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Mercury ion (Hg?*) is a well-known toxic heavy metal. It has become one of the most significant
environmental pollutants in the world because of its serious physiological toxicity, persistence, easy
migration, and high bioconcentration. Thus, the development of methods for monitoring Hg?* is
indispensable. Herein, we have designed and synthesized a new fluorescent probe, TPH, for the
detection of Hg?" in the water environment. The TPH probe could quantitatively detect Hg?* between
0 and 5 pM (LOD = 16 nM), with a linear range of 0-2.5 uM. In addition, the TPH probe was used to
monitor Hg?" in water samples successfully. Thus, this probe is suitable for monitoring Hg?* in the actual
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1 Introduction

Mercury has attracted attention from researchers owing to its
strong toxicity and bioaccumulation.** With the development of
industry, especially gold mining, the burning of fossil and oil
refining, mercury ion pollution is widely distributed in the
environment.>” Through biological enrichment, mercury ions in
water can be transformed into organic mercury ions with stronger
toxicity and then enter the human body via the food chain.*™*°
Even very small amounts of mercury ions have a severe impact on
the human body, including the digestive system and kidneys,
cognitive disorders, and even central nervous system damage." ¢
Consequently, the development of methods for the detection of
mercury ions with simple synthesis and high selectivity and
sensitivity is significant.

Recently, many methods have been reported for the detection
of mercury ions (Hg>"), including gas chromatography, inductive
coupled plasma mass spectroscopy, and atomic absorption
spectrometry.”* However, most of the above-mentioned
methods have some disadvantages, such as complex pretreat-
ment, use of expensive instruments, and difficulty in realizing
real-time and on-site monitoring.>** In contrast, the use of fluo-
rescent probes has attracted significant attention due to their
simple operation and high selectivity and sensitivity.>** Thus, an
increasing number of fluorescent probes has been used to detect
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environmental heavy metal pollutants including Hg>". However,
the reported probes for monitoring Hg** still have some short-
comings, such as poor selectivity and water solubility and high
detection limits (LODs).**** Therefore, new fluorescent probes
need to be developed for monitoring Hg*" in the environment
with excellent selectivity and sensitivity and good water solubility.

Accordingly, herein, we synthesized the TPH probe, which
was based on the TPC-OH dye as the fluorophore®® and phenyl
thiochloroformate as the recognition receptor of Hg>".37
Phenyl thiochloroformate possesses high selectivity for the
detection of Hg>*, and thus the TPH probe could also achieve
the specific and sensitive detection of Hg>". The TPH probe
exhibited the following excellent properties: (1) good water
solubility, (2) excellent sensitivity (LOD = 16 nM), (3) high
selectivity, and (4) excellent application in the environment.
Thus, this probe will have a wide application prospect for
monitoring Hg>" in the environment.

2 Experimental
2.1 Materials and instruments

All chemical reagents were obtained from commercial sour-
ces and used without further purification. Absorption and
fluorescence spectra were recorded on a UV-3101PC spectro-
photometer and Horiba FluoroMax-4 spectrophotometer,
respectively.

2.2 Synthesis of TPH probe

TPC-OH dye (236 mg, 1 mmol) was dissolved in dry CH,Cl,
(15 mL), and then phenyl thiochloroformate (259 mg, 1.5 mmol)
and N,N-diisopropylethylamine (DIPEA) (194 mg, 1.5 mmol)
were added (Scheme 1). The mixed solution was stirred at 25 °C
for 2 h.
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Scheme 1 Synthesis of TPH probe.
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Fig. 1 (a) Fluorescence and (b) absorption spectrum changes of TPH

probe (5 uM and 20 pM, respectively) before and after the addition of
Hg?* (20 uM). Aex = 400 NM and Aem = 505 nm. Conditions: HEPES
(5mM, pH 7.4).
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Scheme 2 Recognition mechanism of TPH probe for Hg®*.
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The crude product was purified by column silica chroma-
tography over silica gel using dichloromethane/petroleum ether
(14 : 5) as the eluent to provide a faint-yellow pure solid product.
'H NMR (400 MHz, DMSO) 6 (ppm): 7.94 (d,J = 5.6 Hz, 1H), 7.81
(d,J = 8.0 Hz, 2H), 7.68 (s, 1H), 7.58 (s, 1H), 7.55-5.52 (m, 4H),
7.48 (t,] = 8.0 Hz, 2H), 7.39 (t, / = 8.0 Hz, 3H), 4.21 (s, 2H). °C
NMR (100 MHz, DMSO) 6 (ppm): 193.95, 192.55, 158.01, 153.62,
152.68, 136.23, 135.34, 135.21, 133.66, 131.32, 130.46, 130.42,
129.52, 127.57, 125.82, 122.74, 122.20, 120.54, 32.44.

3 Results and discussion
3.1 Spectral response of TPH probe

All the reactions were carried out in aqueous solution (HEPES
5 mM, pH = 7.4). The fluorescence spectra of the TPH probe
for monitoring Hg>" was investigated. When Hg?" (20 uM) was
added, the fluorescence intensity displayed a significant
enhancement at 505 nm (Fig. 1a). The quantum yield of the
TPH probe was calculated to be 0.07. Then, its absorption
spectrum was also studied. According to the results, the
absorption peak changed from 325 nm to 350 nm (Fig. 1b),
implying that Hg>* could promote the splitting of the car-
bonothioate moiety (Scheme 2). Furthermore, we conducted
HRMS and NMR to explore the reaction mechanism of the
TPH probe and Hg*" (Fig. S1-S4 in the ESIY).

3.2 Quantification of Hg”*

The TPH probe showed good water solubility, and thus the
influence of the concentration of Hg>" on its fluorescence
intensity in pure water was investigated. With an increase in
Hg”" concentration (0-5 pM), the fluorescence intensity of the
TPH probe at 505 nm increased accordingly (Fig. 2a). In
addition, when the concentration of Hg2+ was 0-2.5 uM, it was
linearly correlated with the fluorescence intensity (y = 201 921
[Hg>*] (uM) + 85 603, R*> = 0.9828) (Fig. 2b), and the LOD was
16 nM (30/k). Thus, all the above-mentioned results indicate
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Fig. 2 (a) Fluorescence spectra of TPH probe (5 uM) for Hg®* (0-5
uM). (b) Linear plot of fluorescence intensity (505 nm) to Hg>* (0-2.5
uM). Aex = 400 nm and A¢m, = 505 nm. Conditions: in HEPES (5 mM,
pH 7.4).

that the TPH probe can provide a sensitive detection tool for
Hg”" in the actual water environment.

3.3 Specificity for Hg”"

The specificity of the TPH probe toward Hg>* and other
various relevant analytes including Cd**, Cu®*, Fe**, Ca**, K",
Mg?*, Na*, Ni**, Pb*", Sn**, Zn**, Co>", Fe**, NO*~, $0,>~ and
Cl~ was analyzed. The concentration of Hg>" and the other

Table 1 Application of TPH probe in three water samples”
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Fig. 3 (a) Fluorescence response of TPH probe (5 pM) toward Hg®* (5
uM) and other ions (50 puM). (b) Fluorescence response of TPH probe (5
uM) toward Hg?* (5 uM) in the presence of other ions (50 PM). Aex =
400 nm and Aem = 505 nm. Conditions: in HEPES (5 mM, pH 7.4).

analytes was 5 pM and 50 puM. Only Hg*" caused a fluores-
cence response at 505 nm, while the other relevant analytes
did not cause obvious fluorescence changes (Fig. 3a). Besides,
interference experiments were also conducted. The fluores-
cence intensity response values exhibited a slight change at
505 nm (Fig. 3b). Thus, all these results strongly suggest that
the TPH probe can specifically recognize Hg*".

3.4 Analytical applications in real water samples

Then, the analytical application of the TPH probe in three water
samples (lake water, underground water and river water) for the

Real water
samples Found Hg*" Addition Hg*" (uM) Found (uM) Recovery (%) RSD (n = 3) (%)
Sample A ND 1 0.97 + 0.03 96.93 3.08
2 2.01 £ 0.13 100.38 6.40
Sample B ND 1 1.09 £ 0.06 109.20 6.42
2 1.68 £ 0.13 84.07 6.64
Sample C ND 1 0.96 £+ 0.08 95.97 8.41
2 1.72 £ 0.11 85.81 5.40

“ ND: not detected. Sample A from JiaZi Lake, University of Jinan and samples B and C from Jinyun River and Jinyang River in Jinan, China.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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detection of Hg>" was investigated. Firstly, no Hg>* was found in
the samples. Then, after 5 uM TPH probe was added to the test
water samples, 1 and 2 pM Hg”" were also respectively added.
Each sample was tested three times. As can be seen in Table 1,
the recoveries of the three water samples were 84.07-109.20%,
further confirming that this newly synthesized probe could
effectively detect Hg?" in the real water environment.

4 Conclusions

The fluorescent TPH probe with phenyl thiochloroformate as
the Hg>" recognition site was synthesized in this study. This
probe could specifically recognize Hg”" and quantitatively
detect Hg”" in aqueous solution. According to the experimental
results, we calculated that its detection limit is 16 nM. Mean-
while, the TPH probe has excellent water solubility, which is
conducive for its application in the actual environment.
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request.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgements

We gratefully acknowledge financial support from the NSFC
(42007176, 52070122), and Natural Science Foundation of
Shandong Province (ZR2020QD125, ZR2020ME222), Key Scien-
tific and Technological Innovation Foundation of Shandong
Province (No. 2020CXGC011404).

References

1 S.Y. Chen, Z. Li, K. Li and X. Q. Yu, Coord. Chem. Rev., 2021,
429, 213691.

2 M. A. Peckham, M. S. Gustin and P. J. Weisberg, Environ. Sci.
Technol., 2019, 53, 3663.

3 L. Wang, Y. Zhao and J. Zhang, Ind. Eng. Chem. Res., 2017, 56,
3804.

4 S. X. Wang, L. Zhang, L. Wang, Q. R. Wu, F. Y. Wang and
J. M. Hao, Front. Environ. Sci. Eng., 2014, 8, 631.

5 Y. M. Yu, C.Y. Liu, B. Tian, X. Y. Cai, H. C. Zhu, P. Jia, Z. L. Li,
X. Zhang, W. L. Sheng and B. C. Zhu, Dyes Pigm., 2020, 177,
108290.

6 X. Yuan, T. H. Leng, Z. Q. Guo, C. Y. Wang, J. Z. Li,
W. W. Yang and W. H. Zhu, Dyes Pigm., 2019, 161, 403.

7 Q.X.Duan, M. Zhang, C. X. Sheng, C. Y. Liu, L. Wu, Z. M. Ma,
Q. Zhao, Z. P. Wang and B. C. Zhu, Anal. Sci., 2017, 33, 1169.

8 F. Song, C. Yang, X. T. Shao, L. Du, J. Zhu and C. Kan, Dyes
Pigm., 2019, 165, 444.

19094 | RSC Adv, 2023, 13, 19091-19095

View Article Online

Paper

9 C. Y. Qin, B. Y. Du, R. S. Yin, B. Meng, X. W. Fu, P. Li,
L. M. Zhang and X. B. Feng, Environ. Sci. Technol., 2020, 54,
14334.

10 Y. Zhang, C. Y. Liu, M. J. Su, X. D. Rong, X. Wang, K. Wang,
X. W. Li, H. C. Zhu, M. H. Yu, W. L. Sheng and B. C. Zhu, J.
Photochem. Photobiol., A, 2022, 425, 113706.

11 X. Wang and W. X. Wang, Environ. Sci. Technol., 2015, 49,
10173.

12 J. Xu, Z. K. Wang, C. Y. Liu, Z. H. Xu, N. Wang, X. Cong and
B. C. Zhu, J. Lumin., 2018, 6, 1122.

13 R. Roy, S. Rakshit, S. Bhar and S. Bhattacharya, RSC Adv.,
2015, 5, 67833.

14 M. Jing, D. Lin, P. Wu, M. J. Kainz, K. Bishop, H. Yan, Q. Li
and X. Feng, Sci. Total Environ., 2021, 782, 146410.

15 P. Srivastava, S. Razi, R. Ali, R. Gupta, S. Yadav, G. Narayan
and A. Misra, Anal. Chem., 2014, 86, 8693.

16 B. Yuan, D. X. Wang, L. N. Zhu, Y. L. Lan, M. Cheng,
L. M. Zhang, J. Q. Chu and X. Z. Li, Chem. Sci., 2019, 10, 4220.

17 Z. Mermer, O. Yavuz, S. K. Atasen, Y. Alcay and I. Yilmaz, J.
Hazard. Mater., 2021, 410, 124597.

18 A. Thongsaw, R. Sananmuang, Y. Udnan, G. M. Ross and
W. C. Chaiyasith, Spectrochim. Acta, Part B, 2019, 160,
105685.

19 Q. X. Zhou, Y. L. Liu, Y. L. Wu, Z. Li, Y. H. Li, M. H. Liu,
T. X. Qu and C. M. Chen, Chemosphere, 2021, 274, 129959.

20 S. E. Long, J. E. Norris, J. Carney and J. V. Ryan, Pollut. Res.,
2020, 11, 909.

21 1. Narin, M. Soylak, L. Elci and M. Dogan, Talanta, 2000, 52,
1041.

22 S. Huang, X. Cheng, Q. Lei, B. Feng, X. H. Liu, ]J. P. Ding,
C. Zhong, J. H. Liang and W. B. Zeng, Dyes Pigm., 2021,
187, 109125.

23 Y. N. Zhang, S. Guo, Z. R. Jiang, G. B. Mao, X. H. Ji and
Z. K. He, Anal. Chem., 2018, 90, 9796.

24 T. H. Chen, S. Zhang, M. Jaishi, R. Adhikari, J. Bi, M. Fang,
S. Xia, Y. Zhang, R. L. Luck, R. Pati, H. M. Lee, F. T. Luo,
A. Tiwari and H. Liu, ACS Appl. Bio Mater., 2018, 1, 549.

25 S.Y. Ma, L. Y. Li, M. Y. She, Y. Mo, S. Y. Zhang, P. Liu and
J. L. Li, Chin. Chem. Lett., 2017, 28, 2014.

26 Q. X. Duan, H. C. Zhu, C. Y. Liu, R. F. Yuan, Z. T. Fang,
Z. K. Wang, P. Jia, Z. L. Li, W. L. Sheng and B. C. Zhu,
Analyst, 2019, 144, 1426.

27 W. Shuy, L. G. Yan, J. Liu, Z. K. Wang, S. Zhang, C. C. Tang,
C. Y. Liu, B. C. Zhu and B. Du, Ind. Eng. Chem. Res., 2015,
54, 8056.

28 Y. Z. Liu, H. Z. Zhao, N. Gao, C. L. Yang, R. B. Zhang and
X. L. Zhang, Sens. Actuators, B, 2021, 344, 130201.

29 B. Yuan, D. X. Wang, L. N. Zhu, Y. L. Lan, M. Cheng,
L. M. Zhang, J. Q. Chu, X. Z. Li and D. M. Kong, Chem.
Sci., 2019, 10, 4220.

30 Q. X. Duan, X. Y. Lv, C. Y. Liu, Z. F. Geng, F. F. Zhang,
W. L. Sheng, Z. K. Wang, P. Jia, Z. L. Li, H. C. Zhu and
B. C. Zhu, Ind. Eng. Chem. Res., 2019, 58, 11.

31 M. Zhao, G. K. Shao, Y. S. Guo, Y. L. Tang, J. B. Liu and
D. S. Guo, New J. Chem., 2020, 44, 12538.

32 S. Maity, S. Banerjee, K. Sunwoo, J. Kim and P. Bharadwaj,
Inorg. Chem., 2015, 54, 3929.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra02791k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 June 2023. Downloaded on 1/19/2026 3:25:04 PM.

(cc)

View Article Online

Paper RSC Advances

33 H. Un, C. Huang, C. Huang, T. Jia, X. Zhao, C. Wang, L. Xu 36 C. Y. Liu, P. Jia, Z. H. Zhuang, Z. K. Wang, Q. X. Duan,

and H. Yang, Org. Chem. Front., 2014, 1, 1083. Z. R. Li, H. C Zhu, X. Zhang, B. C. Zhu and W. L. Sheng,
34 T. Zhang, B. Wu, Z. Zou, Y. Wu, J. Zheng, W. Wong and Sens. Actuators, B, 2019, 291, 243.

K. Wong, J. Lumin., 2016, 170, 187. 37 J. Xu, Z. H. Xu, Z. K. Wang, C. Y. Liu, B. C. Zhu, X. R. Wang,
35 S. Y. Qin, B. Chen, J. Huang and Y. F. Han, New J. Chem., K. Wang, J. T. Wang and G. Q. Sang, J. Lumin., 2018, 33, 219.

2018, 42, 12766. 38 W. Shu, Y. W. Wang, L. Wu, Z. K. Wang, Q. X. Duan,

Y. B. Gao, C. Y. Liu, B. C. Zhu and L. G. Yan, Ind. Eng
Chem. Res., 2016, 55, 8713.

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2023, 13, 19091-19095 | 19095


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra02791k

	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k

	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k

	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k
	Highly selective fluorescent probe for detecting mercury ions in waterElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3ra02791k


