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A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-
C3N4) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-
chemical aspects, morphological properties, and their multifunctional biological properties have been
considered in the process of evaluation of the synthesized structure. The hydrogels’ compressive
strength and compressive modulus are 1.98 + 0.03 MPa and 3.46 + 0.05 MPa, respectively. Regarding
the biological response, it is shown that the nanobiocomposite is hon-toxic and biocompatible, and
hemocompatible (with HuO02 cells). In addition, the developed material offers a suitable antibacterial
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1. Introduction

Hydrogels represent cross-linked three-dimensional polymers,
which can be obtained from natural or synthetic sources. The
remarkable characteristic attributed to hydrogels is the ability
to absorb water or liquids with biological properties without
changing their structures.' Hydrogels were first reported in
1960 by Wichterle and Lim.* The abovementioned characteris-
tics of hydrogels have led to their widespread use in a variety of
biomedical fields, including tissue regeneration,™® contact len-
ses,” wound dressings,® expansion of stem cells,’ tissue engi-
neering,'™" drug delivery,”* functional coatings,”® or as
antibacterial* and antimicrobial® materials. A variety of
synthetic polymers have been used to develop hydrogels,
including polyethylene glycol,*® polyvinyl alcohol,"” poly-
acrylamide,'® and polyacrylic acid.* In addition, various natural
polymers have also been used for this purpose, such as alginate,
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activity for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).

starch, gelatin, cellulose, chitosan, and their derivatives.*®
Natural polymers with specific properties such as non-toxicity,
biocompatibility, biodegradability, and hydrophilicity are
particularly important in the biological and biomedical
fields.”*** Among natural polymers, cellulose and, in particular,
its modified form, carboxymethylcellulose (CMC), have been the
center of attention in the development of hydrogels due to
natural abundance, low price, significant mechanical properties
and, the simplicity of processing for the preparation of the
hydrogels.>*?*325

Advanced hydrogels have been further developed by intro-
ducing 2D materials such as graphene analogs, allowing the
tuning of specific hydrogel properties, including mechanical
and electrical ones.>*?® In this regard, graphitic carbon nitride
(g-C3N,), as a metal-free polymeric structure with two-
dimensional layered morphology, has been particularly
applied for various purposes, considering its chemical and
thermal stability, wide surface area, biocompatibility, and non-
toxicity.**** There have been growing reports on the use of g-
C;3N, in areas including organic synthesis and catalyst,*
supercapacitors,* biosensors,** environmental remediation,*
energy,* and biomedical application.?” Recently, g-C3N,, espe-
cially in the form of g-C;N; nanosheets (CN), has been func-
tionalized covalently or non-covalently by various molecules to
improve its properties and applications.*® For example, vitamin
B1 has been attached to CN by the 1,3-dibromopropane linker
for the catalysis of quinoxalines.** Further, melamine conjunc-
tion with g-C;N,, allows the formation of molecules with a large
volume of NH, groups.*’
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Also, metal nanoparticles are finding applications in cata-
lysts,*>** composites,**™** sensors and microelectronics,*® semi-
conductors,” and biological ZnFe,0, NPs
represent a biocompatible nanomaterial with excellent chem-
ical stability, low toxicity, and potential biomedical applica-
tions.”>** In addition, the ability of these nanoparticles to
destroy various bacterial and microbial species causes the
material to become a valuable component in biocomposites
related to medical and environmental fields.** ZnFe,O, NPs
have been used for the development of hybrid materials with
graphene,® natural and synthetic polymers,*® metal-organic
frameworks,*” zeolites,*® and hydrogels.*® Magnesium hydroxide
nanoparticles have been used recently as an antibacterial agent
in manufacturing nanobiocomposites, including CMC hydro-
gels and a framework of silk fibroin for wound dressing
applications.”*

In this research, CN-Pr-Mel/ZnFe,0,/CMC hydrogel nano-
biocomposites have been synthesized as a novel structure with
potential application in biomedicine (Scheme 1). To synthesize
this nanobiocomposite, CN is first functionalized with mela-
mine molecules. ZnFe,0, nanoparticles with high antibacterial
potential are then added to the CN, and subsequently, CMC
hydrogel is added to the structure. The structure is evaluated for
its antibacterial applications.

sciences.*®t

2. Materials and methods

2.1. Materials and instruments

All materials used in this research have high purity and have
been purchased from Merck and Flucka. The FT-IR spectrum of
the samples is obtained with the help of KBr pellets and
through an AVATAR Thermo device. EDX and FE-SEM analyses
are performed using Numerix DXP-X10P and MIRA III TESCAN
devices. The XRD analysis is performed in the range of 26, 5.0°
to 80° with a PANalytical X-PERT-PRO MPD apparatus. Ther-
mogravimetric analysis is carried out through an STA504 device.
In this regard, the thermal stability of the sample is evaluated in
the temperature range of 25 °C to 1200 °C at a temperature rate
of 10 °C min™' in an inert argon atmosphere. Compression
mechanical properties of synthesized nanobiocomposite are
evaluated according to the method presented by Eivazzadeh-
Keihan et al.*® For this purpose, pieces of CN-Pr-Mel/ZnFe,O,/
CMC hydrogel nanobiocomposite with approximate 1 x 1 x
1 cm dimensions are prepared. Then, compressive strength and
compressive modulus are measured using a universal testing
machine (SANTAM-20 model, Iran) with a load cell capacity (0.2
kN) and a crosshead rate of 0.5 mm min " at room temperature.

2.1.1. Preparation of bulk g-C;N,. Bulk g-C;N, is prepared
according to the method reported by Zheng et al®* For this
purpose, white melamine powder is placed in the furnace to
reach a temperature of 550 °C from room temperature in 3
hours in static air (ramp of 2.5 °C min™"). Then, the sample
remains at 550 °C for 4 hours. The resulting yellow powder is
ground for later use.

2.1.2. Preparation of CN. This step is achieved based on
the previous study.®* First, 2.0 g of the prepared bulk g-C;N, is
mixed with 40.0 mL sulfuric acid and stirred for 5 hours at
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90 °C to prepare CN. After the mentioned time, bulk g-C;N, is
dissolved in sulfuric acid, forming a transparent pale yellow
liquid. After cooling, the solution is diluted with 400.0 mL of
ethanol and stirred at room temperature for 2 hours. By
adding ethanol, the color of the solution changes to white.
Then beaker contents are placed in a stationary area for two
days to settle the resulting sediment. After two days, a white
precipitate remains at the bottom of the container, and a clear
solution is placed at the top of the beaker. Most of the clear
solution is removed, and the remaining part and sediment are
placed in the round-bottom flask. Afterward, the flask is
placed in an ultrasonic bath for 6 hours. In the final stage, the
sediment is removed using a centrifuge (5000 rpm), washed
several times with water and ethanol, and placed in an oven at
80 °C for 24 hours to dry.

2.1.3. Preparation of CN functionalized with 1,3-dibromo-
propane (CN-Pr-Br). For this purpose, 1.0 g of CN ware disperses
in 30.0 mL of dry toluene via ultrasonic bath for 30 minutes.
Then, 2.02 mL of 1,3-dibromopropane and 1.0 mmol Nal are
added to the dispersed solution and refluxed under nitrogen for
24 h. Finally, the resulting mixture is separated using a centri-
fuge (5000 rpm) and washed with ethyl acetate and ethanol
several times. Finally, the resulting precipitate is dried at
ambient temperature.*

2.1.4. Preparation of CN functionalized with melamine
(CN-Pr-Mel). To functionalize CN by melamine, 0.5 g of g-C;N,
nanosheets with 1,3-dibromopropane are initially placed into
a round-bottom flask, and 50.0 mL of ethanol is added to it. The
resulting mixture is placed in an ultrasonic bath for one hour.
In the next step, 3.5 g of melamine, 10.0 mL of 1.0 M NaOH
solution, and 0.01 g of KI are added to the flask containing CN
suspension, and the resulting mixture is stirred at ambient
temperature for 15 minutes. Finally, the mixture is refluxed for
24 hours, and the obtained sediment is separated by centrifu-
gation (5000 rpm), washed several times with water and
ethanol, and dried at room temperature.

2.1.5. Preparation of ZnFe,0, NPs. For this purpose, two
solutions must be first prepared separately. To prepare one of
the solutions, 4.9 g of Zn(NO3), and 13.4 g of Fe(NOs); are dis-
solved in 50.0 mL of deionized H,O. For the second solution,
3.0 mL of 1,2-diaminoethane and 4.2 g of NaOH are dissolved in
70.0 mL of distilled water. Then, the solution containing metal
nitrates is added to the first solution, and the resulting mixture
is stirred for 1 hour at 90 °C. The obtained precipitate is sepa-
rated by centrifugation and washed several times with water
and ethanol. The nanoparticles are placed in a vacuum oven at
80 °C for 12 hours and then calcined for 1 hour in a furnace at
600 °C (ramp of 10 °C min !).%*

2.1.6. Preparation of the CMC hydrogel. A mixture of
NaOH, urea, and H,O is first prepared with a weight ratio of 7,
12, and 81 to prepare the CMC hydrogel. The mixture is stir-
red at room temperature until the solid components are
completely dissolved in water. In the next step, 4.0 g of CMC
powder (with an average MW of 250 000 Dalton and a degree
of substitution of 0.75) is poured into 100.0 mL of the as-
prepared solution in the previous step and stirred for 15
minutes at ambient temperature. Then, the lid of the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Schematic representation of the CN-Pr-Mel/ZnFe,O4/CMC hydrogel nanobiocomposite synthesis steps.

container containing the mixture is closed and placed at
—12 °C for 15 hours. After the mentioned time, the compo-
nents of the container are removed from freezing temperature
and placed at room temperature to be melted. In the next step
and after melting, the solution is stirred for 30 minutes for
a clear appearance. 10% weight of epichlorohydrin solution
(ECH) as a cross-linker is poured into the blend and stirred
for half an hour to produce a uniform solution. Eventually,
after the mixture is passed through a 50 °C oven for 4 hours

© 2023 The Author(s). Published by the Royal Society of Chemistry

and a 70 °C freezer for one day, it is freeze-dried for 48 hours
and then stored in a cool and dry place.**

2.1.7. Preparation of CN-Pr-Mel-ZnFe,O, nanocomposite.
Initially, 1.0 g of CN-Pr-Mel is poured into a round-bottom flask,
50.0 mL of ethanol is added, and the mixture is placed in an
ultrasonic bath for 30 minutes. Then 1.0 g of ZnFe,O, nano-
particles are added to the suspension, and the mixture is stirred
for 24 hours under reflux conditions. Finally, the synthesized
nanocomposite is separated by centrifugation and dried at
room temperature after washing with ethanol.

RSC Adv, 2023, 13, 21873-21881 | 21875
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2.1.8. Preparation of CN-Pr-Mel-ZnFe,O0,~-CMC hydrogel
nanobiocomposite. In a 5.0 mL round-bottom flask, 1.0 g of
nanocomposite and 2.0 mL of CMC hydrogel are poured and
stirred at ambient temperature for 24 hours. Finally, the
synthesized hydrogel is freeze-dried for 48 hours and stored in
a cool and dry place. The detailed steps for preparing CN-Pr-
Mel/ZnFe,0,/CMC hydrogel nanobiocomposites are displayed
in the schematic diagram of Scheme 1 in the manuscript's main
text.

3. Results and discussion

3.1. Preparation of the CN-Pr-Mel/ZnFe,0,/CMC hydrogel
nanobiocomposite

The main steps have been carried out for preparing CN-Pr-Mel/
ZnFe,0,/CMC hydrogel nanobiocomposites. As demonstrated
in Scheme 1, the functionalization of exfoliated CN 2D nano-
sheets with melamine molecules via 1,3-dibromopropane (Pr)
linker was accomplished. Then, the ZnFe,O, nanoparticles,
presenting an enhanced antibacterial characteristic, were
prepared through a solvothermal method and added to the CN,
followed by a CMC hydrogel addition.

3.2. Characterization of the CN-Pr-Mel/ZnFe,0,/CMC
hydrogel nanobiocomposite

The main properties of the CN-Pr-Mel/ZnFe,0,/CMC hydrogels
have been studied employing techniques including FT-IR, EDS,
XRD, TGA, and FE-SEM. Functional groups, chemical bonds,
structural elements, crystalline structure, thermal stability, and
morphology are evaluated in this regard. Further, the mechan-
ical properties of this new structure are also estimated.

3.2.1. Functional groups and molecular vibration bands.
The formation of chemical bonds and functional groups in the
preparation procedure of CN-Pr-Mel/ZnFe,0,/CMC hydrogel
nanobiocomposites is evaluated by FT-IR. The FT-IR spectrum
of the CMC hydrogel is shown in Fig. 1a. The broad peak

1446
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ek 1041) \ 453
1550 1319 808
3336 1406 1157 562
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Fig. 1 FT-IR spectrum of (a) CMC hydrogel, (b) CN-Pr-Mel/ZnFe,O4
nanocomposite, and (c) CN-Pr-Mel/ZnFe,O,/CMC hydrogel
nanobiocomposite.
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observed in the 3336 cm ™" is related to the stretching vibrations
of the OH group.®** It should be noted that the peaks observed
in the regions 2854 cm™', 2920 cm™', 1041 cm ', and
1157 cm ™" are related to stretching vibrations of C-H, CH,, C-
O, and C-C groups, respectively.> The C-O group is related to
the CMC's pyranose ring structure and confirms the ether
formation via its cross-linking process with epichlorohydrin.
The peak observed in 1321 cm ™' is attributed to the hydroxyl
group's bending vibration in the CMC structure.®® In addition,
peaks of carboxyl groups after cross-linking are observed in
1446 cm™ " and 1660 cm ™" regions.>* The FT-IR spectrum of the
CN-Pr-Mel/ZnFe,0, nanocomposite is shown in Fig. 1b. The
stretching vibrations peaks of Zn-O and Fe-O related to the
structure of ZnFe,O, nanoparticles, which are demonstrated at
453 cm™ ' and 562 cm ', respectively.®® The peaks detected at
1614 cm ™" and 1550 em™ " are related to the C=N stretching
vibration in the CN and melamine structure. In addition, the
stretching vibration of the heterocyclic C-N can be recognized
by the peaks at 1406 cm™' and 1319 cm™"*** The peak at
808 cm ™" also indicates the breathing vibration of the tri-s-
triazine groups of the CN structure.* It should be noted that
concerning the CN functionalization process, the small peak in
the range of 2800 cm ' to 3000 cm ' can be related to the
stretching vibration of the C-H group of the 1,3-dibromopro-
pane linker.*® Finally, peaks in the range from 3000 cm ™' to
3500 cm ™" can be related to the stretching vibration of N-H in
melamine and CN.*** Fig. 1c shows the FT-IR spectrum of the
final nanobiocomposite, and the main peaks related to hydro-
gels and CN-Pr-Mel/ZnFe,O, nanocomposite can also be
observed in this spectrum, which is proof of the correct
formation of the desired structure.

3.2.2. Elemental composition and mapping. Fig. 2a shows
the EDS analysis of the CN-Pr-Mel/ZnFe,0,/CMC hydrogel
nanobiocomposite. All the main peaks related to the elements
of the final structure, which include C, N, O, Na, Cl, Fe, and Zn,
are observed in the EDS image with a weight percentage of
23.80, 43.07, 25.30, 6.28, 1.53, 0.02, and 0.01, respectively. Zinc,
iron, and oxygen are related to the ZnFe,O, nanoparticles,
carbon, and nitrogen are associated with CN-Pr-Mel, and
carbon and oxygen are correlated to the CMC hydrogels. In
Fig. 2b, the distribution pattern of the elements in the final
structure was evaluated, showing a suitable distribution in the
structure with no large agglomerates or voids. However, the
partial concentration of Fe refers to their aggregation during
ZnFe,0, nanoparticle formation.

3.2.3. Morphological features. FE-SEM images were ob-
tained from the CMC hydrogel and the CN-Pr-Mel/ZnFe,0,/
CMC hydrogel nanobiocomposite to study the morphology of
the composites. The energy of the electron beam was 10.00 kV.
Fig. 3a shows that the freeze-dried CMC is characterized and
exhibits a completely porous structure. On the other hand,
Fig. 3b shows that, after adding CN-Pr-Mel/ZnFe,0,, the
morphology of the hydrogel is dominated by the nanoparticles,
which are well-distributed in the hydrogel.

3.2.4. Structural characteristics. XRD analysis evaluates the
crystalline structure and correct formation of CN-Pr-Mel/
ZnFe,0,/CMC nanobiocomposite. All the main peaks are

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) EDX analysis and (b) element mapping of CN-Pr-Mel/ZnFe,04/CMC hydrogel nanobiocomposites.

observed for the nanobiocomposite components with crystal-
line structures in 26 range from 5° to 90° (Fig. 4). Accordingly,
the peaks observed in the XRD pattern of the final nano-
biocomposite are shown as follows; 26 of 13.07°, 14.91°, 17.76°,
22.43°, 26.38°, 27.34°, 29.06°, 30.14°, 31.92°, 35.56°, 41.61°,
45.70°, 47.46°, 50.12°, 55.28°, 56.58°, 75.38°. As is shown in
Fig. 4, all of these peaks are found in the references for ZnFe,0O,
(JCPDS card no. 01-089-1009), melamine (JCPDS card no. 00-
039-1950), and CN (JCPDS card no. 01-087-1526).°*7° However,
they disappeared slightly after composing with CN-Pr-Mel-
ZnFe,0, nanocomposite in Scheme 1. This reduction indicates
the decrease in the power of the H-bonding connection between
the cross-linked cellulosic chains.” The ZnFe,0, crystals’ sizes

© 2023 The Author(s). Published by the Royal Society of Chemistry

were measured by applying Scherrer's equation and compared
with the reference values.” In the current study, ZnFe,0, was
prepared, and their average crystal size was calculated to be
about 26.49 nm using Scherrer's equation.

3.2.5. Thermal stability. As is shown in Fig. 5, TG analysis is
performed to investigate the thermal stability of the sample.
This test is applicable under an argon atmosphere at a temper-
ature rate of 10 °C min~" in the range of 25 °C to 1200 °C. The
first weight loss occurs from 25 to 200 °C, observed in approx-
imately 20% of the sample weight. This value relates to
releasing water and other solvents trapped in the structure.*
The subsequent mass reduction, which is in the range of 200 °C
to 400 °C, is related to the destruction of the structure of some

RSC Adv, 2023, 13, 21873-21881 | 21877
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Fig. 3 FE-SEM image of (a) CMC hydrogel and (b) CN-Pr-Mel/ZnFe,O4/CMC hydrogel nanobiocomposite.
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Fig. 4 (a) XRD pattern and (b) peak list of the CN-Pr-Mel/ZnFe, O,/
CMC hydrogel nanobiocomposite (c) reference of ZnFe,O4 (01-089-
1009), melamine (00-039-1950) and CN (01-087-1526).

organic materials, including CMC and melamine.”*”® The
organic materials destruction reduces about 40% of the sample
weight. The next 40% mass drop occurs in the 400 °C to 1050 °C
range, destroying the CN and ZnFe,0,.>** After 1050 °C, the
weight of the sample does not change significantly, and, finally,
up to 1200 °C, about 5% of the weight of the sample remains.

3.2.6. Mechanical response. To evaluate the mechanical
properties, two different parameters, compressive strength, and
compressive modulus, are measured for the CN-Pr-Mel/
ZnFe,0,/CMC hydrogels. The compressive strength and
modulus are 1.98 & 0.03 MPa and 3.46 + 0.05 MPa, respectively.

21878 | RSC Adv,, 2023, 13, 21873-2188I

3.3. Bio-application of the designed CN-Pr-Mel/ZnFe,0,/
CMC hydrogel

3.3.1. XTT assay. The cell viability of the CN-Pr-Mel/
ZnFe,0,/CMC hydrogel nanobiocomposites at the highest
concentration (100 mg mL™") is 87.6% after 24 h, which
increased to 91.3% after 48 h, with no significantly different
results from the control group (untreated cells). The results are
the average of three independent experiments and are pre-
sented in Fig. 6a. These results indicate that this nano-
biocomposite is non-toxic and biocompatible with Hu02 cells.
The effect of the nanobiocomposite on cell morphology and
shape is imaged with a reverse microscope, as presented in
Fig. 6b and c. These Images indicate that the Hu02 cell line
retains its fibroblast shape after being in contact with the CN-
Pr-Mel/ZnFe,0,/CMC hydrogel.

3.3.2. Hemolytic assay. Hemolytic assay results show that
the hemolytic effect of CN-Pr-Mel/ZnFe,O,/CMC hydrogel
nanobiocomposite is below 9% at 1000 ug mL . Instead, Triton
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Fig. 5 TGA curve of
nanobiocomposite.
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Fig. 6 (a) XTT assay: HuO2 cells were exposed to the CN-Pr-Mel/

ZnFe,O4/CMC hydrogel nanobiocomposite (* = insignificant, P =
0.05) and (b) inverted microscopic pictures of Hu02 cells and (c) cells
after contacting the nanobiocomposite.

X-100 is hemolyzed about 100% of RBCs at the same concen-
tration (Fig. 7). Results are the average of three independent
experiments and prove that this synthesized nanobiocomposite
is hemocompatible.

3.3.3. MIC and MBC determination. MICs and MBCs of
CN-Pr-Mel/ZnFe,0,/CMC hydrogel nanobiocomposites and two
control antibiotics (Penicillin and Streptomycin) against
a Gram-positive bacteria (Staphylococcus aureus ATCC 25923)
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100
~ 80
X
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2‘ 60
©
5
= 40
20
0
15.62 31.25 625 125 250 500 1000
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Fig. 7 Hemolysis histogram of the positive control and CN-Pr-Mel/
ZnFe,04/CMC hydrogel nanobiocomposites (P = 0.001).
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Table 1 MICs in ng mL~? of the CN-Pr-Mel/ZnFe,O4/CMC nano-
biocomposite hydrogel against Gram-positive and Gram-negative
bacteria

MICpnean + SD (MBCpnean +
SD) for three independent

tests
Agents S. aureus E. coli
CN-Pr-Mel/ZnFe,0,/CMC hydrogel 1000 + 1.0 500 + 1.0
Penicillin 1.4+0.1 6.8 & 0.4
Streptomycin 12.49 £+ 0.0 3.1+0.6

and a Gram-negative bacteria (Escherichia coli ATCC) are
determined (Table 1). Results illustrate that the MIC of the CN-
Pr-Mel/ZnFe,0,/CMC hydrogel is 500 pg mL ™" and 1000 pg
mL ™" for S. aureus and E. coli, respectively, demonstrating
antibacterial activity.

4. Conclusions

CN-Pr-Mel/ZnFe,0,/CMC hydrogels have been synthesized and
evaluated for biomedical applications. To synthesize this
nanobiocomposite, CN is first functionalized with melamine
molecules. ZnFe,O, nanoparticles with high antibacterial
potential are then added to the CN, and subsequently, CMC
hydrogel is added to the structure. The application of this
structure for antibacterial applications is evaluated. In biolog-
ical analysis, cell viability at 100 mg mL ™" is 87.6% after 24 h,
showing biocompatibility with Hu02 cells. Further, the hemo-
Iytic effect of the structure is below 9% at the concentration of
1000 pg mL ™", also compatible with blood. Concerning the
antibacterial activity, the MIC of the nanobiocomposite in S.
aureus and E. coli is 500 pg mL~"' and 1000 ug mL ™", respec-
tively, demonstrating the antibacterial activity.
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