AOx-alcohol oxidase.

Fig. 3 Schematic representation of levodopa (L-Dopa) detection, (A)
hand-wearing mannequin microneedle sensor, (B) ISF levodopa
monitoring, (C) wireless electroanalayser, (D) microneedle sensor
platform for levodopa sensing using SWV and amperometry, (E) cross-
sectional view of CP, tyrosinase and Nafion layer, (F) and, (G) optical
image before and after CP packing of microneedles. Adopted from ref.
87 with permission from American Chemical Society, Copyright© 2019.

Fig. 4 Transdermal alcohol sensor (A) iontophoretic tattoo electrode,
(B) alcohol iontophoretic-sensing tattoo device, (C) diagram of
iontophoresis and amperometric detection of alcohol, (D) diagram of
iontophoresis system (left) and amperometric system (right). Adopted
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a research work on the detection of alcohol in sweat samples
using alcohol oxidase modied electrode. The gold particle was
deposited by Temescal e-beam and ZnO lm by AJA Orion RF
magnetron and nally with alcohol oxidase.88 Additionally, Ag/
AgCl ink and PB conductive carbon were screen printed on
working and counter electrodes by semi-automatic screen
printing. A transparent insulator was screen-printed over the
surface of the electrode pattern to conrm the electrodes and
contact areas. For fabrication, the Ag/AgCl ink was cured at 90 °
C for 10 minutes, and then the PB conductive carbon ink was
cured at 80 °C for 10 minutes in a convection oven.89 The
schematic representation is illustrated in Fig. 4. Furthermore,
medical grade liquid crystal polymer (O-phenylene diamine)
was poured onto the Pt wire micro-transducer followed by the
immobilization of alcohol oxidase where chitosan was an
intermediate layer.12 In this study, the alcohol detection linear
22978 | RSC Adv., 2023, 13, 22973–22997
range was 0–80 × 10−3 M. From an overall literature survey, it
was found that levodopa detection with tyrosinase enzyme is
suitable, and further, alcohol oxidase is suitable for the detec-
tion of alcohol.
3.3 Biosensor for metabolites and biomolecules

In metabolism, the intermediate and nal products are the
metabolites. These metabolites can be glucose, urea, uric acid,
lactates, cholesterol, creatinine, hydrogen peroxide, ketone
bodies, hypoxanthine, xanthine, etc. There have been some
signicant breakthroughs via electrochemical sensors in clin-
ical applications concerning their measurement in a simple
from ref. 13 with permission from Elsevier, Copyright© 2018.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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way, within the shortest possible time, with high accuracy,
selectivity, and stability. The economic and sturdy nature of
commercially available electrochemical glucometers is a strong
indicator of their success. Here, we will discuss some of the
signicant developments of biosensors in different metabolites,
as summarized in Table 3.

As the biosensors can be prepared by easy procedure with the
benets of low cost, they are efficient and further very easy-to-
use with a variety of areas. Moreover, they are popular for the
detection of metabolites and biomolecules. Recently, different
kinds of biosensors were applied to detect food-born, clinical or
environmental pathogens harmful not only to humans but also
to animals.

Uric acid (UA). Uric acid (UA), C5H4N4O3, is usually a human
body waste product, this planar, heterocyclic compound is
usually produced while the metabolic breakdown of purine
nucleotides occurs.91 Glucose oxidase-based NiCo2O4 nano-
material shows high sensitivity to the glucose sample with
a wide range of concentrations from 0.005 mM to 15 mM with
a sensitivity of 91.34 mV per decade and also showed a fast
response time.92 Later, graphene bers (GFs) with NiCo2O4

nanowires GF/NiCo2O4 were also reported for UA detection with
a liner range of 10–26 mM and LOD of 0.2 mM.93 This novel
biosensor can be successfully applied directly as a working
electrode for the detection of ascorbic acid, AA (liner range of
200–750 mM and LOD of 50 mM) and dopamine, DA (liner range
of 1–13 mM and LOD of 0.1 mM). On DPV proles at GF/NiCo2O4

electrodes these UA, AA, and DA can be detected at different
voltage values.

Laser-scribed graphene, LSG, or LSG with platinum94 nano-
materials also may be a good promising and excellent electrode
for the detection of UA, AA, and DA compound swith a wide
range of applications. The measurement of UA is not limited to
urine samples only; various reports show that wearable sweat
sensors have great potential for the continuous measurements
of this sample.95 They reported a highly sensitive LEG-CS;
a laser-engraved graphene-based chemical sensor for the
detection of lower concentrations of UA and tyrosine (Tyr). This
LEG-CS-based multi-inlet microuidic module can be an alter-
native to a wearable microuidic system, which is made from
silicone elastomers and is also complicated and expensive.

For the analysis of uric acid, especially point-of-care (POC)
monitoring, M. Yang et al. developed a 3D electrochemical
biosensor based on super aligned single wall carbon nanotube
SWCNT array immobilized with uricase by the means of
a precipitation and crosslinking procedure.96 This biosensor
possesses a higher enzyme density, a larger contact area, and
showed excellent conductivity aer modication with a sensi-
tivity of 518.8 mA (mM cm2)−1, a wide linear range of 100–1000
mM, and a low limit of detection of 1 mM for uric acid in serum
samples.

Here, uric acid is catalyzed by uricase on the working elec-
trode and oxidized into allantoin, while producing carbon
dioxide and hydrogen peroxide, this reaction was previously
described by Numnuam et al.161 group.

Uric acid þ H2O ��!uricase
allantoin þ H2O2 þ CO2 (1)
© 2023 The Author(s). Published by the Royal Society of Chemistry
The produced H2O2 decomposes on the surface of the elec-
trodes according to eqn (2) and thus the corresponding current
is detected.

H2O2 / O2 + H+ + 2e− (2)

To date, the development of a biosensor for UA detection
offers very high sensitivity and selectivity and is thus highly
desirable in different elds of chemistry. Overlapping of the
oxidation potentials of different molecules along with providing
poor selectivity and reproducibility are major problems facing
biosensing detection.97 To overcome these problems, metal
oxides,98 noble metals,99 polymers,100 and carbon materials101

were also considered as a candidate for electrode modication.
H. Liu et al.102 showed that the polymer of cellulose (CLC),

which is dissolved in [BMIM]Cl, and combined with different
functional groups such as –NH2, –SH – graed poly(3,4-ethylene
dioxythiophene) (PEDOT), i.e., PEDOT-MeNH2/CLC and
PEDOT-MeSH/CLC electrode might be very useful for the
detection of guanine (G) and uric acid (UA), respectively, with
good selectivity and detection limits.

However, the tendency of people to visit any clinic is
decreasing, and currently, patients visit doctors only aer
noticeable symptoms. Therefore, treatment at home using
a single device such as a wearable or portable device is
becoming popular as they are easy to operate and can measure
the specic sample very accurately.

X. Wei et al. reported wearable biosensors for non-invasive
and real-time monitoring of sweat compositions with high
sensitivity and selectively.62 Their developed method described
the fabrication of wearable biosensors for the detection of uric
acid in articial sweat samples as depicted in Fig. 5. In this
biosensor, a exible and conductive CNF-worked electrode was
used for the detection of the uric acid molecules in articial
sweat samples with good selectivity. It ensured a signicant
linear correlation between the current output and the concen-
tration of uric acid.

Ascorbic acid (AA). Ascorbic acid (AA), known as vitamin C, is
a readily water-soluble micronutrient that is required for
multiple physiological/biological functions in various living
organisms. This acid is working as a reducing agent and anti-
oxidant, thus, in cellular metabolism, it can protect cellular
components from oxidative damage and various oxidizing free
radicals or harmful oxygen-derived species, such as hydroxyl
radicals, hydrogen peroxide, and singlet oxygen.103–106 So, the
detection of this AA is very important for clinical application as
well as to keep the human body t.

The literature revealed various reports for the detection of
AA, such as electrochemical methods,107,108 but other molecules
such as dopamine can interfere with this type of detection. To
solve this problem and for the development of a selective and
sensitive method for the determination of AA, conducting
polymers107 is highly desirable for analytical and diagnostic
applications. A polymer, polyaniline-based biosensor, and
ascorbate oxidase (AsOx) immobilized covalently onto carbox-
ylated multiwalled carbon nanotubes, was reported by Chauhan
and his team.109 This AsOx/c-MWCNT/PANI/Au electrode was
RSC Adv., 2023, 13, 22973–22997 | 22979
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Table 3 A comparative metabolites and the biomolecules measurement study using wearable biosensorsa

Sensing material Analyte Detection range
Detection
limit

Method of
detection Sample Ref.

PEDOT-MeNH2/CLC/GCE UA 5−400 mM 0.255 mM DPV Blood 102
GA/uricase/chitosan/SWCNT/Pt UA 100–1000 mM 1.0 mM CV Serum samples 161
PEDOT-MeSH/CLC/GCE UA 0.4–650 mM 0.085 mM DPV Blood 102
UOx/Pt NPs/PANI/MEA UA 0.1–1.2 × 10−3 M 4 mM Amp Standard sample 162
CoO/N-CS-rGO UA 1–125 mM 0.22 mM CV Standard and human

serum
126

Urate oxidase/PLGA/MoS2-hydrogel
system

UA 100–500 mmol L−1 20 mmol L−1 ECL Serum 163

GF/NiCo2O4 UA 10–26 mM 0.2 mM CV and DPV Serum and urine 93
Pt/LSG UA 1–63 mM 0.22 mM CV and DPV Urine 94
Uricase/ZnONW UA 0.024–0.101 × 10−3 M 10 mM Piezo Sweat 137
LEG-CS UA N/A 0.74 mM DPV Sweat 95
Uricase UA O.5–50 mM N/A CV and DPV Wound uid 164
Naon/uricase/ZnO/Ag/Si UA 50–2000 mM 0.019 mM CV Serum 165
Uricase/tetrapod-shaped ZnO UA 0.8–3490 mM 0.8 mM CV and amp Standard sample 166
Naon/uricase/ferrocene/GCE UA 0.5–60 mM 0.23 mM Amp and DPV Blood 167
AsOx/c-MWCNT/PANI/Au AA 2–206 mM 0.9 mM Amp Serum substances 109
AuNPs@PANI/CS/GCE AA 20–1600 mM 8 mM CV, amp and DPV Standard and real sample 110
Ni@poly-1,5 DAN/GC AA 100–500 mM 0.010 SWV Serum 168
Pt/LSG AA 10–890 mM 6.1 mM CV and DPV Urine 94
GO/NNO20 AA 30–1100 11.3 mM CV, chrono amp Standard and synthetic

sweat
111

GO/NNO100 AA 30–1100 3.8 mM CV, chrono amp Standard and synthetic
sweat

111

GF/NiCo2O4 AA 200–750 mM 50 mM CV and DPV Serum and urine 93
Transfer tattoo AA 10–50 mM N/A CV Sweat 169 and

170
MNA-PLA/f-MWCNT AA 0–1 × 10−2 M 180 mM DPV Dermal 171
Pyox/LSGE DA 0.01–0.5 and 0.5–10 mM 0.007 mM DPV Human serum and tap

water
129

PANI-WO3/GCE DA 20–300 mM 0.139 mmol
L−1

CV, DPV, EIS Standard 125

CoO/N-CS-rGO DA 0.5–110 0.15 CV Standard and human
serum

126

PEDOT-G-TYR DA N/A 101 × 10−9 M Amp Tear 124
Graphene/PEDOT/TYR DA N/A 101 × 10−9 M Amp Tear 124
AuNPs@PANI/CS/GCE DA 10–1700 mM 5 mM CV, amp and DPV Standard and real sample 110
Ni@poly-1,5 DAN/GC DA 100–500 mM 0.00011 SWV Serum 168
Pt/rGO paper DA 87 nM to 100 mM 5 nM DPV Living cell 172
rGO MEA DA N/A 0.1 mM DPV Sweat 131
GF/NiCo2O4 DA 1–13 mM 0.1 mM CV Urine 93
Pt/LSG DA 0.5–56 mM 0.07 mM CV and DPV Urine 94
PEDOT/LSG DA 1–150 mM 0.33 mM Amp Rat brain 173
GF/NiCo2O4 DA 1–13 mM 0.1 CV and DPV Serum and urine 93
Textile-OECT/PEDOT:PSS DA 1–10 × 10−6 1 mM DPV Sweat 173
Textile-OECT/PEDOT:PSS AD 10–100 × 10−6 M 10 mM FET Sweat 173
Transfer tattoo AA 10–50 mM N/A CV Sweat 169 and

170
SPCE-PPy-urease Urea 10 mM to 5mM 8 mM Poten Sweat 174
AuMNA-P(GMA-co-VFc) Urea 50–2500 × 10−3 2.8 mM CV Transdermal 174
rGO MEA Tyramine N/A 3.7 mM DPV Sweat 175
LEG-CS Tyramine N/A 3.6 mM DPV Sweat 95
E200acryl-CP/catechol-agar Tyrosinase 0.1–0.5 mg mL−1 N/A Amp Transdermal 176
Au/rGO/Au-Pt NP/GOx/Naon Glucose 0–2.4 × 10−3 M 5 mM CV, amp Sweat 141
GOx/Pt-graphite Glucose 0–0.9 mM 0.01 mM Chrono amp Human perspiration 177
PANI/TEGO/PVA Glucose 0.2 mM to 10 mM 0.2 mM CV Sweat 177
PB/Au-graphene/GOx Glucose 10 mM to 0.7 mM 10 mM CV Sweat 178
Pt/Co/NPG/GO Glucose 35 mM to 30 mM 5 mM Amp Blood 179
PtAu/rGO-CNT-IL/GP Glucose 0.1–11.6 mM 80 mM Amp Blood 180
GO/PB/Gp-hybrid Glucose 0.01–0.7 mM 10 mM Poten Sweat 178
Au/graphene/AuNps/GOD Glucose 0–40 mg dL−1 0.3 mg dL−1 Amp ISF 181
LIG/PtNPs Glucose 300 nM to 2.1 mM 300 nM Amp Blood 182

22980 | RSC Adv., 2023, 13, 22973–22997 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 (Contd. )

Sensing material Analyte Detection range
Detection
limit

Method of
detection Sample Ref.

rGO/AuPtNPs Glucose 0–2.4 mM 5 mM Amp Sweat 141
GOx/Au/MoS2/Au-nanolm Glucose 500–100 nM 10 nM Amp Human serum 141
Uricase/ZnONW Glucose 0.042–0.208 × 10−3 M 20 mM Piezo Sweat 137
D-Lactate assay kit Glucose 0–6.3 × 10−3 M N/A Colo Sweat 140
PB ink/chitosan/BSA/GOx Glucose 10–100 × 10−6 M 3 mM Amp ISF 143
PB ink/agarose/chitosan/GOx Glucose 0–160 × 10−6 M N/A Amp ISF 22
Alcoxysilanes-PB-GOx Glucose 1 mM-1 mM 1 mM Amp Sweat 183
C-PB ink-GOx Glucose 2–10 × 10–3 M 50 mM Amp Sweat 142
rGO/PU-Au Glucose 500 × 10−9 to 10 × 10−3

M
500 × 10−9 M CV Sweat 1

Au/Pt black-Naon Glucose 50 × 10−6 to 36 × 10−3 50 mM Amp ISF 184
GOx/Pt NPs/PANI/MEA Glucose 2–12 × 10−3 M 260 mM Amp Standard sample 162
GOD/CMC/Microneedles Glucose 0–35 × 10−3 M 40 mM Chrono-amp ISF 185
GOx/PANI-PEO/Pt Glucose 1–10 × 10−3 M 820 mM CV Standard sample 186
Naon/GOx/AuNP-PVP-PANI Glucose 0.05–2.25 × 10−3 M 10 mM CV Serum 187
GOD/Pt/MWNT-PANI/GCE Glucose 0.003–8.2 M 1 mM Chrono amp Standard sample 188
Chitosan-PVA/GOx Glucose 5–50 mg dL−1 N/A Poten Tears 189
Chitosan-PVA/GOx Glucose 0.1–0.6 mM N/A Poten Tears 190
PEGDA Glucose 0–4 × 10−3 M 1 mM CV Transdermal 191
Uricase/ZnONW Lactate 0–20 × 10−3 M 0.1 × 10−3

mM
Piezo Sweat 137

PEGDA Lactate 0–1 × 10−3 M 1 mM CV Transdermal 191
GP-MoS2-Cu-LOD Lactate 5–1775 mM 500 nM Amp Sweat 192
CNTs/Ti3C2Tx/PB/CFM Lactate 10 mM × 10−3 M 0.67 mM Amp Sweat 193
BSA-Lox/SPEES/PES Lactate 0–28 × 10−3 M N/A Amp Sweat 194
AuMN/AuMWCNT/MB Lactate 0.01–0.2 × 10−3 M N/A Amp Transdermal 195
E200acryl-lled CP-PEI-LOx Lactate 0–8 × 10−3 M 0.42 M Amp Transdermal 196
GTA/BSA/LOx Lactate 0–1 mM N/A Amp ISF 197
Lactate oxidase Lactate 0.1–0.5 mM N/A Amp Saliva 198
Cat-Fe3O4/rGO H2O2 3.30 mM to 5.56 mM 110 nM Amp PBS 199
GF/AuNS H2O2 9.4 mM to 13 mM 1.62 mM Amp PBS 200
IL-rGO H2O2 0.1–37.6 mM 0.01 m Amp PBS 200
Au/MnO2/graphene-coated CP H2O2 0.05–14.2 mM 2 mM Amp Cancer cell 176

a Abbreviations: Amp-amperometric, Poten-potentiometric, DPV-differential pulse voltammetry, CV-cyclic voltammetry, ECL –
electrochemiluminescence, Chrono amp-chrono amperometry, Colo-colorimetric, UA-uric acid, AA-ascorbic acid, DA-dopamine, AD-Adrenaline,
PEDOT-poly(3,4-ethylenedioxythiophene), PSS-polystyrene sulfonate, GA-graphene, SWCNT-single-walled carbon nanotube, MWCNT-multiwalled
carbon nanotube, CNT-carbon nanotube, GOx-glucose oxidase, UOx-uricase oxidase, PB-Prussian blue, BSA-bovine serum albumin, PVA-
polyvinyl acetate, PANI-polyaniline, NW-nanowire, rGO-reduced graphene oxide, CP-carbon paste, PEI-polyethyleneimine, LOx-lactate oxidase,
PEG-polyethylene glycol, OECT-organic electrochemical transistors.
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employed for the determination of AA in different samples,
human serum, fruit juices, and vitamin C tablets without the
interference of serum substances. The electrochemical reaction
mechanism for the response is explained by the following
equation:109

L-ascorbic acid þ 1=2O2 �!AsOx
dehydroascorbic acid þ H2O

O2 + 4H+ + 4e− / H2O

With this kind of polymer, another biosensor was proposed
by L. Yang group.110 Their developed electrode, AuNPs@PANI/
CS/GCE showed very excellent catalytic activity and selectivity
to the electro-oxidation of DA and AA with peak currents in the
© 2023 The Author(s). Published by the Royal Society of Chemistry
range of 10–1700 and 20–1600 mM and detection limits of 5 and
8 mM, respectively.

In a very recent study, Rossato et al. reported111 that, GO/
NNO biosensors might be a suitable candidate for the devel-
opment of exible and wearable electrochemical devices to use
in AA detection with a very simple assembly, fast response,
ultra-sensitivity, and low cost. They showed that a laser-induced
graphene (GO) electrode with two different NaNiO3 (NNO)
nanotubes, distinctive with their external diameter of 20 nm
(NNO20) and 100 nm (NNO100) is a very promising candidate
for the detection of AA in synthetic sweat. Both electrodes can
detect AA in the linear range of 30–1100 mM−1, while the
sensitivity of GO/NNO100 (0.031 mA mM−1 cm−2) is signicantly
better than GO/NNO20 (0.023 mA mM−1 cm−2). According to the
sensitivity results, the diameters of NTs seem to affect the
RSC Adv., 2023, 13, 22973–22997 | 22981
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Fig. 5 Schematic illustrations of sweat gland structure, biomarker secretion, and wearable biosensor for uric acid detection in sweat. Adopted
from ref. 62 with permission from Elsevier, Copyright© 2021.

Fig. 6 Wearable sweat analysis patch based on SilkNCT. (A) and (B)
Schematic illustration of wearable sweat analysis patch mounted on
human skin (A) and the multiplex electrochemical sensor array inte-
grated into the patch (B). (C) Photograph of the wearable sweat
analysis patch. Adopted from ref. 117 with permission from the Amer-
ican Association for the Advancement of Science (AAAS), Copyright©
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sensitivity due to their impact on Ni oxidation, thus affecting
the biosensors performance.

Another study by Junlin Ma et al.,112 reported on the devel-
opment of wearable self-powered textile smart sensors and their
effectiveness in smart sensing systems for the portable detec-
tion of nutrition with a high sensitivity of 96.6 mA mM−1 cm−2

and a low LOD of 30 mM. They proposed a novel pH-assisted O/
W (oil/water) self-assembly system of the bi-functional PANI/
reduced graphene oxide (RGO) composite lm. On the O/W
interface, the composite lm (PANI/RGO) exhibited both good
capacitive performance and high-performance biosensing
properties for AA detection, enabling it to act as a power source
for wearable biosensors.

Vitamin C (ascorbic acid-AA) is a known nutrient in the
human body needed for the formation of blood vessels, carti-
lage, muscle, and collagen in bones. It is always important to
keep track of the nutrients level in the body. Sweat contains rich
chemical information, and further is an attractive bio-uid for
routine assessment of nutrient levels of the human body. For
nutritional screening and dietary intervention, a wearable
sensor that can selectively measure AA concentration in bio-
uids, including sweat, urine, and blood was developed by
Zhao et al.113 On the oral intake of vitamin C, they monitored its
concentration increases (compared without intake) in sweat
along with urine and blood. They used a conductive polymer,
poly (3,4-ethylene dioxythiophene) doped with lithium
perchlorate (PEDOT:LiClO4) on the Au surface, encapsulated
with Naon that was characterized by measuring amperometric
responses with LOD of z4 mm. It showed high selectivity
against glucose, lactate, and uric acid in the same measure-
ment. The developed sensor showed a linear response within
0 to 5000 mm with a sensitivity of 1.2 and 2.0 nA mm−1 for bare
Au and nano-textured electrodes, respectively.

An epidermal noninvasive bioelectronics wearable biosensor
was developed114 for the detection of vitamin C in sweat (AA),
realized by immobilizing the enzyme ascorbate oxidase (AAOx)
on printable tattoo electrodes. Here, the AAOx enzyme catalyzes
22982 | RSC Adv., 2023, 13, 22973–22997
the oxidation of AA to dehydroascorbic acid by oxygen.
Furthermore, this amount of oxygen consumed by the reaction
is directly proportional to the concentration of AA, and the
reduction current of the oxygen.115,116 Co-substrate expresses the
changes in the AA concentration level by an amperometric
method aer the intake of vitamin pills and fruit juices, and, the
related chemical reaction already discussed earlier, reported by
Chauhan et al.109

For the real-time and multiplex sweat analysis such as
glucose, lactate, ascorbic acid, uric acid, Na+, and K+ simulta-
neously, an integrated sensor was developed by Wenya He and
his group.117 They used silk fabric derived intrinsically from
nitrogen (N) doped carbon (graphitic) textile (SilkNCT), as
2019.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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illustrated in Fig. 6. For high selectivity glucose and lactate
sensors, the working electrode was fabricated by drop-casting of
glucose oxidase/chitosan and lactate oxidase/chitosan solution
onto the Pt/SilkNCT electrode. The good electrical conductivity
(electrochemical activity for redox reactions of the molecules)
and rich active sites ensured high sensitivity of the AA and UA
sensors made of pristine SilkNCT. The reason for this sensitivity
can be attributed to N-doping and the hierarchical structure of
SilkNCT. While measuring AA and UA, the sensor showed
a linear range of 20 to 300 mM and 2.5 to 115 mM, LOD of 1 and
0.1 mM, and a sensitivity of 22.7 and 196.6 nA mM−1,
respectively.

For the measurements of glucose in real time it is always
important to measure the accurate amount of glucose. Succes-
sive reports were also published reporting different substrates
and electrode materials.

Dopamine (DA). Dopamine (DA) is a biomolecule and a key
substance, which regulates the body's metabolism, and central
neurological systems including mental activity in the human
brain and body. If there is any deciency or excess of DA, it
causes various serious disorders and illnesses, including Par-
kinson's disease, senile, dementia, Harrington's, epilepsy, and
schizophrenia.118–123 There are several methods for the detection
of DA in the human body.

W. Zhang and his group124 showed that the content of DA can
be detected by a wearable corneal biosensor. The sensor is
prepared by enzyme tyrosinase, and poly (3,4-ethyl-
enedioxythiophene) functionalized with sulfur-doped graphene
(PEDOT-G) on a self-designed corneal microelectrode. Here, the
sulfur-doped p–p conjugated graphene contributed to a high
electroactivity in the resulting microelectrode of PEDOT-G with
excellent selectivity and high sensitivity of 12.9 mA × 10−3 m−1

cm−2 and a good LOD of 101 × 10−9 M.
A very recently developed sensor, PANI-WO3/GCE125 proved

an excellent sensor for the detection of DA with a good linearity
of concentration range of 20–300 mM and a detection limit of
0.139 mmol L−1 and further showed good selectivity.

Clinically applicable diagnostic graphene-based sensor CoO/
N-CS-rGO/GCE was reported126 to monitor two analytes, dopa-
mine and uric acid (UA) in human serum with high accuracy. It
is an ultrasensitive electrochemical sensor, for DA and UA with
a sensitivity and linear range of 1378 and 1393 mA mM−1, and
0.5–110 and 1–125 mM, respectively, with satisfactory stability,
and a fast sensing process without pretreatment. The possible
oxidation reaction can be expressed as follows127,128

CoO + H2O / CoOOH + H+ + e−

CoOOH + C8H11NO2 (DA) / CoO + C8H9NO2 (dopamine-o-

quinone)

CoOOH+C5H2N4O3 (UA)/CoO +C5H2N4O3 (dehydrourate)

Polypyrrole (PPyox) modied laser scribed graphene elec-
trode (LSGE) for DA sensing was successfully developed,129

showing a great potential to be applied in exible wearable
© 2023 The Author(s). Published by the Royal Society of Chemistry
biosensors. This modied electrode is very selectivity to DA in
the presence of AA with a lower limit of detection of 7 nM and
linearity of 0.5–10 mM, which can be employed for human blood
serum and tap water samples, with satisfactory recovery values.

Glucose sensor. A glucose sensor based on a platinum wire
and peruorosulfonic acid polymer-coated enzyme electrodes
was developed by Harrison et al. for blood sample.130 Their
device showed a linear response from 10 nA to 2 mA with lower
LOD <2 nA. For the detection and quantication of blood
glucose samples, enzyme-based electrochemical sensors were
also developed and some of them were based on invasive blood
sampling techniques. Examples of these sensors are, screen-
printed carbon (SPC) paste electrodes attached with a glucose
oxidase immobilizer and hexamine ruthenium(III) chloride
[Ru(NH3)6]

3+ containing nitrocellulose electrode,131 thermal
biosensor evaluated for the determination of glucose in whole
blood by measuring the heat evolved when the glucose sample
passed through in a small column with immobilized glucose
oxidase with a directly measurable catalase around 1 mL,132 and
amperometric glucose sensor on a Prussian blue layer devel-
oped based on glucose oxidase immobilized by chitosan for
blood sample exhibiting an excellent sensitivity of 98 nA M−1

with a linear range of 0.1–6.0 mM.133 For human perspiration,
previously used glucose-oxidase immobilized on Pt-decorated
graphite exhibited a low LOD of 10 mM with a linear range
between 0 mM and 0.9 mM.134

Changes in glucose and norepinephrine levels can be
monitored in tear uid samples by an amperometric rolled
thick-lm biosensor. The glucose oxidase (GOx) with thick-lm
carbon working electrode showed a sensitivity range of 20–200
mM for glucose solution,135 while measuring the common elec-
troactive interferences of ascorbic and uric acids can be effec-
tively excluded using polytyramine.136 For the norepinephrine
sample, the ow rolled microsensor of copper-clad polyimide
contacted with screen-printed band electrodes displays sharp
anodic peaks, i.e., the amperometric signals over the 300–
900 ppb range, which reect the rapid and sensitive response to
the sample.135

The enzyme/ZnO nanoarray-based piezo biosensor electrode
was proposed and named electronic-skin,137 where the surface
of ZnO nanowires was modied with lactate oxidase, glucose
oxidase, uricase, and urease. This developed electronic skin was
a self-powered biosensor and could detect and monitor lactate,
glucose, uric acid, and urea in the perspiration in real-time and
continuously.137 It is noteworthy that selectivity is an important
parameter for biosensors.138

Glucose þ H2O þ O2 �!GOx
gluconic þ H2O2

H2O2 / 2H+ + O2 + 2e− (ref. 139)

Modier lactate oxidase (LOx), glucose oxidase (GOx), uri-
case, and urease showed high selectivity against lactate,
glucose, uric acid, and urea in perspiration. Furthermore, piezo-
based biosensing performance arises from the coupling effect
RSC Adv., 2023, 13, 22973–22997 | 22983
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among them. While lactate oxidase can only detect lactate, and
the responses against glucose, uric acid, and urea are almost
close to zero, which ensures the applications of electronic skin
in real samples. The reaction between GOx and glucose can
produce gluconic acid and H2O2,138 next H2O2 can increase the
surface carrier density by producing H+ and e− (ref. 139) thus
affecting the piezoelectric effect.

Another wearable microuidic device was developed and is
capable of monitoring human health conditions by the quan-
titative chemical analysis of sweat. Their microuidic device can
robustly bond to the skin surface (a small set of sweat glands
such that perspiration spontaneously initiates routing of sweat)
without mechanical and chemical irritation, which approaches
based on a sporadic assessment of blood samples containing
glucose or lactate.140

A wearable low-cost electrochemical glucose biosensor
comprising a hybrid working electrode Au/rGO/AuPtNP/GOx/
Naon,141 was successfully developed for the determination of
glucose levels/concentrations in human sweat by amperometric
analysis. The Au and Pt nanoparticles modied on the Au/rGO
surface contribute to the increase of the electroactive surface
area of the electrode, resulting in the acceleration of electron
transfer between the redox probe and the electrode. This sensor
showed a good analytical sensitivity of 82 mA mM−1 cm−2

actively with a linear range of 0.1–2.3 mM, demonstrating
a sufficient range for glucose sweat detection142 (Fig. 7).

As such, the detection of glucose in sweat samples is
becoming popular. Among these, interstitial uid (ISF) recently
received great attention in connection to the management of
diabetes.143–147 For the rst time, dual epidermal uid sampling
and detection methods integrated on a single conformal wear-
able platform22 based on PB ink/agarose/chitosan/GOx, (Prus-
sian blue (PB)) were reported. Furthermore, it showed a wide
range of concentration linearity around 0–160 × 10−6 M with 20
× 10−6 M increments and a very selective response to glucose
sample concentrations against the electroactive interference
compounds. Their developed concept and designed device are
capable of noninvasive glucose and alcohol analysis in healthy
Fig. 7 Microfluidic device design and operation. The soft epidermalmicro
the electrochemical detector. (A) Schematic representation of layered m
with incorporated sensor electrodes, (ii) PDMS microfluidic device, and
fluidic device sweat collection and operation on the skin in top-down a
grated with wireless conformal electronics on skin with lithography-base
and Prussian blue (WE and CE). Adopted from ref. 142 with permission fro

22984 | RSC Adv., 2023, 13, 22973–22997
humans and it further showed excellent correlation to
commercial blood glucometer subjecting consumption of food
and drink.

Several attempts were reported for the evaluation of glucose
concentration detection with painless, convenient, and auto-
mated capabilities. For the glucose self-monitoring systems,
proposed and developed methods include contact lenses,
watches, tattoos, and patches, which collect their information
from tears, interstitial uid, or sweat. Patch-type wearable
glucose sensor systems, which are wearable, can be mounted to
the human body, and are able to determine the glucose levels in
sweat or in ISF uids with sensing continuously and non-
invasively.

Biosensors can be used for the detection of female sex
hormone named 17b-estradiol, which is known as a natural and
bio-identical form of estrogen. A recent report by Bacchu
et al.,148 showed that the biosensor, g-C3N4/APTES/SPE (g-C3N4

= graphitic carbon nitride, APTES = 3-amino-
propyltriethoxysilane, SPE = screen-printed electrode) is very
effective and can detect estradiol with a wide range of linearity
from 1 × 10−6 to 1 × 10−18 mol L−1, LOD of 9.9 ×

10−19 mol L−1, high selectivity, and stability. Other biosensors,
such as aptamer-based label-free biosensors,149–153 near-infrared
(NIR) phosphorescence aptasensor,154 split aptamer regulated
CRISPR/Cas12a (CRISPR = Clustered Regularly Interspaced
Short Palindromic Repeats, Cas12a = RNA-guided endonu-
clease) biosensor,155,156 Hydrogel optical waveguide spectros-
copy a label-free biosensor,157 highly sensitive laccase-based
biosensor, i.e., Lac/rGO-RhNP/GCE electrode,158 Lac/PLLY/CA-
GR/GCE,159, (Lac = Laccase, CA-GR = critic acid@graphene,
PLLY = poly l-lysine), Impedance-based E-screen cell
biosensor160 were reported with excellent performance for
different kinds of samples with 17b-estradiol.

From the survey of metabolites and biomolecules, it was
found that uric acid detection is more priority on the uricase
enzyme modied surface by amperometric technique, ascorbic
acid on MWCNT modied surface by differential pulse vol-
tammetric (DPV) technique, dopamine on graphene surface by
chip device conforms to the skin and routes the sampled sweat toward
icrofluidic device configuration on skin composed of (i) top PDMS layer
(iii) adhesive layer on the skin. (B) Schematic representation of micro-
nd cross-sectional views. (C) Photograph of microfluidic device inte-
d gold current collectors and screen-printed silver–silver chloride (RE)
m American Chemical Society, Copyright© 2019.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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DPV technique, glucose on glucose oxidase surface by chro-
noamperometric technique and lactate on lactate oxidase by
amperometric technique. Thus, the modied surface materials
or receptors and the detection techniques can be counted as
selective detections of relative biomolecules.
3.4 Biosensor for protein and immune assay

The key to the innate immune response is the recognition of
danger signals or damaged tissue by receptors modied sensor
on the surface of the sensor.201 It is the rst line of the host
defense mechanism against pathogens and harmful
substances.202 Recently, it was reported that wearable biosensor
receptors can continuously monitor and patrol the host tissues
for microbes, damage, and stress, searching for signals of
danger and damage.201,203 A literature survey on protein and
immune assay is summarized in Table 4.

Nah et al., developed a wearable immunosensing path with
a microuidic system for cortisol biomarker detection. They
successfully incorporate Ti3C2Tx MXene nanosheets into the
porous structure of laser-burned graphene.204 This wearable
path system exhibited dynamic range and limit of detection of
0.01–100 nM and 88 pM, respectively. Additionally, conductive
carbon yarn (CCY) and Fe2O3 materials were directly deposited
onto the working electrode to improve exible electrochemical
biosensors. In this study, anti-Cmab was covalently bound onto
the Fe2O3/CCY surface using EDC as a coupling agent and NHS
as an activator. The fabricated BSA/anti-Cmab/Fe2O3/CCY elec-
trode was used to measure cortisol concentration from 1 fg to 1
mg in PBS (pH 7.0) by the CV technique.36 Furthermore, highly
specic single-stranded DNA (ssDNA) was immobilized onto the
ZnO active region to construct a label-free electrochemical
sensor for the real-time monitoring of cortisol levels. Here,
cortisol is bound with the captured probe, changing the
conrmation of the electrochemical signal.205,206 Another
contact lens-controlled cortisol monitoring in tears was re-
ported for the mobile-controlled electrochemical platform.207

Where monoclonal antibody was immobilized on the surface of
graphene to construct a FET sensor. This process was able to
measure low concentrations of cortisol. The schematic repre-
sentation of the smart contact lens packaging is shown in Fig. 8.

The aptamer-based eld effect transistor was developed
using graphene-Naon composite lm to detect the presence
and quantication of cytokine levels by immune sensing
human interferon-gamma (IFN-g). This inammatory cancer
biomarker was collected by adhesive and disposable membrane
capsule in sweat.209 Another report demonstrated aptamer
functionalized graphene-based eld effect transistor (GFET) for
immune sensing IFN-a, and IFN-g. In this study, a 2.5 mmMylar
lm was deposited on a glass slide and then the drain, source,
and gate electrodes were patterned by lithography process.
Thereaer, a graphene sheet in polymethyl methacrylate
(PMMA) was transferred onto the electrode, and aer dissolving
the PMMA layer the graphene was functionalized with the cor-
responding aptamer of IFN-a, and IFN-g.210 Additionally, poly-
aniline was electrodeposited on graphene screen printed paper
to increase surface area and immobilize the IFN-g antibody. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
remaining two electrodes were carbon ink and Ag/AgCl ink
screened.208 The systematic representation is shown in Fig. 6.
The other research work was done with an aerosol-jet-printed
graphene-based immunosensor capable of monitoring two
distinct cytokines enzymes, IFN-g and IL-10 with heavy-ranging
sensitivity. Here, the IFN-g and IL-10 antibodies were covalently
linked with graphene211 (Fig. 9).

Cancer biomarker detection using the paper-based differ-
ential pulse voltammetry method was a unique reported work in
which the electrode was modied using the corresponding
antibodies. In this study, GO was rst modied by drop casting
method, and then chitosan was dropped on GO lm and nally
incubated in glutaraldehyde solution to be ready for antibody
immobilization. To immobilize the antibody, AFP, CEA, CA125,
and CA153 captured antibodies were applied to a glutaralde-
hyde-modied electrode and aer drying, they were ready to
be applied in the corresponding antigen in PBS solution.213

Furthermore, the NH2-G/Thi/AuNPs nanocomposite was modi-
ed on a carbon working electrode and then anti-CEA was
fabricated on an amine-functionalized modied electrode.214

Pancreatic polypeptide Neuropeptide Y (NPY) detection is
certainly vital for immune sensing because it maintains essen-
tial biological processes in the human body. Kodjo et al. re-
ported the detection of the neuropeptide Y using anti-
neuropeptide Y-modied electrodes in sweat samples.212 The
modied electrode showed an ultrasensitive linear range of 10–
500 pg mL−1. Also, a graphene-based eld effect transistor
(GFET) was another electrode functionalized with anti-NPY and
nally was tested in sweat and saliva samples.215 Additionally,
the gold working electrode was carboxylate functionalized to
immobilize the TNF-a antibody and thereaer trialed in PBS
and sweat sample to measure TNF-a protein.216,217 In this liter-
ature survey, it was concluded that antigen detection showed an
excellent response with the corresponding antibody-modied
electrode.
4. Present challenges and future
prospects

Over the last few decades, carbon nanomaterials, metal nano-
materials, polymer nanomaterials, and bio-recognizedmodied
electrodes brought great attention to electrochemical sensors
and biosensors in human body uidic components. There are
several challenges that need to be addressed before the reali-
zation of wearable exible electronics, especially for the phys-
ical and chemical sensors.

Most recent wearable electrochemical and bio-sensing
devices can measure a limited range of biomarkers. The
multi-analyte measuring is essential for tracking health under
several dynamic conditions, and up to date, all efforts are
continued toward single and simultaneous monitoring. Addi-
tionally, the most accurate and reliable electrochemical
responses are the desires of modern electroanalytical chemistry.
Accuracy oen hinders bio-fouling effects through non-specic
binding, potential contamination from the surroundings, and
signal dri (sensor calibration). Another common wireless
RSC Adv., 2023, 13, 22973–22997 | 22985
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Table 4 A comparative protein and immune assay study by using wearable electrochemical and biosensora

Sensing material Analyte Detection range Detection limit
Method of
detection Bio-uid Ref.

Ti3C2Tx MXene/
LBG/PDMS

Cortisol 0.01–100 nM 88 pM EIS Sweat 204

CCY-Fe2O3-anti-
Cmab

Cortisol 2.75 × 10−15 to 2.75
× 10−6 M

1.38 × 10−17 M CV Sweat 36

ZnO SAM/DTSS/
ssDNA

Cortisol 1–256 ng mL−1 N/A EIS Sweat 206

Graphene/C-Mab Cortisol 1–40 ng mL−1 10 pg mL−1 Conduc Tears 207
Graphene-Naon Cytokines (IFN-g) 0.015–250 nM 740 fM FET Sweat 209
Graphene/PMMA/
PASE

Cytokines (IFN-a, IFN-
g)

N/A 2.75 PM and 2.89 PM FET Articial tears 210

PANI paper based
electrode

IFN-g 500–20000 pg mL−1 106 pg mL−1 EIS Serum 208

PANI/G-paper
based electrode

IFN-g 5–1000 pg mL−1 3.4 pg mL−1 EIS Serum 208

GFET/PASE or
Naon

IL-6, TNF-a, IFN-g N/A IL-6: 6.11 fM; TNF-a: 6.08 fM.,
IFN-g: 4.76 fM

FET Sweat, tears, saliva,
serum, urine

209, 210, 218
and 219

AJP graphene IDE/
PI

IFN-g and IL-10 0.1–5 ng mL−1 25 pg mL−1 EIS Serum 211

0.1–2 ng mL−1 46 pg mL−1

Graphene/AgNWs/
IgG

MMP-19 N/A 0.74 ng mL−1 FET Tears 220

AJP graphene IDE/
PI

Histamine 56.25 mM to 1.8 mM 30.7 mM EIS PBS 221

GO lm Rotavirus 103–105 103 CV PBS 222
Ag/GOx Inuenza A 10 ng mL−1 to 10 mg

mL−1
10 ng mL−1 Amp Sweat 223

Au/MoS2/Au/PET Gp 120 0.1 pg mL−1 to
10 mg mL−1

0.066 pg mL−1 SWV PBS 224

Anti-AFP/chitosan/
rGO

AFP 0.001–100 ng mL−1 0.001 ng mL−1 DPV PBS 213

Anti-CA125/
chitosan/r-GO

CA125 0.001–100 ng mL−1 0.001 ng mL−1 DPV PBS 213

Anti-CA153/
chitosan/r-GO

CA153 0.005–100 ng mL−1 0.005 ng mL−1 DPV PBS 213

rGO/Thi/Au NPzs CA125 0.1–200 UmL 0.01 U mL DPV Serum 213
Anti-CEA/chitosan/
r-GO

CEA 0.005–100 ng mL−1 10 pg mL−1 DPV PBS 213

(NH2-G)/thionine/
Au NPs

CEA standard 50 pgmL−1 to 500 ng
mL−1

10 pg mL−1 DPV PBS 214

BSA/ANTI-FTH/GO/
SPGE

Ferritin 1–1000 pg mL−1 0.19 ng mL−1 DPV Serum 225

TR-GO Anti-IgG 0.3–7 mg mL−1 10 mg mL−1 EIS PBS 226
rGO/Au NPs E. coli 1.5 × 102 to 1.5 ×

107 cfu mL−1
1.5 × 102 cfu mL−1 EIS PBS 227

Graphene/AMP E. coli N/A Single bacterium N/A Saliva 228
SPE/DTSSP/
antibodies

IL-1b, IL-6, IL-8, IL-10,
TNF-a, CRP

0.2–200 pg mL−1 N/A EIS Sweat 217

SPE/DSP/anti-NPY Neuropeptide Y 10–500 pg mL−1 N/A EIS Sweat 212
GFET/Pi stacked
PBASE

Neuropeptide Y 1 pM to 10 mM N/A FET Sweat 215 and 229

Au/TNF-a Peptides 0.1 pM to 00.1 mM N/A Amp Human serum 216
Textile/Zn NRs/
PANI

Pesticide N/A N/A Poten Body uid 217

a Abbreviations: Amp-amperometric, EIS-electrochemical impedance spectroscopy, CV-cyclic voltammetry, Conduc-conductometric, FET-eld
effect transistor, Poten-potentiometric, rGO-reduced graphene oxide, PANI-polyaniline, NRs-nanorods, SPE-screen printed electrode, BSA-bovine
serum albumin, NW-nanowires, LBG-laser-burned graphene, PDMS-polydimethyl siloxane, IgG-immunoglobulin G, PASE-1-pyrenebutanoic acid
succinimidyl ester, PMMA-polymethyl methacrylate, ssDNA-single-stranded DNA.
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electronic printed circuit board is used as a exible wireless
platform. Update is necessary and it can be performed by
establishing a high level of integration with the biosensor
22986 | RSC Adv., 2023, 13, 22973–22997
platform. Furthermore, according to the market analysis report
(report ID: GVR-2-68038-154-2), the global wearable sensor
market value will reach $2.86 billion by 2025. This market price
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Wearable contact lens packaging, (A) smart contact lens integrated with three-dimensional interconnects, the sensor on the rigid island. A
capacitor and resistor were interconnected for resonance frequency and reference resistance. (B) Fabricated smart contact lens, (C) optical
transmittance and haziness of hybrid material, (D) after and before radiation characteristics of the stretchable antenna, (E) relative resonance
frequency in PBS and artificial tears up to 192 hours (inset: radiation characteristics of antenna in artificial tears for 12 and 192 hours). Adopted
from ref. 208 with permission from Elsevier, Copyright© 2019.

Fig. 9 Fabrication of Human Interferon-gamma (IFN-g) immunosensor for the detection in serum samples. The figure is adopted from 212 with
permission from The Royal Society of Chemistry, Copyright© 2020.
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majorly depends on the wearable biosensor platform success-
fully integrated with the electrode modication material selec-
tion and nding out proper fabrication routes.

Proper installation of mobile devices and smartphone-based
wireless platforms, including algorithm-based applications, is
expected to facilitate the successful translation of wearable
biosensors and proof-of-concept demonstration. Moreover,
wearable biosensor technologies can improve human health
and performance by monitoring and taking physiological
treatment in human dynamic life. Furthermore, radiofrequency
or bluetooth-based identication with wearable physical and
chemical sensors will facilitate data transmission from users to
cellphones/computers.230–232 The goal is to make a wearable
exible, decomposable, low-cost, high-performance, reliable,
catalytic, highly conductive, and porous nanostructured
working electrode with a suitable wireless installation that can
© 2023 The Author(s). Published by the Royal Society of Chemistry
address the demand of the next generation. Such future wear-
able electrochemical sensors and biosensors will non-invasively
monitor a wide range of biomarkers including ions, drugs and
toxins, metabolites and biomarkers, proteins and immune
assays. These advances will reach a multidisciplinary collabo-
ration in nano-engineering, bioengineering, electronics, and
medical communications.
5. Conclusions

Wearable sensor technology is evolving in a remarkable way.
The ability of these devices to extract quantitative and innova-
tive information in real-time, especially selective detection with
limited funds, enhanced the advancements in elds such as
nanotechnology and internet-based point of care, revolution-
izing user health, well-being, and safety practices. In
RSC Adv., 2023, 13, 22973–22997 | 22987
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electrochemical sensors, the production of these wearable
platforms has drawn signicant attention to wearable
approaches. This is due to the fact that such techniques enable
the production of fully integrated devices in a miniature,
adaptable, and durable manner, enabling direct analysis of the
human body and processing the wireless data transmission to
a portable device. Although wearable sensors have largely been
developed for health and tness purposes, these technologies
are crucial for many different scientic and industrial domains.
From the perspective of practical applications and commer-
cialization, little attention has been given to crucial and
fundamental processes that will lead to the device's ultimate
goal of leading smart life.
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