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An electrophilic substitution reaction, without acid and metal, of indole with ammonium tetramethylnitrate

for accessing 3-nitroindole has been developed. In this protocol, trifluoroacetyl nitrate (CF3COONO2) was

produced by metathesis of ammonium tetramethyl nitrate and trifluoroacetic anhydride at sub-room

temperature. Trifluoroacetyl nitrate (CF3COONO2) is an electrophilic nitrating agent for a variety of

indoles, aromatic and heterocyclic aromaticity. Meanwhile, this strategy could be applied to construct

the skeleton structure of many kinds of bioactive molecules. Interestingly, 3-nitroindole can be further

derivatived as a pyrrolo[2,3-b]indole.
Scheme 1 Biological compounds derived from 3-nitroindoles.
Introduction

Indole and its derivatives are important structural motifs in
organic chemistry.1 In particular, 3-nitroindole is an important
intermediate that has been widely used by scientists for the
synthesis of organic molecules2 with biological activity
(Scheme 1).3 However, the synthesis of 3-nitroindole still faces
many challenges, including the lack of classical methods and
low yield, and the use of nitric acid in the reaction process is not
friendly to the environment.

Therefore, it is of great signicance to develop efficient and
greenmethods for the synthesis of 3-nitroindole. At present, the
preparation methods of 3-nitroindole and its derivatives mainly
include strong acid,4 radical,5 electrochemistry6 and other
methods (Scheme 2).7 Although there are some methods to
prepare 3-nitroindole and its analogues, there are some defects.
For example, the use of concentrated nitric acid has potential
safety hazards and great harm to the environment, low yield of
prepared products, poor functional group compatibility.
Therefore, the convenient and efficient synthesis of 3-nitro-
indole and its analogues from simple starting materials still
faces great challenges.

Nitration is one of the most common and earliest organic
reactions. The 1834 discovered the direct nitration of benzene
to nitrobenzene. With the development of printing and dyeing
industry,8 pharmaceutical industry9 and materials science
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industry,10 nitrication has been widely used in organic
synthesis industry.11 Nitro compound by mixing acids is still the
mainstream method.12 But the reaction's regioselectivity, by-
products, and functional group tolerance have long puzzled
scientists. In recent years, many nitration methods have been
developed, including free radical,13 transition metal catalysis,14

electrochemistry,15 microwave16 and other methods.17 Although
there are many nitrication reactions at present, the develop-
ment of efficient, rapid and environment-friendly nitrication
methods is still facing great challenges.
Scheme 2 3-Nitroindoles was prepared from indoles.
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According to literature, ammonium nitrate can react with
anhydride to form nitrates.18 We suspect that nitrates can
further react with indole to form 3-nitroindole. Therefore, we
tried the reaction with N-Boc indole and obtained the target
product in medium yield. Herein, we have developed a method
for the preparation of 3-nitroindole without acid.
Results and discussion

We initially studied the protocol with tert-butyl 1H-indole-1-
carboxylate (1a) under various conditions (Table 1, see ESI for
detailed data†). Gratifyingly, when triuoroacetic anhydride
and tetramethylammonium nitrate were used as reaction
reagents, tert-butyl 3-nitro-1H-indole-1-carboxylate (2a) was ob-
tained in medium yield (entry 1). Then we investigated other
ammonium salts, which only got trace product except tetrabu-
tylammonium nitrate which could get the product in medium
yield (entries 2 and 3). We tried to improve the yield of the
reaction by changing the type of anhydride. It was regrettable
that acetic anhydride was not capable of performing this reac-
tion (entry 4). The triic anhydride could only get trace amounts
of the product (entry 5). The exciting thing was that the yield
was unexpectedly increased to 85% when the amount of tri-
uoroacetic anhydride was two equivalent (entry 6). We also
investigated the effects of different solvents on the reaction,
most of which could not get ideal results (entries 7 and 8).
Interestingly, when acetonitrile was used as a solvent, the yield
of the reaction could be dramatically increased to 97% (entry 9).
What's more, the reaction was almost impossible when the
temperature was reduced to −20 °C (entry 10). Finally, only
trace amounts of the product were obtained when the temper-
ature increased to 25 °C (entry 11).
Table 1 Optimization of the reaction conditionsa,b

Entry Ammonium salts Anhydride Solvent T (°C)
Yield (%),
2a

1 NMe4NO3 (CF3CO)2O DCM 0–5 78
2 KNO3 (CF3CO)2O DCM 0–5 Trace
3 NBu4NO3 (CF3CO)2O DCM 0–5 56
4 NMe4NO3 (Ac)2O DCM 0–5 NR
5 NMe4NO3 (CF3SO2)2O DCM 0–5 Trace
6c NMe4NO3 (CF3CO)2O DCM 0–5 85
7c NMe4NO3 (CF3CO)2O THF 0–5 41
8c NMe4NO3 (CF3CO)2O DMSO 0–5 Trace
9c NMe4NO3 (CF3CO)2O CH3CN 0–5 97
10c NMe4NO3 (CF3CO)2O DCM −20 NR
11c NMe4NO3 (CF3CO)2O DCM 25 Trace

a Reaction conditions: 1a (0.5 mmol), ammonium salts (0.55 mmol),
anhydride (1 mL), solvent (1 mL), 4 h. b Yield refers to isolated
product. c 1 mmol of anhydride was used.

26582 | RSC Adv., 2023, 13, 26581–26586
We explored the substrate universality of this protocol
according to our preferred optimal conditions (Scheme 3).
Therefore, a series of indole derivatives used to prepare deriv-
atives of 3-nitroindole. In addition, X-ray diffraction patterns of
2g (CCDC: 2251492†) further proved that the nitration took
place at position 3 of indole. It should be noted that in the next
experiment we expanded the scale of the reaction to 1 mmol.
When the indole 1 position was attached to the alkyl or benzyl
group of the electron donor, the protocol could prepare the
target product in a medium yield (2b–2d). What's more, the
yield of 3-nitro-indole was slightly increased when the 1-posi-
tion of indole was inserted into the phenyl group of drawing
electron (2e). Interestingly, when the 2-position of indoles were
connected to other substituents, regardless of the electron-
donating or electron-withdrawing substitution, could proceed
smoothly in this process to deliver corresponding 3-nitro-
indoles in good to excellent yields (2f–2h). It was concluded
that the effect of 2-position of indole electric property on the
reaction was small. In addition, 4-substituted indoles could also
deliver the products smoothly. But the yield of N-boc-4-
bromoindole was lower than that of N-boc-4-chloroindole (2i–
2j). Using 4-methyl-Boc-indole as startingmaterial, the nitration
product (2y see ESI for detailed data†) containing impurities
was obtained in a yield of only 33%. This phenomenon showed
that the 4-site steric hindrance had an effect on the reaction.
Moreover, no matter the 5-position of indole was replaced by
the nitro group or halogen, the reaction could proceed smoothly
and the derivatives of 3-nitroindole could be obtained in good
to excellent yield (2k–2m). In addition, when indole 6-linked
substituents, the protocol can be successfully implemented and
the target product can be obtained with a medium yield (2n).
Gratifyingly, 7-substituted indole was also compatible with the
Scheme 3 Substrate scope of indoles.a,b

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 5 Scale-up reaction and synthetic application.
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protocol and carried out smoothly with good yield (2o).
Furthermore, under this protocol, the corresponding 3-nitro-
indole can also be prepared from disubstituted indole in good
yield (2p). The above cases showed that 5-7-substituted indoles
had little inuence on the protocol and could be used to prepare
3-nitroindoles in good to excellent yields (2k–2p).

Next we turned our attention to common aromatic and het-
eroaromatic hydrocarbons (Scheme 4). Gratifyingly, various
aromatic and heteroaromatic hydrocarbons were well appli-
cable in this transformation. Interestingly, benzene was
compatible with this protocol and nitrobenzene was prepared
in good yield (2q). Furthermore, the nitration of naphthalene
and phenanthrene could be carried out smoothly under this
protocol and the product could be obtained in good to excellent
yield (2r–2s). Additionally, oxygen-containing aromatic hydro-
carbons can be delivered successfully in good yields regardless
of whether the oxygen atom is conjugated or not (2t–2u). Finally,
sulfur-containing aromatic hydrocarbons are also compatible
with the protocol to successfully prepare nitro compound in
good yields (2v–2w). These examples showed that the protocol
could be used to efficiently prepare other aromatic and heter-
oaromatic nitro compounds.

In order to explore the potential application of this protocol,
a 100 g scale reaction was carried out with N-Boc indole 1a, and
the N-boc-3-nitroindole 2a was isolated in 91% yield (Scheme
5A). 3-Nitroindole is an important intermediate that has been
widely used by scientists for the synthesis of organic molecules2

with biological activity.3 Although there were several methods
for the synthesis of 3-nitroindole.4–7 However, the synthesis of 3-
nitroindole without nitric acid still faces some challenges.
Therefore, the deprotection of N-boc-3-nitroindole indicated the
practical signicance of this method (Scheme 5B). It is very
challenging to assemble polyindoles in synthetic chemistry and
medicinal chemistry.19 4-(tert-Butyl) 3-methyl pyrrolo[3,4-b]
indole-3,4(2H)-dicarboxylate (4a) could be prepared by Barton–
Zard reaction of tert-butyl 3-nitro-1H-indole-1-carboxylate (2a)
Scheme 4 Substrate scope of aromatic and heteroaromatic
hydrocarbons.a,b

© 2023 The Author(s). Published by the Royal Society of Chemistry
in excellent yield.4c This result also reveals another value of the
product (Scheme 5C).

The calculated reaction transition states and processes were
shown in Scheme 6. N-Boc indole (1a) and triuoroacetyl nitrate
(5) undergo a highly regioselective via TS to form product.

To reveal the mechanism and Regioselectivity of this reac-
tion, we conducted a series of controlled experiments (Scheme
7). The fact that the reaction could not be carried out smoothly
when there was no anhydride in this protocol proved that
anhydride was an indispensable condition of the protocol. If the
indole 3-position is occupied by the methyl group, the reaction
can not be carried out smoothly, which shows that the protocol
has a strong regioselectivity. Laali had described that nitrate
could decompose with triuoroacetic anhydride to produce
triuoroacetyl nitrate (CF3COONO2), and it had strong electro-
philic nitrication for many aromatic hydrocarbons.18 Based on
the previous literature and the results of computational chem-
istry (Scheme 6), we proposed a possible reaction mechanism
(Scheme 7). Initially, ammonium tetramethylnitrate and
Scheme 6 Complete reaction pathway. Free energies are computed
at the PCM(dichloromethane)/B3LYP-D3BJ/6-31G(d)level and are
in kcal mol−1.
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Scheme 7 Control experiments and possible mechanism.
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triuoroacetic anhydride worked together to form tri-
uoroacetyl nitrate (A). Species A reacted with N-Boc indole to
form four-member ring transition state B. The triuoroacetic
acid was shed from the transition state to form a product.
Conclusions

In summary, we have developed a practical method for the
regioselective nitration of indoles using ammonium tetrame-
thylnitrate under non-acidic and non-metallic conditions. This
protocol is not only mild and environmentally friendly, but also
reveals the aromatic electrophilic nitration of triuoroacetyl
nitrate, which provides a new method for the further
construction of 3-nitroindole and its analogues. Meanwhile, the
3-nitroindole can be further derivatived as a pyrrolo[3,4-b]
indole. In the future, we will explore the value of 3-nitroindole
in pharmaceutical chemistry and synthetic chemistry.
Experimental
General procedure for the synthesis of 2

Add aromatic or heteroaromatic hydrocarbons (1 mmol) and
NMe4NO3 (150 mg, 1.1 mmol) to the reaction tube and imme-
diately dissolve it with acetonitrile (1 mL). The reaction system
was then cooled to 0–5 °C and the triuoroacetic anhydride
solution (420 mg dissolved in 1 mL CH3CN) was added. The
reaction system was incubated at 0–5 °C for 4 hours. At the same
time, the reaction was monitored by TLC. When the reaction
was completed, the reaction was quenched by saturated sodium
carbonate. Extract with EA and transfer to a round bottom ask.
Silica gel was added to the ask, and the solvent was evaporated
under vacuum. Puried by silica gel column chromatography
using ethyl acetate/petroleum ether as eluent to obtain
compound 2.
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17 (a) K. Zhang, A. Budinská, A. Passera and D. Katayev, N-
Nitroheterocycles: Bench-Stable Organic Reagents for
Catalytic Ipso-Nitration of Aryl- and Heteroarylboronic
Acids, Org. Lett., 2020, 22, 2714–2719; (b) S. Salzbrunn,
J. Simon, G. K. S. Prakash, N. A. Petasis and G. A. Olah,
Regioselective Nitration of Arylboronic Acids, Synlett, 2000,
10, 1485–1487; (c) L. Lu, H. Liu and R. Hua, HNO3/HFIP: A
Nitrating System for Arenes with Direct Observation of p-
Complex Intermediates, Org. Lett., 2018, 20, 3197–3201.

18 G. Aridoss and K. K. Laali, EthylammoniumNitrate(EAN)/Tf2
O and EAN/TFAA:Ionic Liquid Based Systems for Aromatic
Nitration, J. Org. Chem., 2011, 76, 8088–8094.

19 (a) W. Zi, Z. Zuo and D. Ma, Intramolecular Dearomative
Oxidative Coupling of Indoles: A Unied Strategy for the
Total Synthesis of Indoline Alkaloids, Acc. Chem. Res.,
2015, 48, 702–711; (b) K. Higuchi and T. Kawasaki, Simple
indole alkaloids and those with a nonrearranged
monoterpenoid unit, Nat. Prod. Rep., 2007, 24, 843–868; (c)
H. J. Knölker and K. R. Reddy, Isolation and Synthesis of
Biologically Active Carbazole Alkaloids, Chem. Rev., 2002,
102, 4303–4427.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03193d

	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...

	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...
	Regioselective synthesis of 3-nitroindoles under non-acidic and non-metallic conditionsElectronic supplementary information (ESI) available:...


