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on cobalt ferrite nanoparticles as
a reusable multifunctional catalyst for water
treatment applications in non-radiation conditions

Le Thi Ngoc Hoa,†abc Vu Nang An, †ab Vo Huynh Tra My,ab Pham Thi Thu Giang,ab

Le Khac Top,ab Ha Thuc Chi Nhan,ab Phan Bach Thang, bd Tran Thi Thanh Van ab

and Le Van Hieu *abc

In this investigation, cobalt ferrite nanoparticles (CFO NPs) were synthesized using a hydrothermal method.

Then, silver nanoparticles (Ag NPs) were decorated on CFO NPs to form Ag/CFO NPs using jasmine extract

as a reducing agent of Ag+ ions. The properties of Ag/CFO NPs were characterized by X-ray powder

diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-

transform infrared spectroscopy, vibrating sample magnetometry, and catalytic tests in non-radiation

conditions. The catalytic results indicated that the Ag/CFO NPs could activate peroxymonosulfate to

generate sulfate radicals for the decomposition of different dyes such as methylene blue, methyl orange,

and rhodamine B. For the Ag/CFO sample, Ag NPs validated the roles in dye adsorption, reduction of 4-

nitrophenol, and improvement of antibacterial behavior. The growth inhibition activity of Ag/CFO NPs

was observed against Pseudomonas aeruginosa (18.18 ± 2.48 mm) and Staphylococcus aureus (10.14 ±

0.72 mm). Furthermore, Ag/CFO NPs displayed good reusability after three consecutive runs. Therefore,

Ag/CFO material is shown to be a potential multifunctional catalyst in wastewater treatment.
1. Introduction

It is well recognized that advanced oxidation processes (AOPs)
are a very efficient technique, particularly for removing dyes
from aqueous environments. Statistics on the number of
publications about AOPs from 2009 to 2019 show a consistent
rise over time.1 AOPs are typically performed between activators
(such as UV radiation, transition metals, heat, microwaves, and
ultrasound) and oxidizing agents (such as H2O2, persulfate ions,
and O3).2 The sulfate radical has a greater oxidation potential
than other oxidants, ranging from 2.5 to 3.1 V, and its active
zone has a pH between 2.0 and 8.0. The sulfate radical (SO4c

−)
has a half-life of 30–40 ms and is extremely stable and selective.3

Similar to H2O2, the peroxymonosulfate (PMS, HSO5
−) or per-

sulfate (PS, S2O8
2−) molecules break the O–O bond when

heated, illuminated, or excited by transition metals like Fe2+,
Cu2+, Co2+, Ag+, and Mn2+.2,3
logy, University of Science, VNU-HCM,
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The activation mechanism of PS/PMS is still distinct from
that of H2O2: (i) PS/PMS is easier to photodissociate than H2O2

under UVA and UVB irradiation conditions;2 (ii) PS/PMS is also
more easily activated by catalysts containing the elements Cu
and Co; however, catalysts containing Cu and Co aremore easily
washed away than catalysts containing iron in an acidic envi-
ronment, even under neutral conditions; (iii) in addition to
producing SO4c

−, the PS/PMS activation process also produces
O2, which is particularly common for PS and is infrequently
observed during H2O2 activation. Spinel, valency transition
metals, transition metal oxides, metal-based on carbon, and
optically supported semiconductors are examples of catalysts
that can be utilized to activate PS/PMS.2,3

Recovering the utilized catalysts from the water treatment
process is a huge challenge. Therefore, magnetic eld-assisted
separation is suggested as one approach. Recent years have
seen increasing research on magnetic materials, especially
spinel ferrite materials.3 The spinel ferrite materials commonly
used to remove pollutants through AOPs are CoFe2O4,
MnFe2O4, NiFe2O4, CuFe2O4, and ZnFe2O4.3 Due to high PMS
activation efficiency and outstanding magnetic properties,
CoFe2O4 demonstrates potential as an appropriate candidate
for the cleaning of pollutants.4

Dangerous bacteria such as Escherichia coli, Salmonella
enterica, Pseudomonas aeruginosa (P. aeruginosa), Listeria mono-
cytogenes, Staphylococcus aureus (S. aureus), and Enterococcus
faecalis always appear in the environment, especially in the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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water environment.5 CoFe2O4 is known as a good dye treatment
catalyst, but it is not impressive for the antibacterial activity
rather to other nanometals such as nano-Ag, Au, and Cu; among
them, silver nanoparticles (Ag NPs), one of the most common
nanomaterials, can kill various microorganisms.6 Additionally,
it was discovered that the antibacterial activity of the Ag coated
on CoFe2O4 nanocomposite is superior to that of Ag NPs.7

Besides, Ag/CoFe2O4 materials were synthesized by Feng X. et al.
applying the photoreduction method, and the Ag content was
achieved in the material at 1.7%.8 The methylene blue (MB)
decomposition efficiency was 96.3% aer 30 min under halogen
tungsten irradiation (0.1 g L−1 1.7% Ag/CoFe2O4 and 0.1 g L−1

PMS). Ag/CoFe2O4 has a catalytic efficiency that is 3.8 times
greater than CoFe2O4. Thus, Ag/CoFe2O4 nanoparticles (Ag/CFO
NPs) composite is promising for dye, organic chemical, and
bacteria treatment in actual wastewater.

To synthesize Ag NPs, various plant extracts have been
utilized as reducing agents.9–14 This method is an eco-friendly,
green, nontoxic, cost-effective, low-temperature, large-scale,
and simple approach for synthesizing metal.15 Besides, plants
are a renewable and fast-recovering source of biomass. More-
over, tea's antioxidant properties are strongly connected (R2 =

0.81) with the total polyphenol content of tea infusions.16

Phenolic acids, coumarins, avonoids, stilbenes, and lignans
are all examples of polyphenols. There are also other polymer-
ized forms like tannins and lignins.17 Previous studies have
shown that polyphenols can reduce metal ions.10,18–20 A typical
mechanism can be found in the research of Omidi S. et al.
(2018).21 Among the plants, jasmine ower tea contains high
polyphenol components.16 Jasmine has been shown to have the
highest antioxidant and anticancer effects among plants such
as blueberry, pomegranate, mango, mint, peach, and lemon.22

Additionally, the development of Au NPs provided evidence of
jasmine tea's excellent antioxidant activity compared with green
tea, black tea, and orange juice.23 Besides, jasmine is one of the
most popular and easy-to-nd plants. Jasmine extract has been
used in prior research to fabricate Ag NPs and palladium
NPs.15,24 Nowadays, some studies have reported Ag NPs
combined with metal oxide using plant extract as a reducing
regent. For example, Gingasu D. et al. successfully synthesized
CoFe2O4–Ag nanoparticles using hibiscus owers and leaves in
which the polyphenols in plant extract act as a reducing agent.11

The study demonstrated that the saturation magnetization
value (Ms) of the CoFe2O4–Ag material synthesized from
hibiscus ower extract is greater and more superparamagnetic
than that of the sample synthesized from hibiscus leaves.
Additionally, Gram-negative (Escherichia coli), Gram-positive
(Enterococcus faecalis), and yeast (Candida albicans) strains are
all susceptible to CoFe2O4–Ag material's antibacterial activity.

According to prior studies, Ag/magnetic oxide materials have
very few applications per material in the water treatment
elds.8,25–27 To strive towards the simultaneous treatment of
dyes, 4-nitrophenol, and bacteria simultaneously in water,
a magnetically recoverable multifunctional Ag/CFO NPs was
created in this study. In this work, Ag/CFO NPs were fabricated
in two steps: (i) synthesis of CoFe2O4 nanoparticles (CFO NPs)
by hydrothermal technique, (ii) reduction of Ag+ ions to Ag° by
© 2023 The Author(s). Published by the Royal Society of Chemistry
using jasmine extract as a reduction agent. According to our
knowledge, this study is the rst to fabricate Ag/CFO NPs using
jasmine extract as a reducing agent for Ag+ ions. This approach
is more eco-friendly, non-toxic, and cost-effective than previous
studies.8,28 Experiments to investigate the catalytic activity of dye
(MB, methyl orange (MO), and rhodamine B (RhB)) and 4-
nitrophenol (4-NP) degradation, and antibacterial were carried
out. The chemical structure of MB, MO, RhB, and 4-NP are
shown in Fig. 1. Besides, due to the magnetic properties, Ag/
CFO NPs separated from the aqueous solution via a magnet.
Thus, Ag/CFO composite is a potential candidate for actual
wastewater treatment.

2. Experimental
2.1. Materials

Cobalt nitrate hexahydrate (Co(NO3)2$6H2O), iron(III) chloride
hexahydrate (FeCl3$6H2O), sodium hydroxide (NaOH), silver
nitrate (AgNO3), MO (C14H14N3NaO3S), and MB (C16H18N3SCl)
were purchased from Xilong, China. Oxone (PMS), RhB
(C28H31ClN2O3), sodium borohydride (NaBH4), and 4-NP were
purchased from Sigma-Aldrich. Jasmine owers were collected
in Vietnam. The chemicals are utilized without undergoing any
additional purication procedures.

2.2. Preparation of CFO NPs

CoFe2O4 NPs were fabricated by a hydrothermal technique
following our previous reports.31 The hydrothermal system was
chilled to ambient temperature aer the reaction period was
completed. Aer the process, the solid was separated and
repeatedly cleaned using ethanol and deionized (DI) water.
Then, the solid was dried at 90 °C, and black powders were
obtained.

2.3. Preparation of Ag/CFO NPs

Ag/CFO NPs have been fabricated by the chemical reduction
method. First, 100 mL of DI water was added and continuously
stirred with 4.0 g of dried jasmine owers at 80 °C for 2 h. Aer
that, a yellowish jasmine solution was obtained using Newstar
lter paper (f = 110 mm, pore size 20–25 mm). The jasmine
extract solution acted as a reducing solution in the production
of silver nanoparticles based on the CFO sample (Fig. 2).
Second, a mixture was prepared by adding 0.15 g of CFO NPs to
100 mL of DI water, followed by sonication for 30 min. Next,
50 mL AgNO3 solution (3 × 10−3 g mL−1) was dropped into the
above mixture, and mechanically agitated for 30 min. Following
that, 20 mL of the jasmine solution was added to the mentioned
above system and mechanically agitated continuously for 3 h at
80 °C. For collecting Ag/CFO, the solid was separated, washed
with DI water and ethanol, then dried at 60 °C.

2.4. Characteristics

X-ray powder diffraction (XRD) (D2 PHASER, Bruker, Germany)
(lCu Ka = 1.54056 Å) was used to determine the crystalline size
and phase content of samples in the 2q range of 10–80° at a scan
rate of 0.02° min−1. Fourier-transform infrared (FT-IR) spectra
RSC Adv., 2023, 13, 24554–24564 | 24555

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra02950f


Fig. 1 The chemical structure of MB, MO, RhB, and 4-NP.29,30
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were measured from 4000 to 400 cm−1 using Nicolet 6700
(Thermo Fisher Scientic, USA) and the KBr disk method. The
structural morphologies of samples were characterized by eld-
emission scanning electron microscopy (FE-SEM) using an S-
4800 device (HITACHI, Japan) at an acceleration voltage of
10.0 kV and at room temperature. The elemental content
present on the surface was analyzed by energy-dispersive X-ray
(EDX) spectroscopy, using the EMAX ENERGY system
Fig. 2 The synthesis process of Ag/CFO nanoparticles.

24556 | RSC Adv., 2023, 13, 24554–24564
combined with the S–4800 device. Elemental analysis
measurements were carried out on an Agilent Technologies
7800 inductively coupled plasma mass spectroscopy (ICP-MS).
Vibrating sample magnetometry (VSM) (System ID: EV11, SN:
2010062, Japan) was used to evaluate the magnetic character-
istics of the samples with an applied magnetic eld in the range
−12,000–+12 000 Oe.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 XRD patterns of CFO and Ag/CFO NPs.
Fig. 5 FT-IR spectra of CFO and Ag/CFO NPs.
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2.5. The catalytic activity test of 4-NP decomposition

A quartz cuvette was lled with 0.1 mL 4-NP 0.005 mol L−1, 2 mL
DI water, and 1 mL NaBH4 0.2 mol L−1. Then, pour 60 mL of
catalyst (2 mg mL−1) into the cuvette containing the above-
mentioned mixture. The catalyst was taken out from the solu-
tion using a magnet aer a determined time. UV-vis absorption
Fig. 4 EDX spectra of samples and EDX mappings of Ag/CFO NPs.

© 2023 The Author(s). Published by the Royal Society of Chemistry
spectroscopy (250–600 nm) measured the solution aer
removing the catalyst.
2.6. The catalytic activity test of dyes (MB, MO, and RhB)
decomposition

0.1 g L−1 of catalyst was added into 250 mL of a 10 ppm dye
solution using a mechanical stirrer and equilibrated
RSC Adv., 2023, 13, 24554–24564 | 24557
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Fig. 6 FE-SEM images of CFO and Ag/CFO NPs.
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adsorption–desorption for 60 minutes. The mixture above was
added 0.1 g L−1 PMS and stirred continuously for an additional
60 minutes. 10 mL of the mixture was taken out of the system
every ve minutes, and a magnet was used to separate the
catalyst from the solution. The optical density of dye solutions
was measured at a typical wavelength using a visible spec-
trometer V-5100.
2.7. Recycle test

A recycling experiment was designed to evaluate the catalyst's
suitability for reuse aer recovery. Aer the reaction, the Ag/
CFO NPs were magnetically separated, rinsed three times with
DI water and ethanol, and dried at 60 °C until their mass
remained unchanged. Similar procedures were performed three
times.
3. Results & discussion

Fig. 3 is the XRD diagram of the CFO and Ag/CFO samples. The
presence of characteristic diffraction peaks of CFO was
Fig. 7 Antibacterial performances of CFO and Ag/CFO NPs.

24558 | RSC Adv., 2023, 13, 24554–24564
observed in both samples. The peaks at 2q = 18.3°, 30.1°, 35.5°,
37.1°, 43.1°, 53.5°, 57.0°, 62.6°, and 74.0° corresponding to the
(111), (220), (311), (222), (400), (422), (511), (440) and (533)
lattice planes (JCPDS No. 022-1086), respectively. The face-
centered cubic crystal structure of Ag (JCPDS No. 004-0783)
found in the Ag/CFO sample has the diffraction peaks of Ag at
2q = 38.1°, 44.3°, 64.4°, and 77.5° corresponding to the (111),
(200), (220), and (311) lattice planes, respectively. It is indicated
that successfully reducing process Ag+ ions by a reducing and
stabilizing jasmine ower agent. The phase percentages were
determined using the X'Pert Highscore Plus soware (Version
3.0). The Ag phase percentage in the Ag/CFO sample accounted
for 4.5%.

Fig. 4 displays the EDX spectrum of the CFO and Ag/CFO
samples. In the EDX spectrum of both CFO and Ag/CFO NPs,
the peaks of O, Fe, and Co elements were observed. For the Ag/
CFO sample, three Ag peaks appear between 2.8 and 3.5 keV in
the EDX spectrum. Based on the element distributionmap (EDX
mapping), the atoms are pretty evenly distributed throughout
the sample structure. Thus, the EDX results and the EDX
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 The UV-vis spectrum of 4-NP vs. time using CFO and Ag/CFO NPs.
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mapping have proved the existence of elements in both CFO
and Ag/CFO samples. The decorating ratio of Ag NPs over CFO
NPs was found to be 0.07 wt% by the ICP-MS analyses per-
formed on the Ag/CFO sample.

The characterized vibrations of CFO and Ag/CFO NPs are
shown in FT-IR spectra (Fig. 5). The board peak in the region of
3500–3300 cm−1 and the peak at 1623 cm−1 are typical for the
stretching and bending vibrations of the O–H bond of the
adsorbed H2O molecule in the sample, respectively.32,33 The
585 cm−1 peak was assigned to the metal–oxygen stretching
vibration in the tetrahedral sites, while the peak of about
400 cm−1 was assigned to the metal–oxygen stretching vibration
in the octahedral sites.32,34 The peak at 1064 cm−1 in the CFO
sample is the stretching vibration of the Fe–Co bond and this
peak intensity is enhanced in the Ag/CFO sample due to the
resonance from the C–O stretching vibration of phenolic
compounds in the organic chemical structure of jasmine
extract.15,35 Similarly, Csp3–H bond stretching vibration was also
found at 2927 cm−1 in the Ag/CFO sample.15

The surface morphology of the CFO and Ag/CFO samples is
shown in Fig. 6. The FE-SEM image of the CFO sample shows
Fig. 9 (a) The degradation of MB vs. time of catalysts and (b) the MB re

© 2023 The Author(s). Published by the Royal Society of Chemistry
that the particles are spherical and the particle size (d) of
particles is 16.45 ± 2.52 nm. In the Ag/CFO sample, there are
two different sizes of particles: small particles (d = 16.87 ± 2.46
nm), which may belong to CFO NPs, and large particles (d =

46.5 nm), which may belong to Ag NPs or Ag/CFO NPs.
The antibacterial performances of the material were inves-

tigated based on two strains of Gram-negative (P. aeruginosa)
and Gram-positive (S. aureus) bacteria (Fig. 7). CFO material did
not produce an antibacterial ring, while Ag/CFO material had
good antibacterial properties. For the bacterial P. aeruginosa
and S. aureus, the Ag/CFOmaterial formed an antibacterial zone
with diameters of 18.18 ± 2.48 mm and 10.14 ± 0.72 mm,
respectively. Silver ions may be released and kill the bacteria by
Ag/CFO NPs (Fig. 11d). Due to electrostatic attraction and
affinity to sulfur proteins, silver ions can stick to the cell wall
and cytoplasmic membrane. The order of steps is as follows:
disruption of the cell wall and cytoplasmic membrane; dena-
turation of ribosomes; cessation of adenosine triphosphate
(ATP) synthesis; membrane disruption by reactive oxygen
species; interference with DNA replication; denaturation of the
membrane; perforation of the membrane.36
moval efficiency of the CFO/PMS system.

RSC Adv., 2023, 13, 24554–24564 | 24559
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Table 1 The catalytic activity data of the current samples are compared to those published in previous studies

Catalysts [Catalyst] (g L−1) [PMS] (g L−1) [MB] (ppm) Light Efficiency (%) Time (min) Ref.

Fe0/Fe3O4/biochar 0.3 0.4 20 — 99.9 60 45
CoFe2O4/rGO 0.2 1.0 10 — 100 20 46
CoFe2O4-ZIF8 0.04 0.3 20 — 97.9 60 42
CoFe2O4 0.1 0.1 10 Halogen tungsten 57.4 30 8
Ag/CoFe2O4 0.1 0.1 10 Halogen tungsten 96.3 30
CFO 0.1 0.1 10 Dark 93.9 30 This work
Ag/CFO 0.1 0.1 10 Dark 85.5 30
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The UV-Vis spectra of the 4-NP solution were investigated vs.
time in the reduction reaction with NaBH4 corresponding to
each catalyst (Fig. 8). The results show that the 4-NP reduction
activity is highly effective (H = 100% aer 30 s) when using Ag/
CFO catalyst. Simultaneously, a new absorption peak at 302 nm
of 4-aminophenol (4-AP) appeared37,38 and increased vs. reaction
time. Meanwhile, the 4-NP reduction efficiency of the CFO
sample is very low and there is no disappearance of the new
absorption peak. This result has shown the role of Ag in the Ag/
CFO sample to reduce 4-NP. The 4-NP reduction efficiency,
which reaches 100% within 30 s, is better than in previous
studies on Ag NPs synthesized by plant extracts.37,39–41 The
mechanism for reducing 4-NP is shown in Fig. 11b. In the
reaction system, 4-NP and NaBH4 react to generate the 4-
nitrophenolate ion. Then, the hydrogen atoms from BH4

− ions
and the 4-nitrophenolate ions are adsorbed onto the catalyst
surface. –NO2 group of 4-nitrophenolate is attacked by these
adsorbed hydrogens, which causes a reduction to 4-AP.

The adsorption and oxidation activities of the samples are
shown in Fig. 9a. The adsorption efficiency for MB dyes by CFO
materials is 1.6% in 60 min. Meanwhile, the Ag/CFO sample
exhibited a good MB adsorption efficiency of 10.5%. In the case
of the presence of PMS oxidant, both materials demonstrated
good catalytic performance in the MB dye oxidation reaction.
Aer 30 min of response, the CFO sample's efficiency was
93.9%. The CFO sample has a greater PMS activation efficiency
Fig. 10 (a) The removal efficiency of dyes varies in each process after 60

24560 | RSC Adv., 2023, 13, 24554–24564
than Ag/CFO sample (8.4%) under the same condition. The
catalytic activities of CFO and Ag/CFO in the PMS activation
reaction for MB degradation were compared with previous
studies in Table 1.

The free radicals produced during the oxidation reaction of
dyes with PMS were determined through the use of scavengers
(EtOH and TBA) (Fig. 9b). The reaction efficiency decreased
when using EtOH because EtOH simultaneously traps two free
radicals SO4c

− and cOH.42,43 However, TBA is an organic
substance that only traps cOH free radicals, but the degradation
efficiency was still stable.42 Therefore, SO4c

− radical is the main
species in this system. The mechanism for the degradation of
dyes is shown in Fig. 11a. The transition metal ions in CFO play
a primary role in PMS activation to produce SO4c

− radical.3,4 For
cationic dyes (MB and RhB), SO4c

− radicals attack a positively
charged atom, and then fragmented organic molecules, CO2

and H2O were produced. While cleavage of the azo group
bridging two aromatic rings is how the degradation of MO
occurs. Then, the tiny molecules keep on converting into CO2

and H2O.44

To investigate the versatility of Ag/CFO in dye treatment
applications, catalytic tests were carried out with various dyes.
The results are shown in Fig. 10. MO and RhB dyes are not
adsorbed on the surface of Ag/CFO NPs, in contrast to MB dyes.
Because metal oxide materials with –OH functional groups on
their surfaces are negatively charged and MO is an anionic dye
min, and (b) the graph of ln(Co/Ct) vs. time in the Ag/CFO/PMS system.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 The mechanism for the removal of the dyes, 4-NP, adsorption, and bacteria.

Fig. 12 M–H loops of CFO and Ag/CFO NPs.

Table 2 The magnetic values of CFO and Ag/CFO NPs

Sample Ms (emu g−1) Mr (emu g−1) Hc (Oe)

CFO 55.18 7.09 277
Ag/CFO 43.11 5.35 219
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that carries a negative charge, the absorbent, and the adsorbed
substance were repelled from each other. However, although
having a positive charge similar to that of MB, the RhB cationic
dye has poor adsorption due to its bulky molecular structure,
which creates a stereospecic barrier that prevents it from
© 2023 The Author(s). Published by the Royal Society of Chemistry
adhering to the surface of the material. As a result, the best MB
dye adsorption is achieved by Ag/CFO composites. However,
enhancing the adsorption efficiency of Ag/CFO NPs in this study
is still a challenge. Compared to previous reports, the dye
adsorption performance of Ag/CFO NPs in this study needs to
be improved even more in the future. The mechanism for
adsorption is shown in Fig. 11c. In Fig. 10, the dye compounds
that react with PMS oxidant most quickly and efficiently are
displayed.

The mechanism for the removal of the dyes, 4-NP, adsorp-
tion, and bacteria is shown in Fig. 11.

Fig. 12 is the hysteresis loops of CFO and Ag/CFO samples
obtained from vibration sample magnetometer (VSM)
measurement. The saturation magnetization (Ms), residual
magnetization (Mr), and coercivity force (Hc) values are dis-
played in Table 2. The Ms value of the material decreases in the
presence of Ag (non-magnetic). The Ms value of 43.11 emu g−1

can be completely applied to recovered material aer the
wastewater treatment process.47 In addition, Mr and Hc values
also decrease in the Ag/CFO sample, indicating that the
magnetic moments are easier to shi in the direction of the
external magnetic eld. Based on VSM results, Ag affected the
magnetic properties of the material. Fig. 13 shows the reus-
ability of the Ag/CFO catalyst. Aer three runs, RhB removal
efficiency still reached 98.9%, 98.4%, and 94,5%, respectively.
The decreasing active sites of metal ions cause changes in
degrading efficiency during the usability study.48 In addition,
the XRD diagram and FESEM images of the Ag/CFO NPs aer
three runs are also shown in Fig. 13. The crystal structure and
morphology of the Ag/CFO catalyst aer performing three
consecutive reactions remained. Thus, the above results have
proved that Ag/CFO NPs have good reusability. This result
promises to bring economic efficiency into practice.
RSC Adv., 2023, 13, 24554–24564 | 24561
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Fig. 13 (a) Reaction efficiency, (b) XRD diagram, and (c) FESEM images of Ag/CFO NPs after three runs.
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4. Conclusions

In conclusion, Ag NPs were successfully decorated on CFO NPs
to form Ag/CFONPs using jasmine extract as a reducing agent of
Ag+ ions. Based on the catalytic tests, the Ag/CFO NPs can
activate PMS to produce SO4c

− radicals that degrade efficiently
in different dyes in 60 min such as MB (H = 88.1%, k =

0.09457 min−1), MO (H = 95.6%, k = 0.28466 min−1), and RhB
(H = 98.9%, k = 0.14894 min−1) in the non-radiation condition.
Simultaneously, Ag/CFO NPs have proved more advantageous
than pure CFO NPs in MB adsorption (H = 10.5%), 4-NP
reduction (H = 100% aer 30 s), and growth inhibition activity
in both Pseudomonas aeruginosa (18.18 ± 2.48 mm) and Staph-
ylococcus aureus (10.14 ± 0.72 mm). Aer three recovery and
reuse cycles, the Ag/CFO catalyst is still good (efficiency above
94.5% aer 60 min for RhB). In summary, Ag/CFO NPs act as
reusable multifunctional material and hold promise as the
potential candidate in the practical wastewater treatment eld.
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