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CdO decorated CdS nanorod for enhanced
photocatalytic reduction of CO, to CO+
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Solar-driven CO; reduction into fuels and sustainable energy has attracted increasing attention around the
world. However, the photoreduction efficiency remains low due to the low efficiency of separation of
electron—-hole pairs and high thermal stability of CO,. In this work, we prepared a CdO decorated CdS
nanorod for visible light driven CO, reduction. The introduction of CdO facilitates the photoinduced

charge carrier separation and transfer and acts as an active site for adsorption and activation of CO,
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Accepted 31st May 2023 molecules. Compared with pristine CdS, CdO/CdS exhibits a nearly 5-fold higher CO generation rate

(1.26 mmol g~* h™). In situ FT-IR experiments indicated that CO, reduction on CdO/CdS may follow
a COOH* pathway. This study reports the pivotal effect of CdO on photogenerated carrier transfer in
photocatalysis and on CO, adsorption, which provides a facile way to enhance photocatalytic efficiency.
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Introduction

Photocatalytic reduction of CO, by sunlight is a sustainable
energy economy because this process is promising to store solar
energy in the chemical bonds and produce useful chemicals
and fuels such as CO."* Though a great amount of work has
been done during the past several decades, the photoreduction
efficiency remains low due to the low efficiency of separation of
electron-hole pairs and the high thermal stability of CO,.>”®
Multifarious strategies have been developed to promote charge-
separation, such as the construction of heterojunctions,'**
heteroatom doping,'**® and band-structure engineering.'’>*
Moreover, water is the most preferred and widely used
reductant for CO, reduction, and the photo splitting of water to
generate H, occurs in the photoreduction of CO,. CO, is one of
the most stable and chemically inert molecules. The free energy
change of the conversion of CO, to CO is 257 k] mol ™!, which is
higher than that of H,O to H, (237 k] mol ").%*?® The compet-
itive consumption of the photoinduced electrons to reduce CO,
or protons limits the CO, reduction efficiency.”** Many re-
ported works for CO, reduction generate more H, than CO,
reduction products. Efforts have been made to prevent the
hydrogen generation and promote CO production.**** To
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ameliorate the efficiency of photocatalytic reduction of CO,,
efforts should be made to explore catalysts that could simulta-
neously efficiently separate hole-electron pairs, selectively
activate CO,, and prohibit the hydrogen generation.

Recently, CdS has been frequently reported in various pho-
tocatalytic systems. However, its photocatalytic activity is poor
due to its high recombination rate of photogenerated electron—
hole pairs. To enhance its photoactivity, efforts have been put to
modify the composition and structure of CdS, such as N-doped
graphene grown on CdS hollow spheres,'® anchoring of
a molecular Ni catalyst on CdS,** coating CdS with ZIF-8 to form
a core-shell structure,"” decorating CdS with Pt nanoparticle,*
Co complex assembled by CdS.*®

In this work, CdS nanorod is used as the visible light
responsive photocatalyst. CdO was grown on CdS via plasma
treatment. The as-prepared CdO/CdS is effective for the photo-
catalytic reduction of CO, under visible light irradiation at room
temperature. Compared with pristine CdS, this CdO/CdS cata-
lyst exhibits higher reaction rate, nearly 5-fold higher CO
generation (1.26 mmol g ' h™") and suppresses H, generation
rate (0.24 mmol g ' h™"). This study reveals the promoting
effect of CdO on suppressing recombination of photogenerated
carriers and on CO, adsorption, which provides a novel method
to enhance photocatalytic efficiency.

Results and discussion

Pristine CdS nanorod was prepared according to the litera-
ture.*”*® The characterization of the XRD patterns of CdS could
be well indexed to hexagonal wurtzite structure with good
crystallinity (JCPDS no. 41-1049).* The CdO/CdS catalyst was
prepared as Scheme S1t by H, plasma treatment, and then
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treated by air oxidation at ambient temperature. After H,
plasma treatment, sulfur atoms are first removed, and then
a small amount of CdO was formed followed by air oxidation as
shown by the appearance of CdO (200) peak at 38.3° (JCPDS no.
65-2908), as confirmed by transition electron microscopy (TEM)
(Fig. 1a and b). TEM images of CdO/CdS show that the surfaces
of CdS nanorods are rough compared to the pristine CdS, and
many round particles emerged at the surface. These particles
were then investigated by HRTEM images (Fig. 1b). As pre-
sented, the three kinds of lattice fringes with fringe pacing of
0.271, 0.23, and 0.166 nm are consistent with the (111), (200),
and (220) lattice plane of CdO, respectively. And the lattice
fringe spacing of 0.336, and 0.36 nm are attributed to the (002),
and (100) lattice plane of CdS, respectively. These results clearly
indicate that CdO particles have been constructed on the
surface of CdS after plasma treatment. The Cd 3d peaks of CdO/
CdS red shift 1 eV compared to that of CdS samples, resulting
from CdO environments on the CdS surface.””** Raman is
useful for the characterization of CdO species. Raman
measurements further provided evidence for the formation of
CdO on the surface of CdS (Fig. 1c). Vibrational bands at
305 cm™ ! and 595 cm ! are assigned to scattering and double
scattering on the longitudinal optical phonon of CdS (LO and
2L0O), respectively.”*** The broad and intense structure
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spanning from 300 to 390 cm™ "' could be attributed to CdO by
comparison to a reference spectrum of CdO.*

The presence of CdO at the CdS surface changes the energy
band structure. The VB potentials of pristine CdS and CdO/CdS
are analyzed. As shown in Fig. 1e, the VB potentials of CdO/CdS
shifts positive to 1.49 eV, which means the oxidizing power of
CdO/CdS is higher than CdS. The band gap of CdO/CdS was
nearly the same as pristine CdS (Fig. S1 and S27). In this case,
the electrons can be more easily photoexcited from VB to the
conduction band.

The separation and transfer of charge carriers were further
examined through photoluminescence (PL) emission spectra,
electrochemical impedance spectroscopy (EIS), and transient
photocurrent responses. As shown in Fig. 2, the PL emission
spectra exhibit a strong peak at about 510 nm, which is attrib-
uted to the essential excitonic emission of CdS,* in agreement
with its band gap energy, which was confirmed by the UV-vis
diffuse reflectance adsorption spectra. CdO/CdS retains the
light adsorption consistent with CdS, and the spectrum is
slightly broadened, with a bandgap of ca. 2.40 eV (Fig. S27).
CdO/CdS shows a decreased PL intensity in comparison with
CdS, demonstrating that CdO/CdS inhibits the photogenerated
carrier recombination. The lifetime of the two samples were
then calculated via a photoelectron experiment in Fig. S3,f
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Fig. 1 Characterizations of CdS samples. (a) XRD patterns of CdS and CdO/CdS. (b) TEM and HRTEM images of CdS and CdO/CdS. (c) Raman
spectra of CdS and CdO/CdS at an excitation wavelength of 785 nm. (d) XPS analysis of the Cd (3d) region of CdS and CdO/CdS. (e) Valance band

spectra of CdS and CdO/CdS.
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Fig. 2 Photoelectrical properties of catalysts. (a) Photoluminescence emission spectra, (b) EIS Nyquist plots, and (c) transient photocurrent

responses of CdS and CdO/CdS.

which demonstrate that the lifetime of photogenerated elec-
trons of CdO/CdS is longer than that of CdS in accordance with
the PL spectra. On the other hand, the current density vs. time
curves consist of six similar trapezoids, and the start and end of
each curve edge demonstrate that the photocurrent was fast
generated with light irradiation and was rapidly vanished when
light was stopped. The photocurrent density of CdO/CdS is
notably higher than that of CdO/CdS with several on-off cycles
of light irradiation (Fig. 2b), which means a better photoin-
duced carrier separation. Electrochemical impedance spec-
troscopy (EIS) was then carried out for further investigation. The
Nyquist plot of CdO/CdS presents a reduction in the radius of
the semi cycle arc compared to CdS, indicating a more efficient
interfacial charge migration. These results illustrate that the
photoexcited electrons and holes of CdO/CdS were separated
and transmitted quickly and their recombination was inhibited.

We then investigated the catalytic performance of CdO/CdS
in the CO, photocatalytic reduction under visible light
(455 nm LEDs) irradiation. Gas chromatography (GC) was
employed to identify and quantify the gas product, where CO
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was detected as the solo reduction product and no other
detectable reduction liquid products by high performance
liquid chromatography (HPLC). A series of semiconductor
photocatalysts were screened in CO, photocatalytic reduction to
CO in MeCN-water (9 : 1) solution (Fig. S4T). Most of the widely
used catalysts, such as Nb,O5, Bi,WOs, P25, Bi,03, CeO, were
inactive for this reaction. CdS was active and generated
3.4 mmol g ... ' of CO and 9.1 mmol g.,. ' of H,. After plasma
treatment of CdS, the activity was greatly improved. CdO/CdS
produced 15.1 mmol g.... - of CO, nearly 5 times over CdS. To
exclude that CO comes from MeCN solvent, we performed the
photoreaction in the absence of CO,. When CO, was replaced
with argon, CO was undetected. Then we performed the time
profile of photocatalytic conversion from CO, to CO over CdS
and CdO/CdS. As the reaction proceeds, the yield of CO over
CdO/CdS increases, which is 6 times that over pristine CdS after
6 h (Fig. 3a). And the H, productivity over CdO/CdS is lower than
that over pristine CdS, which is 0.26 times of the latter (Fig. 3b).
CO, reduction and H, generation are competitive reactions, and
they both need photo-generated electrons. These results

cdo/Cds
@ Cds

=

3

% 3]

o

o

©

€

€ 151 °

'

N

u

0- T T T T T T

1 2 3 4 5 6

Reaction Time (h)

Fig. 3 Time profile of photocatalytic reduction of CO, to CO over CdS and CdO/CdS catalysts under standard reaction conditions. (a) CO

productivity; (b) H, productivity.
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Fig.4 The photocatalytic performance of CdO/CdS catalyst. (a) Catalyst reusability under standard reaction conditions in 24 h. (b) Solvent effect

under standard reaction conditions.

showed that CdO/CdS tended to the selective reduction of CO,
reduction over hydrogen evolution. The amount of CO and H,
was nearly linearly increased. The catalyst is stable and could be
reused for at least 5 times with no apparent loss of activity
(Fig. 4a). We also investigated the solvent effect on the reaction,
and when MeCN/H,O ratio was 9:1, CO generated most
(Fig. 4b).

To further elucidate the reason why CdO/CdS favors CO,
reduction, we then investigate the adsorption ability of the

catalysts towards CO,. After photoirradiation with 450 nm laser
in the presence of CO,, no apparent peaks were observed,
indicating the interaction on the catalyst surface is very weak for
pristine CdS. On the contrary, CdO/CdS behaved better CO,
adsorption ability. Several peaks could be observed (Fig. 5a).
The peaks at 1688 and 1383 cm ™" could be assigned to the
bidentate bicarbonate (b-HCO®~) and bidentate carbonate (b-
CO;3%7), respectively.* And the peaks at 1586 and 1262 cm
could be assigned to the formate (COO™), suggesting that CO,
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Fig.5 CO, adsorption to CdS samples. (a) FTIR absorbance spectra of CO, adsorption to CdO/CdS and CdS. (b) CO, adsorption energy to CdO

(111) and CdS (0001).
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reduction could follow a COOH* pathway.*® After evacuation,
these peaks still exist though some of which slightly weakened,
while no apparent change happened over pristine CdS. These
results demonstrate that CdO/CdS had better CO, adsorption
ability. We also calculate the adsorption energy of CO, to CdO
(111) and CdS (0001). The adsorption energy of CO, to CdO is
higher than to CdS, which showed that the introduction of CdO
facilitate the activation of CO, (Fig. 5b).

Conclusion

In summary, we developed a method to generate CdO on CdS
via H, plasma treatment then air oxidation. Compared with
pristine CdS, CdO/CdS exhibits nearly 5-fold higher CO gener-
ation rate (1.26 mmol g~ * h™") and 0.32-fold lower H, genera-
tion (0.24 mmol g * h™") in CO, photocatalytic reduction. The
CdO/CdS is stable and could be used for at least five times
without apparent loss of activity. Detailed studies demonstrate
that CdO could facilitate separation of electron-hole pairs and
could promote CO, adsorption. The present work reports the
pivotal effect of CdO on CO, photocatalytic reduction, which
provides a novel and facile method for increasing photocatalytic
efficiency.

Experimental section

Materials

Cd(NO3),4H,0 (99%) was purchased from Shanghai Macklin
Biochemical Co., Ltd. Thiourea (99%) and (+)1-phenylethanol
(98%) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., Ltd. Ethylenediamine (99%) and acetonitrile
(99%) were purchased from Damao Chemical Reagent Factory.
All the reagents were used as received without further
purification.

Preparation of catalysts

CdS nanorods were synthesized by a modified solvothermal
method according to the literature. In a typical procedure,
4.62 g of cadmium nitrate and 4.62 g of thiourea were placed in
a Teflon-lined steel chamber and filled with ethylenediamine,
followed by 160 °C treatment for 24 hours. After cooling to room
temperature, the resulting solid products were collected by
systematic centrifugation, washed with deionized water. The
products were then dried at 60 °C overnight. CdS nanorods were
obtained finally as a yellow powder. The as-prepared CdS
nanorods were then treated by radio-frequency excited plasma
at room temperature for 20 minutes to afford CdO/CdS when
the vacuum was kept around 0.2 mbar with a flow of H, at 10
mL min ", and the power was kept as 200 W. Then the samples
were then kept with a flow of air to normal pressure and room
temperature to finally afford CdO/CdS.

Characterizations

Crystalline information was measured by powder X-ray diffrac-
tion (XRD) patterns, conducted on a PANalytical X-Pert PRO
diffractometer by using Cu Ko radiation at 40 kV and 20 maA.
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Continuous scans were in the 26 range from 10°-80°. The
surface structure of obtained catalysts was identified by X-ray
photoelectron spectroscopy (XPS) analyses, performed at
Thermo Fischer, ESCALAB Xi+. The binding energy was refer-
enced to the C 1s peak at 284.80 eV. The catalyst morphology
characteristics were observed by STEM images using a Titan G2
60-300. UV-vis DRS were recorded on a UV-vis spectrophotom-
eter (UV-2600) at room temperature in the range of 300-900 nm
with BaSO, as the background. Raman spectra were obtained at
ExR610-PT7 at an excitation of 785 nm. Photoluminescence (PL)
experiments were conducted on a Photon Technology Interna-
tional QM 400 Fluorescence Spectrophotometer. The excitation
wavelength was 400 nm obtained by using a xenon lamp as the
excitation source at room temperature. The electrochemical
tests were conducted on an electrochemical workstation
(Corrtest CS2350H). A three-electrode system with a platinum-
plate electrode as the counter electrode and a saturated
calomel electrode (SCE) as the reference electrode was used for
measurements. Na,SO, (0.5 M) was used as the electrolyte
solution.

Reaction procedure and product analysis

The reaction was carried out in homemade LED photoreactors.
Typically, 5 mg of catalyst and 0.1 mL of triethylamine were
added into 1 mL of solvent in a 6.5 mL of quartz tube reactor,
then the system was completely replaced with CO, before sealed
with a cap. For the standard reaction conditions, 0.9 mL of
CH;CN, 0.1 mL of H,O were used as solvent and reacted for
12 h. This quartz tube reactor could stand up 0.5 MPa pressure.
The quartz tube was then irradiated with 455 nm LED light
(18 W, 155 mW cm ) via side irradiation. The reaction
temperature was kept between 25 and 35 °C. After the reaction,
gas-phase products were analyzed by gas chromatography (GC)
equipped with a TCD detector and TDX-01 column.

Adsorption FTIR

The CO, adsorption FTIR spectra were recorded using Thermo
Scientific Nicolet iS10 IR spectrometer. The spectra of the
adsorbed CO, molecules have subtracted the spectra of the
samples before the adsorption. CO,-adsorption FTIR spectra
were conducted as follows: the CdS samples were placed in
a homemade IR cell and evacuated (P < 10~> Pa) at 423 K for
0.5 h. Then, CO, was introduced into the cell at 303 K and left
for 0.5 h. The cell was then evacuated for 0.5 h (P < 102 Pa) to
remove the physically adsorbed CO,. Then CO, vapor was again
introduced into the cell at 303 K and left for 0.5 h upon pho-
toirradiation with 450 nm laser (300 mW cm™?). The cell was
then evacuated for 0.5 h (P < 10”2 Pa) to remove the physically
adsorbed CO,.

DFT calculation settings

All of the first-principles electronic structure calculations were
carried out using the Vienna Ab initio Simulation Package
(VASP),*” one density functional theory implementation. The
exchange-correlation potential was described by the Perdew-
Burke-Ernzerhof (PBE)** formulation of the generalized

© 2023 The Author(s). Published by the Royal Society of Chemistry
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gradient approximation (GGA). The ion-electron interactions
were represented by the projector augmented wave (PAW)*
method. A plane wave basis set with an energy cutoff of 400 eV
was used. The k-point sampling was performed using the
Monkhorst-Pack scheme.”® The electronic self-consistent
minimization was converged to 10> eV, and the geometry
optimization was converged to —0.02 eV. The lattice constants
of CdS were optimized to be @ = 4.200 A, b = 4.191 and ¢ = 6.817
A, in good agreement with the experimental constants, a = 4.14
A and ¢ = 6.72 A5 We used them to build a (2 x 2y/3) CdS
(001) slab with 10 atomic layers and a vacuum of 15 A. Atoms in
the bottom 6 atomic layers were fixed to their bulk positions,
while the rest were allowed to fully relax. A 4 x 2 x 1 k-point
mesh was used. The lattice constants of CdO were optimized to
be a = b = ¢ = 4.695 A. We used them to build a (1 x 2) CdS
(001) slab with 5 atomic layers and a vacuum of 15 A. Atoms in
the bottom 3 atomic layers were fixed to their bulk positions,
while the rest were allowed to fully relax. A 4 x 2 x 1 k-point
mesh was used.
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