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The superconductivity of cuprates remains a challenging topic in condensed matter physics, and the search

for materials that superconduct electricity above liquid nitrogen temperature and even at room

temperature is of great significance for future applications. Nowadays, with the advent of artificial

intelligence, research approaches based on data science have achieved excellent results in material

exploration. We investigated machine learning (ML) models by employing separately the element

symbolic descriptor atomic feature set 1 (AFS-1) and a prior physics knowledge descriptor atomic feature

set 2 (AFS-2). An analysis of the manifold in the hidden layer of the deep neural network (DNN) showed

that cuprates still offer the greatest potential as superconducting candidates. By calculating the SHapley

Additive exPlanations (SHAP) value, it is evident that the covalent bond length and hole doping

concentration emerge as the crucial factors influencing the superconducting critical temperature (Tc).

These findings align with our current understanding of the subject, emphasizing the significance of these

specific physical quantities. In order to improve the robustness and practicability of our model, two types

of descriptors were used to train the DNN. We also proposed the idea of cost-sensitive learning,

predicted the sample in another dataset, and designed a virtual high-throughput search workflow.
1 Introduction

Ever since the discovery of superconductivity in mercury at low
temperatures,1 physicists have continued to explore this fasci-
nating quantum material. In 1950, Maxwell and Reynolds et al.
discovered the isotope effect of superconductor mercury,2,3

which inspired Bardeen, Cooper, and Schrieffer to propose the
BCS theory. The BCS theory explains the isotope effect perfectly,
where the superconducting critical temperature (Tc) formula is

expressed as Tc ¼ 1:14QD e
� 1
Nð0ÞV , where QD represents the

Debye temperature, N(0) is the electronic density of states near
the Fermi level, and V refers to the electron–phonon coupling
potential.4,5 The BCS theory explains the isotope effect perfectly

for QD � M�1
2, Tc ∼ M−a, and a ¼ �Dln Tc

Dln M
¼ 1

2
.6,7 Decades
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cuprate Ba–La–Cu–O (BLCO) to be a high-Tc superconductor. To
date, the highest Tc record holder of cuprates, obtained by
Eggert and Gao et al., is Hg–Ba–Ca–Cu–O with a Tc of 164 K
under a high pressure of up to 16 kbar.8,9 The compounds
mentioned above are among many above-liquid-nitrogen-
temperature cuprate superconductors classied as Y, Bi, Tl,
and Hg series.

Detecting the isotope effect of conventional superconductors
only involves the isotope substitution of a few kinds of atoms,
which is relatively simple. However, the isotope effect in cup-
rates is more complex than in conventional superconductors,
with the a value changing with the hole-doping concentra-
tion.6,10,11 While the BCS theory based on electron–phonon
coupling can explain some of the isotope effects of La series
cuprate superconductors, it fails for the isotope effect counter-
parts in Y, Bi, Tl, and Hg series cuprate superconductors.6,7,12–14

It is widely accepted that even though electron–phonon
coupling could induce high-Tc superconductivity, the cuprates
are still believed not to be determined as phonon-mediated.13–25

Machine learning (ML) has become an essential data-driven
research approach that has been rapidly developed in recent
years.26 In contrast to traditional methods, ML does not rely on
the development of any prior physical knowledge (e.g., Debye
temperature or phonon dynamics properties)27 but utilizes data
to explore the physical rules, showing outstanding perfor-
mances in scientic research and industrial design.28–38 Stanev
et al. reported ML models to explore the rule of the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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superconducting transition temperature.39 Xie et al. applied the
sure independence screening and sparsifying operator (SISSO)
approach to search for mathematical formulas related to
superconductivity with smaller errors.40,41 In a study by Mori
et al., the synthesis of machine-learning-assisted materials was
applied to accelerate the exploration of novel thin lm super-
conductors.42 These studies have shown the feasibility of
utilizing ML for data mining in the search of superconducting
materials and inspired us to carry out the present investigation.

Physics-informed neural networks (PINNs)43,44 are a type of
neural network whose training process incorporates physical
principles or equations as constraints. This method has various
advantages over conventional neural networks, including the
capacity to incorporate a system's priorities and the potential to
avoid overtting and enhance generalization. The use of PINNs
to handle small data sets, a prevalent issue in many physics-
based applications, is one of the primary advantages of this
method. By introducing physical restrictions, PINNs may utilize
available data to create accurate predictions and enhanced
performance. However, the utilization of physical constraints
might also result in network limitations. For instance, if the
physical equations or rules employed in the network are inac-
curate or insufficient, the network's performance may suffer. In
addition, the introduction of physical restrictions increases the
architecture's complexity, which may necessitate additional
processing resources and lengthier training cycles.

Cuprate materials are a signicant class of superconducting
materials, and the enhancement of their superconducting
transition temperature has long been an important area of
superconductivity study. Nonetheless, there is currently no
developed theoretical model that can correlate the super-
conducting transition temperature of these materials, which
poses signicant hurdles for the research community. Conse-
quently, despite the fact that the PINNs approach has yielded
outstanding results in a variety of disciplines, it is now inap-
plicable due to its inability to deal with the superconducting
transition temperature of cuprate materials.

Our approach to overcoming this limitation involves
designing a feature engineering process based on prior physical
knowledge, followed by utilizing manifold learning to deter-
mine the direction for material design. We analyzed SHapley
Additive exPlanations (SHAP) values and found that shorter
covalent bonds and lower hole-doping concentrations are
effective ways to enhance the Tc for most materials. To improve
the accuracy of our model, we established a cost-sensitive ML
model to resolve sample imbalance and an ensemble learning
model using two deep neural networks (DNN) with non-
correlation characteristics.

We found that tree-based regression models lack the ability
to extrapolate the higher superconducting transition tempera-
ture outside the dataset's range, while support vector machines
(SVMs) rely heavily on challenging feature engineering, and so
DNN was nally chosen as our extrapolation model for regres-
sion prediction due to the difficulties of feature engineering and
the desire to reunite knowledge fragments. We used a Monte
Carlo-based test set partitioning strategy to prevent data leakage
caused by repetitive optimizations of the test set, hence
© 2023 The Author(s). Published by the Royal Society of Chemistry
retaining the generalization performance of the model.
However, in our scenario, the inclusion of framework and
parameter hyperparameters, as well as Monte Carlo data set
partitioning, made optimization particularly difficult; therefore,
the Tree-structured Parzen Estimator (TPE) method based on
the Bayesian optimization algorithm was employed to perform
the optimization.

We then applied the model to predict high-Tc materials and
performed virtual high-throughput (VH) screening of super-
conductors in a larger space. By combining conclusions ob-
tained from domain knowledge, our work resulted in an ML
model with specic explanatory capabilities.
2 Methods
2.1 Data source

We chose the Supercon database as our dataset source.45 Aer
removing the data without the exact chemical formula, we took
themedian temperature for those of the same chemical formula
corresponding to multiple Tc, as the median was actually ob-
tained in the experiment.46 Aer the screening, 12 340 Tc data
were collected, with a small number of materials having struc-
tural information from the literature. As shown in Fig. S1,†most
of the materials had Tc values of less than 20 K, and only a few
materials had critical temperatures greater than 120 K, and the
highest Tc material was Hg0.66Pb0.34Ba2Ca1.98Cu2.9O8.4 with Tc =
143 K.
2.2 Feature engineering

Two kinds of descriptors were used in this work, namely the
atomic feature set 1 (AFS-1) and atomic feature set 2 (AFS-2).
The feature extraction of AFS is based on ‘cell’ processing, in
which we dene all the elements in the normalization formula
as a ‘pseudo cell,’ and its stoichiometric number is the weight
of each element. AFS-1 is the symbolic element one-hot
encoding based on the properties of the elemental compo-
nents, it is a vector dened by multidimensional elements as
a mapping vector composed of the elements in the chemical
formula, and we can view it as a vector with a high dimension.
For AFS-1, the dimension of the vector space of the whole
feature is equal to the sum of the elements number in the
periodic table of elements. In the feature space of AFS-1, the
neural network's self-processing of the features might even go
beyond the articially designed descriptors.47 AFS-2 was
established on the physical properties of the component
elements. A le is required and it is used to ll in the charac-
teristics of each element according to the users' domain
knowledge. We use this series of physical quantities as
descriptors supported by the following superconductivity prior
knowledge: (a) according to Zhao et al., Tc may have a rela-
tionship with the valence of copper,48 and then the Jahn–Teller
effect in the superconducting sample;49 (b) the mainstream
theory of cuprate high-temperature superconductors reso-
nance valence bond theory (RVB),50 Zhang–Rice Model (ZRM),51

and t–Jmodel;52 (c) SO(5) supersymmetry theory,53 according to
the theory that Tc is most related to the electron-doping
RSC Adv., 2023, 13, 19836–19845 | 19837
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concentration; (d) there is a relationship between Tc, the elec-
tronic structure (Cu d orbitals or Cu–O chemical bonds), and
the magnetic structure (mainly the magnitude of the exchange
coupling integral J, and then the correlation energy U).54–62 In
details, (1) superconductivity was obtained by the magnetic
exchange interaction and Fermi surface; (2) the impact of
Jahn–Teller effect and crystal eld restricts the electron
number in superconductivity. And (e) the polarons and plas-
mon, whereby Tc is related to the factor of the conformation of
the polarons, hole concentration, and parameters concerning
the lattice conformation of a (or the) layered structure.15 As an
excellent descriptor should be universal and accessible, we
considered using basic descriptors for mapping basic inu-
encing factors, as shown in Table S1.† AFS-2 was used to
calculate the features in the cell. According to the attributes of
the input elements, we designed the treatment of the charac-
teristics of doped systems. AFS-1 and AFS-2 were converted into
convenient soware, with the details given in the ESI.†
3 Results and discussion
3.1 Cost-sensitive classication model

We used the PyCaret library for model selection,63 and then got
the rst four models to show stable performance for both
descriptors, with their 10-fold cross-validation accuracy rates
shown in Table 1. Taking the random forest (RF) model for AFS-
1 to train as our basic model, the confusion matrix and receiver
operating characteristic (ROC) curve are shown in Fig. 1.
Table 1 Accuracy of k-nearest neighbors (KNN) model, decision tree
(DT) model, random forest (RF) model, and adaboost (AB) model by
using AFS-1, AFS-2, and AFS-1&AFS-2, respectively

Model AFS-1 AFS-2 AFS-1&AFS-2

KNN 0.9639 0.9548 0.9574
DT 0.9549 0.9434 0.9541
RF 0.9658 0.9599 0.9636
AB 0.9569 0.9541 0.9574

Fig. 1 (a) In the confusion matrix, the label ‘0’ represents the high-Tc m
to the receiver operating characteristic (ROC) of classification, the la
performance is.

19838 | RSC Adv., 2023, 13, 19836–19845
The critical temperature of liquid nitrogen, 77 K, was adop-
ted as the temperature boundary, i.e., low Tc is below 77 K while
high Tc is above it. In Fig. 1, we got the confusion matrix on
a random test and the AUC score of about 0.98, but there were
two notable issues in the analysis of the classied datasets: (a)
the uneven distribution of samples, i.e., 1233 high-Tc materials
versus 11 107 low-Tc in the dataset; (b) the two materials in the
misjudgment cost model were different, that is, the model
predicted high-Tc for low-Tc materials penalty (serious error)
versus the low-Tc predicted for high-Tc materials penalty
(general error), so we applied an ML model adjustment by
setting an additional penalty of 1.5 times to serious errors more
than the general error, and thus obtained the ideal threshold by
observing the cost function curve. As shown in Fig. 2, the lowest
point of the cost curve was selected as the threshold of the RF
model classier. Since even a trainedmodel has a certain degree
of randomness, we should nd the interval with the best
threshold near the lowest value. Aer passing the sliding
threshold test, the threshold range was determined to be 0.44 ±

0.03, and within this threshold interval, the serious error was
reduced to 29 and the general error rose to 55, while the accu-
racy was not compromised. See the ESI† for the graph of the
sliding threshold interval.
3.2 Situation-adaptive regression model

From the regression analysis (Fig. 3 and S5†), we can nd that
the DNN trained based on AFS-1 had less error than AFS-2, but
that does not necessarily mean that AFS-1 was better (see ESI†).
For example, for Pr, Tb, Ho, Tm, and Sm elements, the DNN
based on AFS-2 predicted their Tc to be 0 K, but the DNN based
on AFS-1 gave Tc values of 15.91, 9.22, 8.88, 17.24, and 6.34 K,
though these materials were not superconducting.64
3.3 Model interpretation

RF model can extract the importance of features according to
the branching situation of sub-trees during training, and here
we calculated the SHAP value in order to rene the inuence of
aterials, and the label ‘1’ represents the low-Tc materials. (b) According
rger the area under the ROC curve (AUC), the better the model's

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Misclassification inequality cost function curve, where the local optimal threshold value was around 0.42 and sliding thresholds were
needed to search the global optimal threshold value.
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the feature on the target value and analyzed the SHAP value of
the top 20 importance features from AFS-2.65

In Fig. 4, the top-to-bottom features represent the degree of
inuence on Tc. We found the feature having the greatest impact
on Tc was the longest value of the covalent bond in a cell. When
the distribution value of this feature was lowered, the Tc
increased, as this feature was mentioned four times in ve prior
knowledge. From the RVB theory, we can qualitatively state that
the J/t value in the t–Jmodel will decrease when the ionic bond is
short. The second important feature was the average number of
unlled electrons in a cell, whose high values (in red) appeared
Fig. 3 (a) DNN trained by using AFS-1 results: R2 = 0.95, RMSE = 6.08
K, MAE = 3.08 K. (b) DNN trained by using AFS-2 results: R2 = 0.93,
RMSE = 7.35 K, MAE = 3.73 K.

© 2023 The Author(s). Published by the Royal Society of Chemistry
near the minimum and small SHAP values. For hole doping in
cuprates, the inuence of the concentration is such that Tc
increases when the hole concentration decreases, but with an
optimal concentration range, and overdoping will reduce the Tc
value. This is qualitatively consistent with the inference of SO(5)
theory when the holes concentration was high, and experiments
show that the properties of high-temperature superconductors
are metalized rather than insulators, so electrons are easy to hop
and the J/t value will also be affected. This is consistent with the
analysis in the rst feature, so the rst two features selected by
the ML were self-consistent in theory. The third important
feature was the maximum row value of an element in the peri-
odic table, reecting the inuence of the cycle of the elements on
Tc. As a rule summarized by ML, the upper rows of the periodic
table have a greater inuence on Tc.

Manifold learning is considered to be an important way to
understand high-dimensional data structures. Since the t-
distributed stochastic neighbor embedding (T-SNE) reduction
visualization data overlap the least, this was selected as the
dimensionality reduction method (Fig. S7†). In Fig. 5, it can be
found that there was a great correlation between the content of
Cu reected in this two-dimensional mapping space and the Tc,
so this was indeed a suitable choice to set Cu-based (cuprate)
superconducting materials by DNN. The Fe content was re-
ected in the middle of the manifold region, which indicated
that the Tc of Fe-based superconductors is not as high as that of
Cu-based superconductors, and this was indeed the case in the
experiments.67–69 In terms of the stoichiometry weight of the
elements, there are some elements that are restricted to specic
intervals. For example, the O content in cuprates should be
within a proper range. Otherwise, it will transform into semi-
conductors or even insulators,70–73 and a similar phenomenon
RSC Adv., 2023, 13, 19836–19845 | 19839
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Fig. 4 SHAP values of top 20 important features of AFS-2, which indicate the impact of the feature values on the variation on Tc.
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also exists for Cu and Fe. In contrast, Ba and La were obviously
different, as they were scattered in various parts of the manifold
space without specic intervals. The characteristic dying in the
manifold and the distribution of target values can provide
component references in the material design.
Fig. 5 Two-dimensional mapping space under the dimension reduction
materials weight mapping in this two-dimensional space. (b)–f. O, Fe, La,
this two-dimensional space. The color column represents the Tc (left) a

19840 | RSC Adv., 2023, 13, 19836–19845
3.4 Model application

The predicted values of the average from two neural networks
were chosen as the prediction basis for an ensemble ML model,
and we named it e-DNN. Materials in the Materials Project (MP)
of t-distributed stochastic neighbor embedding (T-SNE).66 (a) Tc by the
Ba, and Cu stoichiometric numbers by the materials' weight mapping in
nd component (right) in materials.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Predicted value of some unlabeled data in our training data.
The complete prediction document is given in the ESI

Formula Tc (AFS-1) Tc (AFS-2)

La1.8Nd0.2Ba2Ca0.4Cu4.4O7.183 103.18 97.53
Bi1.6Pb0.3V0.1Sr2Ca2Cu3O9.92 96.31 88.24
Bi1.6Pb0.35V0.05Sr2Ca2Cu3O9.92 94.68 89.26
Tb1Ba2Cu3O7 92.83 88.12
Bi2Sr2Ca0.5Er0.5Cu2O8 90.35 83.66
Y1Ba2Cu3H0.43O6.91 89.46 80.12
Y0.76Lu0.24Ba2Cu4O8 87.91 89.94
Ba1.6Sr0.4Yb1Cu3O6.42 87.72 80.25
Ba1.6Sr0.4Yb1Cu3O6.26 86.72 81.17
Y0.8Eu0.2Ba2Cu3O7 85.99 81.57
Eu1Ba1Sr0.6Ca0.4Cu3O6.95 85.30 95.47
Ba1.6Sr0.4Yb1Cu3O6.15 85.29 82.43
Y1Ba2Cu3O6.975 84.38 80.67
Er1Ba2Cu3O6.95 84.18 88.58
Er1Ba2Cu3O6.88 84.01 90.65
Cu9.5Sr2Ca8Cr0.5O21.05 83.51 80.24
Ba1.6Sr0.4Yb0.85Ca0.15Cu3O6.17 82.75 80.92
Pb0.5Sr2Ca1Cu2.5O7.4 82.12 83.19
Ca0.1Ba1.65Nd1.25Cu3O7.03 81.70 86.93
Ba1.6Sr0.4Yb1Cu3O5.97 81.09 88.07
Pb2Sr2Y0.5Ca0.5Cu3O9.4 80.15 85.54
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database were predicted by applying the e-DNN model,74 with
the distribution of Tc, and the best candidates are shown in
Fig. S2.† It can be seen that the distribution of Tc was the same
as the distribution of the training data. The complete prediction
document is given in the ESI.†

In the set of predictions for the MP database, we found
evidence of some possible high-Tc materials from their elec-
tronic structure. For known cuprate superconductors, at-
bands below the energy of the highest occupied electronic
state lead to a large peak in the electronic to help enhance Tc;
more importantly, DOS peaks close to EF due to the Van Hove
singularity may also enhance Tc.75 As shown in Fig. 6, most of
our predicted cuprate candidate samples have peaks near the EF
of DOS, which greatly complies with the laws of physics, as we
discussed in 2.2.

There are some data with missing Tc labels in the Supercon
database, though these existing materials are feasible for
experimental synthesis (Table 2). The average absolute value
difference of two DNN predicted results was about 10 K, as there
was a huge disparity in the prediction results of some data.
These data can be roughly divided into three categories:
experiments under high pressure, non-superconducting mate-
rials, and material information aws (some data might have
been incorrectly inputted into the database).

In statistics, a condence interval (CI) is a range of estimates
for an unknown parameter, computed at a designated con-
dence level. The CI shows the degree of condence in the
measured value of the parameter, e.g., a 95% condence level is
most common, but other levels (such as 90% or 99%) are
sometimes used.

The CI is calculated by the following formula:

{upper, lowerbound} = X ± z × RMSE.
Fig. 6 Examples of some candidate cuprates with Tc about 77 K in th
(a) Li4Cu3SbO8 (89.23 K); (b) Li4NbCu3O8 (98.62 K); (c) CaCuAsO5 (61.78
(79.73 K).

© 2023 The Author(s). Published by the Royal Society of Chemistry
where X is the predicted value in this case, and z is the standard
score corresponding to the 95% condence interval obtained
from the standard normal distribution. For example, the CI of
Y1Ba2Cu3O6.975 was {72.46, 96.30} by AFS-1, and {66.26, 95.08}
by AFS-2. The experimental value of Y1Ba2Cu3O7 was 93 K,76

which was in the ranges of both the CIs.
Based on the distribution characteristics of the datasets,

a series of virtual samples could be designed for prediction.77,78

Here, we took the samples containing the Hg–Pb–Ba–Ca–Cu–O
composition as an example to perform a VH search. As a result
of Fig. 7, Hg0.13Pb0.09Ba0.32Ca0.422Cu0.4O1 was found to have the
e MP database and their electronic density of states (DOS) from MP.
K); (d) Ba2DyCu3O7 (89.99 K); (e) Li4Cu3TeO8 (87.98 K); (f) CaCuAs2O7
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Fig. 7 Predicted values for partial VH samples. (a) Virtual sample prediction results with Cu as independent variables, and where blue and orange
curves represent the highest and lowest predicted values, respectively. (b) For the VH prediction when the Cu element content was 0.4, most of
the data were still below 120 K, and only 170 samples had Tc predictions above 140 K, and there were only five samples with predicted results
exceeding 150 K.
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highest Tc of 152 K, which represents a prediction of the optimal
value generated by the combination of ve metal elements and
the O element in the chemical formula. There also are many
other frequently appearing elements in the data set, such as Sr
and Y; therefore, VH samples can also be set up by the above
methods, but we suggest that the Cu–O base should be used and
combined with other elements to construct virtual samples, and
then to predict the composition of the compounds of interest
(the element richness information and VH design method are
given in the ESI†).

4 Conclusion

In summary, we developed cost-sensitive classication and
situation-adaptive regression ML models to mitigate prediction
risks. Two descriptors, AFS-1 and AFS-2, were chosen for
comparison and supplementation in predicting Tc for known
components as well as for unknown Tc and VH screening. SHAP
analysis revealed that shortening covalent bond lengths and
increasing hole-doping concentrations are the two physical
factors that can increase the Tc. Our work provides a practical
and accurate ML model for predicting the Tc of unknown
materials, and can offer valuable guidance for future
experiments.
Code availability

The code and datasets for our work are available online from the
following GitHub link. https://github.com/Suth-ICQMS/AFS.
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