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Optimizing the luminescence efficiency of an
europium (Eu**) doped SrY,O, phosphor for
flexible display and lighting applications
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This research paper reports the synthesis and luminescence study of an Eu®* activated SrY,O,4 phosphor
prepared by a modified solid-state reaction method with varying concentrations of Eu®* ions (0.1-
2.5 mol%). X-ray diffraction (XRD) revealed the orthorhombic structure and Fourier transform infrared
spectroscopy (FTIR) methods were used to analyse the produced phosphors. Photoluminescence
emission and excitation spectra were recorded for varying concentrations of Eu** ions, and an optimum
concentration of 2.0 mol% was found to produce the highest intensity. Under 254 nm excitation the
emission peaks were found to be at 580 nm, 590 nm, 611 nm and 619 nm, corresponding to transitions
at 5Do - 7F0, 5Do - 7F1, and 5Do - 7F2 respectively. Because of Eu®* inherent luminosity, these
emission peaks indicate radiative transitions between excited states of ions, making them useful for
developing white light-emitting phosphors for optoelectronic and flexible display applications. The 1931
CIE (x, y) chromaticity coordinates were calculated from the photoluminescence emission spectra and
found to be near white light emission, indicating the potential application of the prepared phosphor for
light emitting diodes (white component). TL glow curve analysis was also performed for various
concentrations of doping ions and UV exposure times, and a single broad peak was observed at 187 °C.
Using the computerised glow curve deconvolution (CGCD) method, kinetic parameters were computed.

1. Introduction

The rosy fantasy of a life that can be controlled with the press of
a button and more automation would make the daily lives of
humans easier. The current trend of innovation and research
has made it easier for people to explore new areas of science and
technology. Smart materials are one of the aspects of this new
frontier. Smart materials are any substances that are capable of
detecting or responding to outside stimuli. There are many
other types of stimuli that may be used, including environ-
mental, optical, chemical, electrical, thermal, biological, phys-
ical, etc.'™ Since the reduction in the size of display systems,
luminescent materials have attracted a lot of research
attention.>” Applications for smart luminescent materials are
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widespread, ranging from polymeric optical fibers and LEDs to
displays, self-emitting devices, and light sensors.*** Achieving
durability and adaptability of the electronics and materials used
in flexible electronic devices without compromising perfor-
mance is a critical challenge for smart materials."*™® This
obstacle is readily overcome with the use of nanotechnology.
The usefulness of several micro- and nanoparticles as smart
materials has been reported.**> Because of this, the intrinsic
luminescence feature is the main focus of this study. This
property has the potential to be employed in an intelligent
(smart) material regarding applications of flexible display.

Europium (Eu®**) doped SrY,0, is a well-known lumines-
cence material because it exhibits strong and long-lasting red
luminescence under ultraviolet or blue light excitation. The
luminescence properties of this material are due to the presence
of Eu*" ions, which are known for their unique electronic
transitions. There are several reasons why Eu®* doped SrY,0, is
a good luminescence material:

(1) Quantum yield: the quantum yield refers to the efficiency
of a phosphor in converting absorbed energy into emitted light.
Eu*'-doped SrY,O, phosphor has a relatively high quantum
yield, typically ranging from 60% to 80%. However, it's impor-
tant to note that the quantum yield can vary depending on the
specific manufacturing process and conditions.
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(2) Color purity:

e Eu’*-doped SrY,0,: this phosphor typically exhibits a red
emission providing good color purity.

e Y,0;:Eu: this phosphor is known for its red emission,
offering high color purity.

e Y,0,S:Eu: this phosphor generally produces a yellowish-
red emission, which also has good color purity.

(3) Cost: the cost of phosphor materials can vary based on
several factors, including the availability of raw materials and
the complexity of the manufacturing process. Eu**-doped
SrY,0, phosphor is relatively more expensive compared to some
other commonly used phosphors such as cerium-doped yttrium
aluminum garnet (YAG:Ce) or various sulfide-based phosphors.
The higher cost can be attributed to the specific composition
and synthesis methods required to produce SrY,O,:Eu’*
phosphor.

(4) Stability and lifetime: phosphor stability and lifetime are
crucial factors to consider in practical applications. Eu**-doped
SrY,0, phosphor exhibits good thermal and chemical stability,
allowing it to withstand the harsh conditions typically
encountered in solid-state lighting devices. Additionally, it
offers a long operational lifetime, ensuring sustained perfor-
mance over extended periods.

(5) Excitation wavelength: another important aspect is the
excitation wavelength required to activate the phosphor mate-
rial. Eu**-doped SrY,0, phosphor typically requires ultraviolet
(UV) or near-UV excitation in the range from 250 to 350 nm. This
wavelength range can be achieved using various light sources,
including UV LEDs and mercury lamps.

(6) Luminescent properties:

e Eu’"-doped SrY,0,: this phosphor has a relatively high
luminescence efficiency, long decay time, and good thermal
stability, making it suitable for various applications such as
lighting and displays.

e Y,0;:Eu: phosphor is known for its high luminescence
efficiency and good thermal stability, making it commonly used
in red-emitting devices.

® Y,0,S:Eu: phosphor also has high luminescence efficiency
and good thermal stability. It is often used in yellowish-red-
emitting devices.

(7) Application specifics:

e Eu**-doped SrY,04 due to its blue-green emission, this
phosphor is often used in applications requiring a specific color
range, such as white LEDs and plasma displays.

e Y,0;:Eu: phosphor finds extensive use in red-emitting
devices like fluorescent lamps, plasma displays, and cathode
ray tubes (CRTs).

® Y,0,S:Eu: phosphor is commonly employed in yellowish-
red-emitting devices like white LEDs, plasma displays, and
CRTs.

Metal oxides with rare earth ion doping have mostly been
used for their luminous characteristics. Rare earth ion-doped
alkali earth metallic yttrates (MY,04, M = Ba, Ca, and Sr) have
been seen to exhibit prominent optical emission. According to
reports, SrY,O4RE*" (RE = Dy, Eu, Tb, Gd, Sm, Ce, and Er) may
be made using a variety of techniques, including solution
combustion, sol-gel, citrate sol-gel, polyol, oil emulsion, aldo-
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keto gel, and co-precipitation.”® The red optical emission of
europium makes it one of the intriguing and flexible lantha-
nides, making it a prime candidate for luminescence applica-
tions. SrY,0,:Eu®" (SYO:Eu) has a structure similar to CaFe,0,
and exhibits magnificent down-conversion luminescence. At
a wavelength of 611 nm, the very powerful emission line
produced by the Eu®" long-lived transition *D, — ’F, may be
seen. With the excitation of 254 nm (UV region), europium ions
are useful for light emitting phosphor and flexible display
applications.***® In this paper, we describe how to easily make
new Eu®*" doped SrY,0, phosphors, which may be utilized to
improve the attractive performance of intelligent (smart)
materials for flexible displaying applications. SYO:Eu phos-
phors emit red light when exposed to UV radiation.

2. Experimental

The preparation of the SrY,0, doped with Eu®" specimen
involves a solid-state reaction method. The necessary starting
materials, including SrCO;, Y,03, Eu,03, and H;BO;, Here are
the steps for synthesis and characterization of Eu®" doped
SrY,0, phosphor:

e Preparation of starting materials: SrCO3, Y,03, and Eu,0;
are weighed and mixed in stoichiometric amounts to obtain the
desired composition of SrY,0,:Eu®’.

e Mixing and grinding: the mixture of powders is then
ground together in an agate mortar and pestle for 2 hours to
ensure a homogenous mixture.

e Calcination: once the mixing was complete, the resulting
powder was placed into a furnace and heated to a temperature
of 1000 °C for duration of 1 hour.

e Sintering: after calcination the mixture of powders grind
for 1 hour in an agate mortar and pestle and the homogenized
powder mixture is then calcined in air at a temperature of 1250 ©
C for 3 hours to form the desired SrY,0,:Eu®" phosphor. Higher
temperature was needed to ensure that the reaction was
complete and that the product was fully formed.

The resulting specimen, SrY,0, doped with Eu®’, was then
allowed to cool to room temperature. The specimen was char-
acterized using various techniques to confirm the desired
properties, such as its crystal structure, morphology, and
luminescent properties.

3. Results and discussion
3.1 X-ray analysis

XRD is a widely used technique that involves shining a beam of
X-rays onto a sample and measuring the angle and intensity of
the diffracted X-rays. The sample's crystal structure and content
may be determined from the ensuing XRD pattern. The XRD
pattern of Eu*" doped SrY,0, phosphors typically shows char-
acteristic peaks corresponding to the crystalline phases present
in the sample. The main phase is SrY,0,4, which exhibits aor-
thorhombic crystal structure. The XRD peaks of SrY,O, are
sharp and well-defined, indicating a high degree of crystallinity
and phase purity. The positions and intensities of the peaks can

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) XRD pattern of SrY>O4:Eu®* phosphor. (b) XRD pattern of
SrY,Q4:Eu®*phosphor for 0.2 mol%.

be used to calculate the lattice parameters and crystal structure
of the material.

The XRD pattern of the sample is shown in Fig. 1 where
aorthorhombic structure is displayed. These values match those
of the International Centre for Diffraction Data (JCPDS) card
No. 032-1272. The crystallite size of the phosphor was calculated
using the Scherer equation. The average crystallite size of the
phosphor was found to be 34.068 nm (Table 1).

Table 1 Crystallite size for 0.2 mol% of SrY,O4:Eu**" phosphor

Peak position Crystallite size Average size

hkl (26) FWHM D (nm) D (nm)
220 23.21705 1.38028 5.876894136 34.06808
*011 27.24806 0.13642 59.93173053

320 30.67829 0.2346 35.12083109

201 31.62791 0.2148 38.44694105

131 35.83333 0.13504 61.83951978

401 44.26357 0.19296 44.45405375

322 63.17829 0.52107 17.90162841

362 79.24419 1.14963 8.973048289

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 FTIR spectra of SrY,04:Eu®* phosphor (2.0 mol%).

3.2 FTIR analysis

Fig. 2 displays the SrY,0,:Eu®" (2%) phosphor's FTIR spectrum.
Strong, sharp peaks may be seen in this spectrum between 445-
863 cm ', which are indicative of Y-O vibrations. An IR peak
with a wavelength of 1455-1643 cm ™" is produced when Sr-O is
present.*” The production of SrY,O, phosphor is confirmed by
all of these observed peaks taken together (Table 2).

3.3 Scanning electron microscopy (SEM)

Scanning Electron Microscopy (SEM) is a powerful character-
ization tool that is used to examine the morphology and surface
features of europium (Eu®*") doped SrY,O, phosphors. The

Table 2 Crystallite size for 0.5 mol% of SrY>O4:Eu*" phosphor

Peak position Crystallite size Average size

hil (26) FWHM D (nm) D (nm)
220 23.34254 0.9755 8.317365003 33.4503
*011 27.31909 0.13849 59.04481715

320 30.8561 0.29096 28.32989183

201 31.86547 0.26985 30.62172567

131 36.14804 0.15282 54.69350767

401 44.49721 0.18065 47.52278414

322 63.39878 0.3074 30.38083641

362 79.58315 1.1897 8.692154104

Table 3 Crystallite size for 1.0 mol% of SrY,QO4:Eu®* phosphor

Peak position Crystallite size Average size

hil (26) FWHM D (nm) D (nm)
220 23.33911 0.6755 12.01116121 34.7837
*011 27.39439 0.1938 42.20033311

320 30.7273 0.30141 27.33922054

201 31.70426 0.28279 29.2088247

131 36.01264 0.17439 47.91012036

401 44.35684 0.17304 49.58794225

322 63.23297 0.58242 16.02063895

362 79.48164 0.19139 53.9915117

RSC Adv, 2023, 13, 20217-20228 | 20219
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Table 4 Crystallite size for 1.5 mol% of SrY,04:Eu®t phosphor

Peak position Crystallite size Average size

hkl (20) FWHM D (nm) D (nm)
220 23.35613 0.38574 21.03434538 32.0282
*011 27.56954 0.1934 42.30342242

320 30.80483 0.28707 28.71023965

201 31.80803 0.25283 32.67844571

131 36.17191 0.17999 46.4405259

401 44.47332 0.19451 44.13273883

322 63.33333 0.42113 22.16839805

362 79.5098 0.551 18.75779935

technique involves focusing a beam of electrons onto the
surface of the sample, causing it to emit secondary electrons
that are then collected and analyzed by detectors (Table 4).

When SEM is used to study Eu** doped SrY,0, phosphors, it
provides high-resolution images of the particle size, shape, and
distribution (Fig. 3). The technique can also be used to observe
any morphological changes that occur as a result of the
synthesis method or thermal treatment. SEM imaging can
reveal the surface features of the phosphor particles, such as
cracks, pores, or other defects, which can affect the lumines-
cence properties of the material (Table 5).

3.4 Energy dispersive X-ray spectroscopy (EDX)

Energy Dispersive X-ray Spectroscopy (EDX) analysis is a valu-
able tool for studying the elemental composition of Eu** doped
SrY,0, phosphors and can provide important insights into the
materials’ luminescence properties. By optimizing the
elemental composition and concentration of the phosphor,
using this technique we can enhance the luminescence
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Table 5 Average crystallite size for concentration (0.2-1.5) mol% of
SrY,04:Eu®t phosphor

Concentration Average crystallite
S. no (mol%) size D (nm)
1 0.2 34.068
2 0.5 33.4503
3 1 34.7837
4 1.5 32.0282

efficiency and stability of the material, which can have impor-
tant implications for applications such as lighting and sensing.

It is an analysis of the components of produced phosphor.
Fig. 4a displays quantitative representations of the sample's Y,
Sr, O, and Eu elements. The data supports the conclusion that
SrY,04:Eu®" phosphor can be synthesized. The qualitative
analysis of the process of creating the components is shown in
Fig. 4b.

3.5 Photoluminescence (PL) observation

Doping with Eu®*" ions improved the emission spectra of the
host SrY,O, phosphor, which has no luminescence.”® The
SrY,0, phosphor doped with Eu®* PL excitation spectra are
shown in Fig. 5. Excitation spectra were captured at an emission
wavelength of 613 nm. It has a wide spectrum between 190 and
254 nanometers. Eu*" doped SrY,0O, phosphor's PL emission
spectrum, measured at 254 nm, shows the typical emissions at
580, 590, 611, and 619 nm. Fig. 6. The emission spectra of Eu**
are produced by transitions between °D, — “F, (J = 0, 1, 2).%®
The brightest emission band can be seen at 611 nm, which is
associated with the electric dipole transition D, — ’F, (ref.
23-25). The °D, — ’F, and °D, — ’F; magnetic dipole

=8

X3,500 5um 0089 1341 SEI

20kV

20kv  X10,000 1pm 0089 1341 SEI

Fig. 3 SEM images of SrY,04:Eu®* (2.0 mol%) (a) x1.5k 10 um (b) x3.5k 5 pm (c) x7k 2 um (d) x10k 1 pm.
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Fig. 5 PL excitation spectra of SrY,O4:Eu** (2.0 mol%) phosphor.

© 2023 The Author(s). Published by the Royal Society of Chemistry

transitions® give rise to the 580 nm and 590 nm bands,
respectively. Due to similar ionic radii, the emergence of the >D,
— 7F, transition supports the substitution of Eu*" ions at Y**
sites.* The minor separation of the °D, — “F; and °D, — ’F,
transition lines in the emission spectra of the SrY,0,:Eu"
phosphor amply demonstrates the considerable influence of
the host composition, crystal structure, and coordination
environment on luminescence qualities.* Fig. 6 shows how the
concentration of the dopant affects the intensity of the emis-
sion. The intensity continues to rise as the Eu** ion concen-
tration rises from 0.1 to 2.0 mol%. However, the concentration
quenching event causes the intensity to dramatically falldown
for 2.5 mol% of the time. Intensity is reduced by quenching,
which happens when Eu®* ions move in closer proximity to one
another and interact with one another to transfer charge. Eu®*
doped SrY,O, phosphors using 2.0 mol% had the highest

RSC Adv, 2023, 13, 20217-20228 | 20221
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Fig. 6 PL emission spectra of SrY¥,04:Eu* (0.1-2.5 mol%) phosphor.

emission intensity, making it suitable for various light-emitting
applications (Table 6).

The fluorescence quantum yield (¢g) is a measure of the
efficiency of fluorescence, representing the ratio of absorbed
photons to emitted photons through fluorescence. It quantifies
the likelihood of the excited state being deactivated through
fluorescence rather than non-radiative mechanisms. The

View Article Online
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comparative method developed by Williams et al. is considered
the most reliable approach for determining (¢g). This method
involves utilizing well-characterized standard samples with
known (¢p) values, enabling accurate measurement and
comparison of fluorescence efficiencies.®

__ Number of emitted photons
~ "Number of absorbed photons

br

where the n denote the refractive index of the sample.

The fluorescence quantum yield (¢r) is a parameter that
measures the efficiency of fluorescence by comparing the
number of absorbed photons to the number of emitted
photons. To determine ¢g, one common approach involves
analyzing the integrated areas of the absorption and emission
spectra. The integrated area represents the number of absorbed
photons and the number of emitted photons, respectively. By
comparing these values, the fluorescence quantum yield can be
accurately calculated (Table 7).

3.6 Commission international de I'Eclairage (CIE)
coordinates

The Commission International de I'Eclairage (CIE) coordinates
are a standard way to describe the colour of light emitted by
these phosphors. The CIE colour space is a three-dimensional
space that describes all possible colours based on three

Table 6 Quantum yield values for different concentrations (mol%) of SrY,04:Eu®t

S. no Concentration (mol%) Absorption of photons Emission of photons Quantum yield
1 0.1 22988.91862 5870.677682 0.242601398

2 0.2 7114.49341 0.29400116

3 0.5 10769.65826 0.445048135

4 1 12 347.99237 0.51027162

5 1.5 16 981.28813 0.701739129

6 2 23090.70313 0.954206169

7 2.5 18 523.81395 0.765482863

Table 7 Table of standard materials and their literature quantum yield values

Literature quantum Emission
Compound Solvent yield range/nm Reference *7*
Cresyl violet Methanol 0.54 600-650 J. Phys. Chem., 1979, 83, 696
Rhodamine 101 Ethanol + 0.01% HCI 1.00 600-650 J. Phys. Chem., 1980, 84, 1871
Quinine sulfate 0.1 M H,SO, 0.54 400-600 J. Phys. Chem., 1961, 65, 229
Fluorescein 0.1 M NaOH 0.79 500-600 J. Am. Chem. Soc., 1945, 1099
Norharmane 0.1 M H,SO, 0.58 400-550 J. Lumin., 1992, 51, 269-74
Harmane 0.1 M H,S0, 0.83 400-550 J. Lumin., 1992, 51, 269-74
Harmine 0.1 M H,SO, 0.45 400-550 J. Lumin., 1992, 51, 269-74
2-Methylharmane 0.1 M H,SO, 0.45 400-550 J. Lumin., 1992, 51, 269-74
Chlorophyll A Ether 0.32 600-750 Trans. Faraday Soc., 1957, 53, 646-55
Zinc phthalocyanine 1% pyridine in toluene 0.30 660-750 J. Chem. Phys., 1971, 55, 4131
Benzene Cyclohexane 0.05 270-300 J. Phys. Chem., 1968, 72, 325
Tryptophan Water, pH 7.2, 25C 0.14 300-380 J. Phys. Chem., 1970, 74, 4480
2-Aminopyridine 0.1 M H,S0, 0.60 315-480 J. Phys. Chem., 1968, 72, 2680
Anthracene Ethanol 0.27 360-480 J. Phys. Chem., 1961, 65, 229
9,10-Diphenyl anthracene Cyclohexane 0.90 400-500 J. Phys. Chem., 1983, 87, 83
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parameters: X, Y, and Z. The X, Y, and Z coordinates represent
the relative amounts of red, green, and blue light needed to
create a specific colour. The CIE colour space is a useful tool for
describing the colour of light emitted by luminescent materials
like Eu®" doped SrY,0, phosphors. The CIE coordinates of Eu**
doped SrY,O, phosphors can be determined using photo-
luminescence spectroscopy. The emitted light is collected and
passed through a monochromator to separate the light into its
component wavelengths. The intensity of the light at each
wavelength is measured, and the CIE coordinates are calculated
based on the spectral distribution of the emitted light. Eu**
doped SrY,0, phosphors typically exhibit a near white region
luminescence (Fig. 7), with CIE coordinates of according to
Table 8. The exact CIE coordinates can vary depending on the
specific composition and synthesis conditions of the phosphor.

3.7 TL glow curve analysis

Europium (Eu®") doped SrY,O, phosphors exhibit thermolu-
minescence (TL) properties, which make them useful for

Table 8 CIE coordinates of Eu®** doped SrY,O, phosphor with
different concentration

View Article Online

RS

C Advances

1400009 srv,0,: Eu*

For 20 min UV expose
120000

187°C

100000

80000

60000 o

Intensity(a.u.)

40000

20000 o

f=—0.1 MOL%|
= 0.2 MOL%
0.5 MOL%
fe==1.0 MOL%| }
fe=1.5 MOL%
2.0 MOL%
f=——2.5 MOL%

0=

T T T
0 100 200 300

Temperature(°C)

Fig. 8 TL glow curve analysis of SrY,04Eu*.

150000 T

T
400

1400004 ~ SrY,0,:Eu**

—+— Concentration vs Intensity

130000 =

120000 ~

110000 =

100000 =

90000

TL Intensity(a.u)

80000 +

70000 +

60000

50000 T T

L L
0.5 1 1.5 2

Concentration (mol%)
(a)

0.1 0.2

115000 T

2.5

Q@ TL Intensity(a.u.)
110000 4 o

—— Linear Fit of Sheet1 B"TL Intensity(a.u.)"|

Equation

*] \TV:»ghl

Intercept

105000 +

Residual Sumof Squares
Pearson's r

R-Square (COD)

Adj. R-Square

5 100000 o

103242.94799 + 4710.03687
Siope -12725.20973  3354.54625

y=a+bx
T ntensity(a.u)
No Weighting

28743368
086147
074214
069056

95000 =

90000 -

85000 +

TL Intensity(a

80000 +

75000

70000 T T

y =-12725.2094 x + 103242.95

Concentration  x y u v CCT CRI
0.1 0.4301  0.3801  0.2568  0.5105 2912 85
0.2 0.43 0.3789  0.2572  0.51 2904 85
0.5 0.4297  0.3797  0.2567  0.5103 2916 85
1 0.4306  0.3802  0.257 0.5106 2906 85
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radiation dosimetry, medical radiation dosimetry, environ-
mental monitoring, and space radiation dosimetry applica-
tions. TL refers to the phenomenon where a material emits light
when heated after being exposed to ionizing radiation. The
intensity and shape of the TL glow curve, which is the plot of the
emitted light intensity as a function of temperature, can provide
information about the energy and type of radiation absorbed by
the material.

Europium-doped SrY,0O, phosphor has a linear response to
a 20 minutes UV exposure, as seen by the TL glow curve (Fig. 8).
Thermoluminescence (TL) intensity rises with increasing euro-
pium concentration (Fig. 8 inset), and its wide peak centers
about 187 °C (where the trapped electrons are released from the
lattice defects), making it an excellent peak for a thermolumi-
nescence dosimeter. Up to 0.2 mol%, the TL intensity rises;
beyond that, it falls as a result of the concentration quenching
phenomena (Fig. 9a). The TL glow curve for an optimum
concentration of 0.2 mol% is shown in Fig. 10, which displays
a linear wide peak with varying UV exposure durations at a fixed
rate of heating of 2.5 °C per s. The concentration quenching
effect causes TL intensity to drop after the 25 minutes UV
treatment for 0.2 mol% (Fig. 11a). Fitting the curve for the
optimal concentration of 0.2 mol% using the CGCD method
yields an excellent theoretical and experimental fit.

Fig. 9b showed the linear fit corresponding to its mean error
with respect to concentration response. The obtained TL
phosphor exhibits a linear fit for different concentration over
from 0.1 to 2.5 mol%. TL intensity was decreased linearly when
the dose was increased, obtaining a determination coefficient
R* =0.74214.7°

Fig. 11b showed the linear fit corresponding to its mean
error with respect to dose response. The obtained TL phosphor
exhibits a linear fit for different concentration over from 5 to
30 min UV dose exposed. TL intensity was increased linearly
when the dose was increased, obtaining a determination coef-
ficient R> = 0.59899.7

3.7.1 CGCD analysis. TLD phosphor often shows many
peaks upon charge carrier (hole or electron) emission. The

140000 - 3+ ——5MIN
SrY,04: Eu ——10 MIN
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—~ 100000 -
3
s
> 80000
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Fig. 10 TL glow curve analysis of SrY,O4:Eu®* for 0.2 mol%.
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Fig. 11 (a) SrY,04:Eu®" dose vs. intensity. (b) Linear fit with a mean
error bar of SrY,O4:Eu* for (5-30 min) UV dose.

kinetic factors/parameters (E, b, and s) affect the dosimetric
features of TL materials a lot. These parameters will provide
significant information regarding the mechanism of phosphor
emission. Understanding the kinetic parameters of a TLD
phosphor is crucial for producing effective TLDs. An empirical
set of equations**~** developed by Chen's allows the estimation
of these parameters. Using the Glow fit software, the glow curve
is deconvoluted (Fig. 12) in order to implement the peak shape
approach. In order to calculate the kinetic parameters of the TL
materials' glow peaks, we employed the peak shape approach,
also known as Chen's peak method.

Evidently, there are eight wide peaks in the CGCD pattern
(Fig. 12), and kinetic parameters are computed for each of those
eight peaks in Table 3. After 20 minutes of UV irradiation at
varying concentrations of europium ions, the recorded glow
curves of the manufactured phosphors reveal a broad peak,
suggesting that they are composite in nature. Therefore, the
kinetic parameters were deconvoluted and calculated using the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.12 CGCD pattern of UV induced SrY,O4:Eu®* doped phosphor for
optimized UV dose and 0.2 mol% concentration.

CGCD technique. The glow curves of the greatest intensity peak,
0.2 mol% europium ion irradiated with UV for 20 min, were
deconvoluted using the CGCD technique using the Glow fit
software. The Halperin and Barner formulas provide the
mathematical foundation for this computer software. These
equations explain the movement of charges between the
different energy levels that occur during the process of trap
emptying caused by thermal heating. This software calculated
the trap level kinetic parameters for each deconvoluted peak.
The experimental glow curves were used to fit the theoretically
produced glow curves, and the accuracy of the fit was assessed
by computing the figure of merit (FOM) associated with each
fitting. When FOM values were less than 5%, it was determined
that the fits were satisfactory. Current research puts FOM at
2.04%, confirming excellent agreement between theoretically
derived and actually observed glow curves.*>** Fig. 12 displays
the fitted TL glow curves, and Table 3 provides a summary of the
CGCD-method-calculated values for the frequency factors (s)
and trap depths (E) of captured charges.

The location of trapping levels inside the forbidden gap is
referred to as trap depth or activation energy (E), and it plays
a significant role in the loss of dosimetry information that had
been preserved in the materials after irradiation. The order of
kinetics (b) is the process by which detrapped charge carriers

View Article Online
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recombine with their equivalents. When the trap is modeled as
a potential well, the number of times an electron collides with
the wall multiplied by the wall reflection coefficient gives us the
frequency factor (s). As a result, the trapping parameters of
a thermoluminescent material are the foundation for an accu-
rate dosimetry investigation.>***

Here, the information about the trap level obtained from the
kinetic parameters (Table 9) shows that almost one electron is
trapped there because of the value of (shape factor) 0.435 and it
shows the general order kinetics (b) and the needed energy to
escape one electron from the trap level is high (0.50-0.86 eV),
i.e. activation energy (E), which shows the formation of traps is
high and stable. The rate of escaping electrons per second,
which falls between 2.12 x 10° and 3.66 x 10° S %, is likewise
fairly high.

3.8 Conclusion

The present study provides valuable insights into the properties
of SrY,0,:Eu’"phosphors, as summarized in the following
conclusions:

(1) XRD analysis confirmed the existence of a single ortho-
rhombic crystalline phase in the newly synthesized SrY,0,:Eu’*
phosphor, with nanocrystalline behavior.

(2) The SrY,O,Eu®" phosphors exhibited a fine surface
morphology with a spherical shape which is confirmed by SEM
imaging.

(3) FTIR spectra revealed specific vibration modes of Y-O, Sr-
O, and the production of SrY,0, phosphor is confirmed by all of
these observed peaks taken together.

(4) Photoluminescence excitation spectra showed a broad
excitation centered at 254 nm, with well-resolved emission
peaks 580 nm, 590 nm, 611 nm and 619 nm corresponding to
transitions at °Dy — “Fy, °Dy — 'Fy, and’D, — 'F,, respectively.

(5) The emission color of SrY,0,:Eu®*" phosphors was in the
near white light region, as shown in the CIE 1931 graph, and
exhibited good color tenability. These can act as a white light-
emitting phosphor for optoelectronic and flexible display
applications.

(6) The TL glow curve demonstrated that the thermolumi-
nescence intensity of SrY,0O,:Eu®" phosphors increased with
increasing UV exposure time and peaked at 187 °C, indicating
a good thermoluminescence dosimeter peak.

(7) The CGCD methodology provided a successful theoretical
and experimental fit, with kinetic parameters computed for

Table 9 Calculation of kinetic parameters using CGCD programme for UV induced SrY,O4:Eu** doped phosphor

T, (K) Tm (K) T, (K) T 0 ) u=0lw Activation energy (eV) Frequency factor s—*
298 321 338 23 17 40 0.425 0.5 2.12 x 10°
332 359 380 27 21 48 0.4375 0.5175 2.26 x 10°
366 398 422 32 24 56 0.4285714 0.5458 2.33 x 10°
398 432 458 34 26 60 0.4333333 0.6118 2.65 x 10°
420 467 504 47 37 84 0.4404762 0.5011 2.20 x 10°
466 522 566 56 44 100 0.44 0.523 2.30 x 10°
552 600 636 48 36 84 0.4285714 0.8559 3.66 x 10°
587 666 731 79 65 144 0.4513889 0.5823 2.62 x 10°

© 2023 The Author(s). Published by the Royal Society of Chemistry
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SrY,0,:Eu®" phosphor and itshows general order kinetics (b)
(Table 9).

Eu’" doped SrY,0, is a good luminescence material due to its

high quantum efficiency, narrow emission bands, long lumi-
nescence lifetime, and high stability, making it a versatile
material for various applications in optoelectronics, such as
solid-state lighting and flat panel displays.
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