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Cerium oxide (CeO,) nanoparticles (NPs) were synthesized using a modified conventional polyol method.
The ratio of diethylene glycol (DEG) and water in the synthesis was varied, and three different cerium
precursor salts (Ce(NOs)s, CeCls, and Ce(CH3COO)s3) were used. The structure, size, and morphology of
the synthesized CeO, NPs were studied. An average crystallite size of 13 to 33 nm was obtained from
the XRD analysis. Spherical and elongated morphologies of the synthesized CeO, NPs were acquired.
Average particle sizes in the range of 16—36 nm were obtained by varying different ratios of DEG and
water. The presence of DEG molecules on the surface of CeO, NPs was confirmed using FTIR.
Synthesized CeO, NPs were used to study the antidiabetic and cell viability (cell cytotoxicity) properties.
Antidiabetic studies were carried out using a-glucosidase enzymes inhibition activity. CeO, synthesized
using Ce(NOsz)z and CeCls precursors showed approximately 40.0% a-glucosidase enzyme inhibition

activity, while CeO, synthesized using Ce(CHzCOO)s; showed the lowest a-glucosidase enzyme
Received 13th April 2023 inhibiti tivity. Cell viabilit i f CeO, NP ) tigated usi in vit totoxicit
Accepted 15th May 2023 inhibition activity. Cell viability properties of CeO, NPs were investigated using an in vitro cytotoxicity
test. CeO, NPs prepared using Ce(NOs)s and CeCls were non-toxic at lower concentrations, while CeO,

DOI: 10.1039/d3ra02474a NPs prepared using Ce(CHsCOO)s were non-toxic at all concentrations. Therefore, polyol-mediated
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1. Introduction

Cerium oxide (CeO,) is commonly explored for various appli-
cations due to its unique nature and high oxygen storage
capacity (OSC). It can easily switch its oxidation state between
Ce*" and Ce* in the stable fluorite structure.'? CeO, has
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synthesized CeO, NPs showed quite good a-glucosidase inhibition activity and biocompatibility.

attracted intensive attention due to its size, morphology, and
orientation-dependent properties. Various methods have been
used to synthesize CeO, nanoparticles (NPs), nanowires or
nanotubes, such as precipitation, spray pyrolysis, hydro-
thermal, solvothermal, and sonochemical reactions.>*®
Furthermore, CeO, has remarkable properties such as high
ionic conductivity, relatively high mechanical strength, strong
adsorption, and photoluminescence in the UV-vis range. These
properties are interesting for applications in catalysis, fuel cells,
solar cells, sensors, oxygen storage, polishing, luminescent
materials, promoters of three-way catalysts in automotive
pollution control, UV blockers, and energy storage.”**
Postprandial hyperglycemia is a major complication of type
II diabetes patients.” The increasing trend of type II diabetes
mellitus (DM) has become a serious medical concern. There-
fore, it is crucial to control postprandial blood glucose levels by
exploring and developing new therapeutic agents. a-Glucosi-
dase converts complex carbohydrates into glucose, which is
then absorbed into the small intestine, increasing blood
glucose levels.®"” In type II DM, inhibition of a-glucosidase
(digestive enzyme) is favorable to delaying glucose absorption to
the small intestine and allowing for a more controlled
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absorption.*® Administration of drugs to maintain the blood
glucose level can be through conventional oral route, subcuta-
neous route, transdermal, pulmonary and inhalation.” Subcu-
taneous injections are considered effective compared to oral
route due to peptides are unstable in the gastrointestinal envi-
ronment.”*** However, till date, no reports have been found on
the injectable CeO, NPs for inhibition of a-glucosidase enzyme.
Nevertheless, Jan et al. reported on the inhibition of a-glucosi-
dase using green synthesized CeO,.” It was found that the CeO,
inhibited 31.28% of a-glucosidase. To the best of the authors'
knowledge, there has been no other report on the inhibition of
a-glucosidase activity using CeO, that was synthesized using the
polyol method.

The polyol synthesis method, which involves ethylene glycol,
diethylene glycol, and glycerol, among others, was first intro-
duced in 1989 by Fievet, Lagier, and Figlarz.*® The polyol
synthesis started with Co, Ni, Cu, and Pt particles and was
extended to metal oxide NPs.*®* The polyol process offers
multiple advantages, such as similar solubilities of compounds
to that of water.** Therefore, simple and low-cost metal salts can
be used as starting materials. The chelating effect of polyols
helps in controlling particle nucleation, particle growth, and
aggregation of NPs.>*** Apart from that, the high boiling points
of polyols allow for high reaction temperatures without using
autoclaves or high pressure. Further benefits of the polyols are
the reductive properties for direct preparation of elemental
metals, the easy removal of the polyols from the particle surface
after synthesis, and the scalability and implementation in
continuous-flow synthesis. Polyols are considered to have low to
moderate toxicity and are highly biodegradable, which can be
considered as green solvents.”® In order to produce smaller
particles of CeO, with defined morphologies, the polyol method
was employed in this study.

Furthermore, the role of counter-anion in the metal salt
precursors on the shape-selective growth of nanomaterials has
not been widely studied.” It is said that the inorganic anions
themselves might be selectively adsorbed on particular facets
and thus greatly affecting the structure, size, and morphology of
the nanomaterials.”® Therefore, in this study, the effect of
different precursors such as Ce(NOj3);-6H,0, CeCl;-7H,0, and
Ce(CH3CO00);-H,0 were used in the syntheses of CeO, via
polyol method were investigated. Apart from that, the ratio of
diethylene glycol (DEG) and H,O used in the synthesis was also
varied to study its effect on the structural and morphological
properties of the synthesized CeO, NPs. Finally, the different
sets of the synthesized CeO, NPs were tested for their biological
activities, such as a-glucosidase inhibition and its cytotoxicity
(cell viability) activities.

2. Experimental method

2.1. Chemicals used

For the synthesis, cerium(m) nitrate hexahydrate (Ce(NO3);-
-6H,0, 99%), cerium(m) chloride heptahydrate (CeCl;-7H,0,
99%), and cerium acetate hydrate (Ce(CH3COO);, 99%) and
cerium(iv) oxide were all obtained from Sigma-Aldrich. Dieth-
ylene glycol (C4H;003, 99%) was obtained from Alfa Aesar.
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Throughout the reaction, double distilled water (purified using
Aquatron, England) was used. For a-glucosidase inhibition
activity of CeO,, a-glucosidase (=50 units per mg protein),
(PNPG, C;,H;5NOg, 99%), acarbose (CysH43NO;5, =95%),
sodium carbonate (Na,CO;, =99.5%), sodium phosphate
dibasic heptahydrate (Na,HPO,-7H,0) and sodium phosphate
monobasic monohydrate (NaHPO,-H,0, =99%) were obtained
from Sigma-Aldrich. The cytotoxicity tests were carried out
using MTT assay (3,4,5-dimethylthiazol-2-yl)-2-5-diphenyl
tetrazolium bromide and RAW 264.7 cell lines (mouse macro-
phage) obtained from American Type of Culture Collection
(ATCC, Rockville, MD, USA); penicillin/streptomycin, and fetal
bovine serum (FBS) from GIBCO™, Invitrogen Corporation,
USA; and dimethyl sulfoxide were obtained from Sigma-Aldrich.

2.2. Synthesis of CeO, NPs

For the synthesis of CeO, NPs, two variables were chosen, which
are (i) the DEG/H,0 ratio and (ii) different anions precursors
i.e., Ce(NO3);-6H,0, CeCl;-7H,0, and Ce(CH3COO);. For the
synthesis, a typical reflux setup was utilized in which paraffin oil
was used to heat the solution in the round bottom flask.
Different DEG/H,O ratio were varied in the synthesis, i.e., 0/25,
5/20, 10/15, 15/10, 20/5, and 25/0 mL of DEG and double
distilled H,O and based on the ratio, the solvents were mixed
together to make up to 25 mL of the total volume (Table S17).
The amount of cerium precursor was weighed in order to
prepare 0.05 M in a 25 mL solvent (DEG + water). The mixture
was stirred at room temperature for 5 min and heated slowly to
80 °C. Subsequently, 4 mL of 1 M of NaOH solution was added
dropwise using a burette. The solution was then stirred and
heated at 100 °C for 4 h. Subsequently, gel-like precipitate was
obtained. The product was centrifuged at 3500 rpm for 5 min
and washed for three times using water. The obtained product
was finally calcined at 600 °C for 2 h before it was ground to
yield powder CeO, NPs. The schematic diagram for the
synthesis method can be found in Fig. S1.}

2.3. Instrumentations

The crystal phase identification of NPs was investigated using
a Shimadzu XRD-7000 X-ray diffractometer (XRD) with Cu Ko
radiation (A = 1.5418 A). To investigate the different functional
groups related to DEG and NP formation, Fourier-transform
infrared spectroscopy (FTIR) of finely dried and ground CeO,
and KBr was carried out using FT-IR (Shimadzu IRPrestige-21,
Japan) in the range of 400-4500 cm ™" via KBr method at room
temperature. The morphologies of the synthesized CeO, NPs
were studied using field emission transmission electron
microscopy (FE-TEM) and selected area electron diffraction
(SAED) conducted with JEM-F200 (JEOL Ltd, Tokyo, Japan). X-
ray photoelectron spectroscopy (XPS) was performed on Kra-
tos Analytical, AXIS Nova. For a-glucosidase activities, the
absorbance of the enzyme-substrate solution was measured
using a UV-vis spectrophotometer (Shimadzu UV 1900, Japan).
For the cell cytotoxicity study, the absorbance was measured at
540 nm using a microplate reader (Gen 5™ ELISA Bio Tek,
Winooski, VT, USA).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.4. Inhibition of a-glucosidase activity

The inhibition of a-glucosidase activities using CeO, NPs
synthesized from different precursors, and varied DEG/H,O
ratio was tested in triplicates. A standard procedure of the a-
glucosidase assay was followed with slight modification.””
Different concentrations of CeO, NPs (0.5, 1.5, and 2.5 mg) were
used in the reaction. Phosphate buffer solution (PBS, 1 M, pH
6.8) was mixed before 250 pL of 1.5 U mL™" of the enzyme was
put in. The reaction solution was incubated at 37 °C for 10 min.
After the incubation period, 250 UL of 0.5 mM of p-nitrophenyl
a-p-glucopyranosidase (PNPG) was added to the reaction solu-
tion and incubated further at 37 °C for 30 min. The reaction was
stopped by adding 1 mL of 0.2 M sodium carbonate solution.
The overall solution was centrifuged before the absorbance of
the solution was measured at 405 nm. The percentage inhibi-
tion of a-glucosidase activities was estimated using the
following eqn (1):*®

(Abs, — Abs)

% inhibition = Abs
b

x 100 (1)
where Abs,, is the absorbance of blank solution (without cata-
lyst) and Abs; is the absorbance for the final solution with
sample (catalyst).

2.5. Cytoxicity test/cell viability test

MTT was used to perform the in vitro cytotoxicity of CN, CC, and
CA against the mouse macrophage cell line RAW 264.7. Cells
were cultured in Dulbecco’s minimum Eagle's medium (DMEM)
supplemented with 100 U mL™' penicillin, 100 mg mL™"
streptomycin, and 10% FBS and maintained in 5% CO, at 37 °C.
RAW 264.7 macrophage cells pre-incubated for 24 hours were
seeded into a 96-well microtiter plate, treated with different
concentrations of CN, CC, and CA, and re-incubated for 24
hours. The cytotoxicity test was carried out by adding a fresh
culture medium containing MTT reagent (1 mg mL ') and
incubating for 4 h. Subsequently, formazan crystals in each well
were dissolved in 100 pL of dimethyl sulfoxide (DMSO). The
absorbance was measured at 540 nm using a microplate reader
(Gen 5 ™ELISA Bio Tek, Winooski, VT, USA). All experiments
were conducted in triplicate.

3. Results and discussion

Three different sets of CeO, NPs were synthesized using the
polyol synthesis method, and the products are labeled as CN,
CC, and CA NPs, which stand for CeO, synthesized using
Ce(NO3);-6H,0, CeCl;-7H,0, and Ce(CH3CO0);-H,0 respec-
tively. In this article, the codes CN1 to CN6, CC1 to CC6, and
CA1 to CA6 indicate the respective precursor salts used and the
DEG/H,0 ratio used in the synthesis (0/25, 5/20, 10/15, 15/10,
20/5, and 25/0 mL, respectively).

3.1. X-ray diffraction

X-ray diffraction analysis of the synthesized CeO, NPs was
carried out as depicted in Fig. 1. By comparing with the JCPDS
00-004-0593 standard (Fig. S2t),?° cubic phases CeO, have been

© 2023 The Author(s). Published by the Royal Society of Chemistry
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successfully prepared (Fig. 1) using three different cerium
precursors ie. Ce(NOs);-6H,0, CeCl;-7H,0, and Ce(CH;-
COO0);-H,0. No extra peaks have been detected, indicating that
the synthesized CeO, NPs using Ce(NO3);-6H,O0 are in the pure
form (Fig. 1(a)). In order to see the effect of DEG/H,O ratio on
the structural properties of the synthesized CeO, NPs, average
crystallite sizes were estimated using the Debye-Scherrer's
formula (eqn (2)):*°

D =kMBcos b (2)

where A represents the wavelength of the X-ray, ¢ indicates
Bragg's angle, and (8 is the FWHM of the characteristic peaks.
The average crystallite size of CN1 was 21.92 nm when no DEG
was used. However, the crystallite size of CN2 was reduced to
18.92 nm when 5 mL of DEG was used in the synthesis. Inter-
estingly, 15 mL DEG showed the biggest average crystallite size
of CeO, which (CN4) is about 23.24 nm. Nevertheless, the
synthesis of CeO, NPs without the addition of water produced
an average crystallite size of about 20.21 nm (CN6). The esti-
mated lattice parameters of CN1-CN6 were comparable (Table
1). Similar observation was seen for their cell volume.
Remarkably, the peak intensity at about 28° was reduced
slightly from CN1 to CN6 for the (111) plane. The peak height
ratios between the first and second peaks are comparable,
which are 4.13, 4.32, 4.62, and 4.08 for CN1 to CN6, respectively.
The broadening of the peaks was less significant, resulting in an
average crystallite size of about 20 nm.

Similarly, cubic CeO, has been successfully synthesized
using CeCl;-7H,0 according to JCPDS 00-004-0593 (Fig. 1(b)).*
The average crystallite size was increased from 15.31 nm (CC1)
to 33.87 nm (CC4) in which 0, 5, and 15 mL of DEG were used,
and the average crystallite size was reduced back to 13.14 when
25 mL DEG was used in the synthesis. Nevertheless, comparable
lattice parameters were observed (Table 1). There is an insig-
nificant change between the peak height of CC1, CC2, CC4, and
CC6 positioned at about 28°. The peak height ratios between the
first and second peaks differ slightly from one another in that
the ratios are 4.46, 3.98, 3.73, and 4.53 for CC1 to CCs,
respectively. The cell volume was observed to be comparable.

Accordingly, cubic CeO, has also been successfully synthe-
sized using Ce(CH;COO); - H,O which is similar to JCPDS 00-004-
0593 (Fig. 1(c)).*® No extra peak was observed in the XRD spectra,
indicating no impurities were detected. The average crystallite
size among CA1 and CA2 was comparable, which were 15.98 and
14.52 nm, respectively. This means there was no change in
crystallite size when 0 and 5 mL of DEG were used. However, the
crystallite size became larger when 15 mL and 25 mL of DEG was
used which showed about 20.07 and 29.10 nm, respectively.
Despite the difference in crystallite size, comparable lattice
parameters were also observed. The cell volume was reduced
from 160.52 to 154.39 nm when more DEG was used. There is an
insignificant change between the peak intensity at 29° for CA1,
CA2, CA4, and CA6. The peak height ratio between the first and
second peaks are 4.08, 4.30, 3.39, and 4.08 for CA1 to CA®6,
respectively. Overall, this might suggest that the addition of DEG
influences the average crystallite size of CeO,. All the estimated
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Fig. 1 XRD patterns of the synthesized CeO, NPs using (a) Ce(NOs)s-6H,0, (b) CeCls-7H,0, and, (c) Ce(CH3COO)s-H,O precursors.

average crystallite sizes, lattice parameters, cell volumes, and
peak ratios can be found in Table 1.

In order to see the effects of anions on the structural prop-
erties of the synthesized CeO,, the average crystallite sizes of
CN1, CC1, and CA1 (all were synthesized without DEG) were
compared. The crystallite size became smaller when it changed
from NO;~ to Cl™ anion precursor. The average crystallize size
was retained when CH3;COO~ anion precursor was used.

However, for CN6, CC6, and CA6 (all were synthesized using
100% DEG), only the crystallite size of CeO, NPs synthesized
using Ce(NO;); (CN6) and CeCl; (CC6) shows similar values as
CN1 and CC1, respectively. CA6 shows the largest crystallite size
amongst the NPs, demonstrating that the CH;COO™ anion
could not produce a smaller crystallite size as expected.
However, DEG has some effects on the average crystallite size of
the synthesized CeO,.*

Table 1 The estimated average crystallite size, lattice parameters, cell volumes, peak ratio, and average particle size of CN, CC, and CA NPs

Average crystallite Lattice parameter,

Cell volume Peak ratio between Average particle size

Sample size (nm) a (A) (A%) 1st and 2nd (nm) from TEM
CN1 21.92 5.411 158.39 4.13 28
CN2 18.92 5.410 158.35 4.32 26
CN4 23.24 5.427 159.81 4.62 21
CN6 20.21 5.419 159.20 4.08 16
CC1 15.31 5.415 158.78 4.46 34
CC2 19.59 5.392 156.76 3.98 36
CC4 33.87 5.426 159.73 3.73 25
CC6 13.14 5.395 157.02 4.53 28
CA1 15.98 5.435 160.52 4.08 29
CA2 14.52 5.412 158.50 4.30 21
CA4 20.07 5.365 154.39 3.39 21
CA6 29.10 5.406 157.98 4.08 20
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Therefore, in order to investigate the effects of DEG/H,O
ratio, the structural properties of the three groups of synthe-
sized CeO, NPs (CN, CC, and CA NPs) were also compared. For
CN, CN1 and CN2 show remarkable findings. The crystallite size
was obviously reduced when 5 mL of DEG was introduced,
showing DEG has minimized the average ecrystallite size.
However, when adding more DEG, the crystallite sizes of CN4
and CN6 were similar to CN1. Thus, adding more DEG has no
effect on reducing the crystallite size of CN NPs.

On the other hand, in CC NPs, adding 5 mL and 15 mL DEG
certainly increased the average crystallite sizes, as can be seen
for CC1 to CC4 (Table 1). However, when 100% DEG was used,
the crystallite size was reduced to even lower than the crystallite
size of CC1. The interaction between DEG and Cl™ might have
been the reason for the crystallite size reduction.?” Interestingly,
for CA NPs, adding 5 mL of DEG has no significant effect on the
crystallite size, as can be observed in the case of CA1 and CA2.
However, introducing more DEG has increased the crystallite
size of the CeO, NPs. Therefore, the interaction between
CH;COO™ ions and DEG might lead to the increase in the
crystallite size of CeO, NPs.

3.2. X-ray photoelectron spectroscopy

The chemical state and the electronic structure of the elements
formed in the selected CN, CC, and CA NPs were investigated
using XPS. Fig. 2(a) shows the complete survey scan spectra of
the NPs, which confirmed the presence of Ce 3d, O 1s, and C 1s.
Typical characteristics peaks of Ce 3d are shown in Fig. 2(b).
CN1 and CN6 show a significant difference in the peak intensity
despite showing similar peak positions. CN1 shows peaks at
879.73, 886.50, 895.77, 898.38, 905.04, and 914.10 eV, while CN6
shows peaks at 879.84, 886.07, 895.56, 898.17, 904.83, and
914.10 eV, respectively. Similarly, CC1 shows higher peak
intensity than CCé6. Shift was observed in the case of CC1 and
CC6. The position of the Ce 3d peaks of CC1 are shown at
880.39, 886.94, 896.43, 898.93, 905.59, and 914.86 eV. Whereas,
Ce 3d in the case of CC6 are formed at 879.96, 886.39, 895.89,
898.61, 905.59, and 914.42 eV. The shift in the peak position
might be due to the presence of oxygen vacancies and Ce** and
other lattice defects.**** However, CA1 shows a lower intensity
than CA6. The position of the Ce 3d peaks of CA1 are 880.16,
886.39, 896.21, 898.72, 904.95, and 914.54 eV, and the position
of the Ce 3d peaks of CA6 are 879.96, 886.50, 895.77, 898.61,
904.95, and 914.33 eV. It can be seen that peak position and
height were influenced by DEG/H,O ratio and different cerium
anions.

The XPS spectrum of O 1s can be seen in Fig. 2(c), in which
all peaks exhibit two asymmetrical peaks, indicating the pres-
ence of 0>~, OH ™, and O™ at the surface of the nanostructures.
The peak at higher binding energy i.e. 531-532 eV is attributed
to O~ vacancies and adsorbed -OH, while the peak at lower
binding energy value of 529 eV is attributed to the metal-oxygen
binding.*> CN1 and CN6 also show a significant difference in
the XPS peak height. CN1 exhibits two asymmetrical peaks at
526.83 and 529.22 €V. On the other hand, CN6 has shifted to
lower binding energies i.e., 526.61 and 528.79 eV. CC6 also

© 2023 The Author(s). Published by the Royal Society of Chemistry
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shifted to lower energy compared to CC1. The O 1s peaks of CC1
are at 527.48 and 530.01 eV, while the O 1s peaks of CC6 are at
529.57 and 527.00 eV. Interestingly, CC6 shows an additional
peak at 533.94 eV, which can be attributed to H,O adsorption.*®
CA1 shows the O 1s peaks at 527.17 and 529.84 eV, while CA6
shows peaks at 527.90 and 529.32 eV. The typical C 1s peaks
were also observed in the spectra (Fig. 2(d)), which were derived
from the carbon coating used in the analysis. The atomic
percentage of C 1s, O 1s, and Ce 3d are shown in Table 2.

3.3. Transmission electron microscopy

In general, DEG acts as a solvent and a capping agent which
limits particle growth, prevents aggregation of NPs, and retains
a uniform dispersion without adding additives.’” However, the
relative amount of water added, defined by the hydrolysis ratio,
can affect the nature of the final compound i.e., the morphology
of the synthesized CeO,.*® Therefore, in this study, different
amounts of DEG and water were varied, and the morphologies
of the synthesized CeO, were investigated using TEM.

Fig. 3 shows the TEM images of the CeO, NPs synthesized
using Ce(NOj3);-6H,0. The effect of various amounts of DEG
was observed with respect to their size and morphology.
Fig. 3(a) displays CN1 NPs synthesized with 0 mL of DEG. The
synthesized CN1 NPs show a mix of spherical and elongated
particles with an average size of about 28 nm. When 5 mL of
DEG (CN2) was used in the synthesis, the particle size was
decreased to an average size of about 26 nm (Fig. 3(d)).

Moreover, the morphology was clearly retained. This
suggests that a small amount of DEG might affect the size of
CeO, NPs. Moreover, spherical particles were found to be more
profound in Fig. 3(g) when 15 mL DEG was used. The synthe-
sized CN4 showed an average particle size of ~21 nm. Inter-
estingly, as shown in Fig. 3(j), CN6 shows a further reduction of
the particle size to about 16 nm when 25 mL of DEG was used,
despite its highly agglomerated spherical morphology of CeO,
NP. This finding shows that further addition of DEG might lead
to smaller particles and significant spherical morphology
particles. On the other hand, it can be said that water is
responsible for the enlargement of particle size. The d-spacing
values of the lattice planes were also determined from the HR-
TEM images (Fig. 3(b), (e), (h), and (k)). The d-spacing values
were estimated to be around 0.38, 0.23, and 0.19 nm, which
corresponds to the (111), (200), and (220) planes of the fluorite
structure of cubic CeO,.** Moreover, the diffraction pattern of
CN NPs was also examined by selected electron diffraction
(SAED) analysis as shown in Fig. 3(c), (f), (i), and (I). It was
observed that they exhibit four broad rings, which are attributed
to the (111), (200), (220), and (311) reflections of the fluorite
cubic CeO, structure.*”

Different effects have taken place on the synthesis of CeO,
using CeCl;-7H,0. Fig. 4 shows the TEM images of the
synthesized CeO, NPs at the varied amount of DEG. Fig. 4(a)
shows the morphology of the synthesized CeO, NPs without
DEG at all. Non-uniform elongated morphology was observed in
CC1 NPs with an average particle size of 34 nm, indicating that
no DEG was involved in controlling the growth of particles when
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Table 2 Atomic percentage (%) of C 1s, O 1s, and Ce 3d of selected
CN, CC, and CA NPs

Atomic percentage (%)

Samples C1s O1s Ce 3d
CN1 26.2 51.0 22.8
CN6 29.1 51.5 19.4
CcC1 17.7 61.8 20.5
CCe 27.3 52.8 20.0
CA1 21.5 61.7 16.8
CA6 28.7 48.9 22.4

CeCl;-7H,0 was used. However, for CC2 NPs, when 5 mL of
DEG was used, the particles started to display a mixture of
spherical and fiber-like morphologies, as shown in Fig. 4(d)
with an average particle size of 36 nm.

Fig. 4(g) shows CC4 NPs with similar particle morphology with
a reduced average particle size of about 25 nm when 15 mL DEG
was used. Finally, in the case of CC6 NPs, 25 mL of DEG (Fig. 4(j))
was used to produce spherical particles exhibiting an average
particle size of around 28 nm. Similar to CN NPs, the d-spacing
values of CC NPs, as shown in Fig. 4(b), (e), (h), and (k) were
estimated to be around 0.35, 0.21, and 0.19 nm, which corre-
sponds to the (111), (200), and (220) planes of the fluorite

15426 | RSC Adv, 2023, 13, 15421-15436

structure of cubic CeO,.** SAED of CC1, CC2, CC4, and CC6 that
are depicted in Fig. 4(c), (f), (i), and (I) show four distinct
diffraction rings which can be attributed to the (111), (200), (220),
and (311) reflections of the fluorite cubic CeO, structure.*” This
further supports the XRD and confirms the synthesis of CeO, NPs.
Different observation was seen when CeO, NPs was synthe-
sized using Ce(CH;COO);-H,O0. Firstly, for CA1 NPs, with 0 mL
of DEG, smaller spherical particle sizes with an average value of
29 nm are shown in Fig. 5(a). CA2 NPs showed similar
morphology to CA1 NPs with 21 nm (Fig. 5(d)) when 5 mL of
DEG was used. Highly agglomerated spherical particles were
observed in CA4 NPs when 15 mL DEG showed about 21 nm of
its average particle size. Similar spherical particles was seen
agglomerated, resulting in an average particle size of 20 nm
(Fig. 5(g)) when 25 mL of DEG was used in the synthesis of CA6
NPs. It indicates that the DEG was not involved in restricting
particle growth (Fig. 5(j)). Therefore, in the case of CA NPs, the
DEG has a minor effect on the size and particle morphology of
CeO,. CA NPs showed d-spacing values of around 0.36, 0.25, and
0.19 nm, as shown in Fig. 5(b), (e), (h), and (k), which corre-
sponds to the (111), (200), and (220) planes of the fluorite
structure of cubic CeO,.** SAED for CA1, CA2, CA4, and CA6
shows four distinct diffraction rings were observed in Fig. 5(c),
(f), (i), and (1) show which is attributed to the (111), (200), (220),
and (311) reflections of the fluorite cubic CeO, structure.*

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 TEM, HRTEM, and SAED of: (a)-(c) CN1, (d)-(f) CN2, (g)-(i) CN4, and (j)-(l) CN6.

To investigate the effect of anions (NO;~, CI~ and CH;COO")
on the morphology of CN1, CC1, and CA1 (CeO, synthesized
using 0 mL DEG) as well as CN6, CC6, and CA6 (CeO, synthe-
sized using 25 mL DEG) were compared and discussed. By
changing the anion precursor without the addition of DEG, the
morphology of CeO, was greatly influenced. The spherical
morphology obtained in CN1 could not be retained when Cl™
anion precursor was used. However, when CH;COO™ anion
precursor was employed, the morphology was similar to CN1. As
reported earlier, the morphology of Fe,O; using NO;~ anion
precursor resulted in micrometer particles.*' This suggests that
NO;™ ions are known to have different adsorption strengths on
different crystal facets, which might cause faster growth of
nanocrystals.” Hence, large particles were seen in CN NPs.
Furthermore, in another study, porous ZnO platelets were ob-
tained using Zn(CH;COO), precursor.”* The study found that

© 2023 The Author(s). Published by the Royal Society of Chemistry

microplatelets were produced due to the high stability of the
coordination complex of Zn** and deprotonated glycerol. The
temperature of the liquid phase synthesis is not high enough to
thermally decompose the complex. Hence, larger particles were
mostly seen in CA NPs in which 100 °C might not be high
enough to decompose the Ce*-DEG complex. On the other
hand, the C1™ anion precursor led to well-defined shape of CeO,
compared to CeO, in CN NPs. This might be due to only
a moderate reaction temperature is needed for a metal halide
and polyol reaction to occur.** This makes the system useful and
more versatile.

The interaction between anion precursors and DEG also
produced a variety of morphologies, as can be seen in Fig. 3-5.
In brief, Ce(NO3); precursor produced densely populated
spherical particles (CN6) in which the direction of particle
growth changed from a mixture of spherical and elongated

RSC Adv, 2023, 13, 15421-15436 | 15427
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Fig. 4 TEM, HRTEM, and SAED of: (a)-(c) CC1, (d)-(f) CC2, (g)-(i) CC4, and (j)-(l) CCé.

CeO, particles (CN1) to a spherical morphology when 25 mL
DEG was used. On the other hand, CC6 produced a significant
spherical morphology compared to CC1. This suggests that the
amount of DEG significantly impacts the morphology of CeO,
NPs synthesized using C1~ anion precursor. On the other hand,
the spherical morphology of CA1 was retained when 25 mL DEG
was introduced in CA6. In addition, the addition of DEG did not
significantly affect the particle size of CA.

There are other factors that could influence the morphology
of the synthesized CeO,, namely: reflux temperature, duration
of a synthesis reaction, the relative ratio of DEG and H,O, as
well as the basicity of the polyol solution.* In this study, a reflux
temperature of 100 °C was used for 4 h to synthesize different
sets of CeO, NPs, as mentioned in the experimental method
section. Although in most reports, a reflux temperature of 180 °
C for a 4 h reaction was commonly used.**® However, the
addition of water in this study limits the rise of temperature
beyond 100 °C. In general, an increase in temperature would

15428 | RSC Adv, 2023, 13, 15421-15436

lead to larger particles. However, based on the literature, CeO,
synthesized at 180 °C was mostly in the range of 10 to 50 nm.*”*”
This might be due to the best performance of polyol synthesis
taking place at about 50 °C lower than its boiling point (244 °
C).** This suggests that 180 °C is the optimum reaction
temperature for the polyol synthesis method.

Furthermore, a defined amount of water is needed to
transform the precursors into metal oxides.** The production of
metal oxides depends mainly on the amount of water present in
the solution. In one study, a reaction between zinc acetate
dihydrate and DEG led to the formation of Zn0O.** However, no
ZnO was formed when the synthesis was performed using
dehydrated Zn(CH;COO), and anhydrous DEG.*> However, one
should note that the more water is added, it could lead to larger
particles.*” Hence, agglomerated particles were mostly observed
in this study. Ideally, the more DEG is added, the smaller the
particle size. However, various morphologies were obtained due
to different anions and other factors mentioned above. The

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 TEM, HRTEM, and SAED of: (a)-(c) CAL, (d)-(f) CA2, (g)-(i) CA4, and (j)-(l) CA6.

estimated average particle size of CN, CC and CA NPs can be
found in Table 1.

3.4. Fourier transform infrared spectroscopy

Fig. 6 shows the FT-IR spectra of CeO, NPs of CN (Fig. 6(a) and
(b)), CC (Fig. 6(c) and (d)), CA (Fig. 6(e) and (f)). CN NPs (Fig. 6(a)
and (b)) showed a number of characteristic bands as shown by:
stretching mode of O-C=0 occurring at ~1600 cm ™", the C-O
stretching at 1100-1000 cm ™', O-H of moisture at ~3400 cm ™"
as well as NO;  residues due to the precursor salts at
~900 cm™'. The band of Ce-O at 450 cm ™" confirmed the
successful synthesis of Ce0,.*® The minor difference between
the intensities of CN1 to CN6 might be due to the amount of
DEG as well as the nitrate residues in the NPs.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Similar observations can be seen for CeO, in CC NPs
(Fig. 6(c) and (d)). The C-O stretching and stretching mode of
0-C=O0 at about 1100-1000 cm * and ~1600 cm *, respec-
tively, were also observed in the region. The O-H stretching
vibrations at ~3390 cm ™' were seen to be at similar intensity
despite the difference in the amount of H,O. The band of Ce-O
positioned at 450 cm™" confirmed the successful synthesis of
Ce0,.% Interestingly, the peak at ~938-1100 cm ' (C-O
stretching) in Fig. 6(e) and (f) was reduced with more DEG in the
CeO, NPs synthesized using Ce(CH3COO);-H,0. On the other
hand, C-H bending (~1310 cm™ ') became more apparent due
to the presence of acetate ions.*® Similar to other synthesized
CeO, NPs, The O-H stretching vibrations at ~3390 cm ™" were
seen to be at similar intensity despite the difference in the

RSC Adv, 2023, 13, 15421-15436 | 15429


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra02474a

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 22 May 2023. Downloaded on 2/13/2026 11:51:16 AM.

(cc)

RSC Advances

View Article Online

Paper

CN3

1631 cm™

CN2

1636 cm’™

450 cm™’

Transmittance (%)

1631 cm™ 916cm™

/
450 cm™!

Transmittance (%)

77N
1610 cm™ 1350 cm™

3412 cm™
CN5

—

4 1
3417 cm™ Eeste

CN4

/
1641 cin? 916 cm™

(b) 3412 cm!

/
450 cm™

Wavenumber (cm'1)

4500 4000 3500 3000 2500 2000 1500 1000 500 4500 4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™')

CccC3

1620 c{n"
\

t
-1
3420 cm 1110 cm™

CC2

3427 cm™

CC1

Transmittance (%)

1631 cm™

(C) 3424 cm’

Transmittance (%)

CC6

3436 cm™

CC5

1620 ém”!

3 4
3426 cm
CC4

Vi
1622 cm™

I( d )3434 cm’

4
1118 cm”
450 cm

4500 4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm'1)

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm'1)

CA3
7 4
1627 cm
- 3436 cm™ X .,
=|cA2 1002 cm”
(]
e s
E 1620 cm"™
‘€ 3426 cm™
2[ca1
o
L s
¥ 1637 cm™ g
(e )3436 cm’ 1008 cm’! /5
450 cm”

Transmittance (%)

CA6
t 74
3436 cm” 10a2.chi™ #X
CAS 1383 cm™’
/
3428 o 1620 cm™
cm
CA4
7 P
¥ 1627 cm™
1
(f) 3436 cm 038 cm™”
450 cm”

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm'1)

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™')

Fig. 6 FTIR spectra of CeO, NPs: (a) and (b) CN NPs, and, (c) and (d) CC NPs, and (e) and (f) CA NPs.

amount of H,O. The successful synthesis of CeO, was
confirmed by the presence of Ce-O band at about 450 cm™".*

4. Applications

4.1. o-Glucosidase inhibition activity

The a-glucosidase inhibition activity was carried out to deter-
mine if the synthesized NPs were able to inhibit the activity of
the a-glucosidase enzyme. An a-glucosidase enzyme is involved
in carbohydrate metabolism via its action on catalyzing the
cleavage of oligosaccharides and disaccharides into mono-
saccharides.” The ability to inhibit the a-glucosidase activity
can prolong the digestion and absorption of carbohydrate,

15430 | RSC Adv, 2023, 13, 15421-15436

reducing blood glucose levels.*> A range of dosages of the
synthesized CeO, (CN, CC, and CA) was tested to check and
confirm its ability to inhibit a-glucosidase activity. Acarbose was
used as a positive control, and the inhibition of a-glucosidase
using commercially available CeO, was also tested as a positive
control to compare with the synthesized CeO, (Fig. 7 and Table
S27).

Fig. 7(a) shows the inhibition activity of a-glucosidase using
CeO, synthesized using Ce(NOj3);-6H,0 (CN1-CN6). Amongst
CN1-CN6, CN4 showed better inhibition (43.15 £ 2.05%) at
0.5 mg mL~" concentration. However, by increasing the dosage,
the inhibition efficiency dropped by 4.65% and 21.92% at 1.5

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Inhibition of a-glucosidase activity using CeO, NPs from (a) CN, (b) CC, and (c) CA NPs.

and 2.5 mg mL~', respectively (Fig. 7(a)). CN1 and CN6 also
showed comparable efficiency at the lowest concentrations,
which are 40.86 + 3.70% and 41.70 + 2.91, respectively. At
1.5 mg mL ', CN1, CN4, and CN6 also showed similar behavior,
although CN1 showed the highest inhibition -efficiency
percentage (42.29 £ 0.93%). Similarly, CN1 showed the highest
inhibition activity at 2.5 mg mL ‘. CN2 showed a lower
response (33-37%) compared to CN1, CN4, and CN6 despite
having similar morphology. However, as the dosage increases,
the response increased which could be attributed to the smaller
particle size. From this study, CeO, NPs that was synthesized
using 0, 50, and 100% DEG showed better responses in inhib-
iting a-glucosidase activity. Based on the TEM images, all of
them possess a spherical morphology. The performance
consistency of these materials from the doses suggested that the
morphology might not directly influence inhibition activity. On
the other hand, the obtained crystallite sizes for CN1, CN4, and
CN6 are comparable (~20-23 nm). This finding proposes that
CeO, NPs with crystallite size lower or higher than 20-23 nm
might show lower inhibition activity.

The oa-glucosidase inhibition activity using CeO, NPs
prepared using CeCl;-7H,0 is shown in Fig. 7(b). In this case,
CC3 showed the highest a-glucosidase inhibition activity at
both 0.5 and 2.5 mg mL ™" which are about 43.33 + 1.11 and

© 2023 The Author(s). Published by the Royal Society of Chemistry

41.57 + 1.54, respectively (Table S2t1). CC5 also showed
a comparable response at 0.5 mg mL ' which is about 42.83 +
3.63. Higher a-glucosidase inhibition percentage of CC3 and
CC5 might be due to their morphology. However, at 1.5 mg
mL~', CC1 and CC6 showed higher o-glucosidase inhibition
activities. This might be due to the sheet-like structure of CeO,
NPs as well as the lower crystallite size (15.31 and 13.14 nm for
CC1 and CC6).

On the otherhand, the a-glucosidase activity shown by CeO,
NPs synthesized using Ce(CH3COO);-H,O showed different
response (Fig. 7(c) compared to Fig. 7(a) and (b)). Apart from the
commercially available CeO,, none of the materials (CA1-CA6)
showed remarkable responses, although CA5 showed a slight
response at 0.5 mg mL ™ ". This trend, however, could not be
observed at a higher dosage. The activity of enzymes can be
regulated by interactions with regulatory molecules that can
activate or inhibit enzyme activity. In summary, among the
tested CeO, (CN, CC, and CA NPs), CN and CC NPs showed a-
glucosidase enzyme inhibitory with the increase in
concentration.

4.2. General mechanism of a-glucosidase inhibition activity

Mammalian a-glucosidase in the mucosal brush border of the
small intestine catalyzes the end step of digestion of complex

RSC Adv, 2023, 13, 1542115436 | 15431


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra02474a

Open Access Article. Published on 22 May 2023. Downloaded on 2/13/2026 11:51:16 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

carbohydrates." Inhibitor of a-glucosidase enzyme functions to
delay the breakdown of carbohydrates in the small intestine,
slowing down carbohydrate absorption in the gut and reducing
glucose in the blood. In Fig. 8, the enzymatic reaction mecha-
nisms between 4-nitrophenyl a-p-gluocipyranoside (PNPG) and
a-glucosidase (Fig. 8(a)) and reaction between different o-
glucosidase inhibitors with a-glucosidase (Fig. 8(b)-(d)) are
shown. The substrate (PNPG) used in the reaction binds to the
enzyme's active sites, forming an enzyme-substrate complex.
The substrate is broken down into smaller compounds
(Fig. 8(a)).

Fig. 8(b) shows that the morphology of the inhibitors can fit
in the active site of the enzyme, which therefore competes with
the PNPG. On the other hand, Fig. 8(c) illustrates the attach-
ment of the inhibitors on the enzyme where the active sites of
the enzyme change resulting in the difficulties of the PNPG to
bind to the enzyme. Finally, Fig. 8(d) describes the inability of
the inhibitors to alter the enzyme, which results in the
successful formation of the enzyme-substrate complex. Overall,
Fig. 8(a) and (d) show the unsuccessful inhibition of the
enzymes, while Fig. 8(b) and (c) show the successful inhibition
of the enzymes.
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The inhibition using CeO, NPs could not be determined
based on the percentage inhibition alone. However, it can be
estimated by comparing the activity between CeO, NPs and the
positive control, acarbose which was used in this study. The
percentage inhibition of acarbose increased with increased
dosage, indicating the possibility of either mechanism, as
shown in Fig. 8(b) and (c) to inhibit a-glucosidase enzyme. On
the other hand, CN and CC NPs showed a moderately high
percentage inhibition of a-glucosidase (>40.0%). Thus, the
enzymatic reaction is closely illustrated by Fig. 8(b). The CN and
CC materials might behave as a competitive inhibitor with
PNPG compounds. Hence, the percentage inhibition of a-
glucosidase activity achieved by CN and CC materials was not
exceed 50%. Furthermore, the inhibition activity using CN and
CC can also be illustrated by Fig. 8(c). According to studies
using carbon nanoparticles (CNPs), the CNPs might combine
with a-glucosidase by noncovalent bonding to alter the struc-
ture of the enzyme.**** Moreover, Cha et al. reported that
morphology play an important role in penetrating the grooves
where the active center of the enzyme is located.”® Hence,
interfering with its reconfiguration is needed for the catalytic
activity. Therefore, this hinders the combination of the
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Fig. 8 The enzymatic reaction with (a) PNPG and (b)-(d) reaction in the presence of different types of inhibitors (adapted from Assefa et al. with

modification).1®
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substrate with the enzyme. In the case of CA NPs, the enzymatic
reaction might be due to either the materials being competitive
with PNPG (Fig. 8(b)) or the materials not binding to the
enzymes (Fig. 8(d)). Therefore, less percentage inhibition of a-
glucosidase was observed.

4.3. Cytotoxicity test/cell viability test

The cytotoxicity of CN, CC, and CA NPs on RAW 264.7 macro-
phage cells was evaluated by MTT assay. All the synthesized
NPs did not exhibit cytotoxic effects at concentrations of 62.5,
125, 250, and 500 pg mL " following the 24 h incubation after
the treatment (Fig. 9). As shown in Fig. 9(a), CN1 showed some
cytotoxicity at 2000 pg mL™', exhibiting about 80% cell
viability. However, at lower concentrations, CN1 showed lower
cell cytotoxicity. CN4 showed the highest cytotoxicity against
RAW 246.7 macrophages, showing only about 60% cell
viability.

On the other hand, CC1 showed the most cytotoxic at 2000 pg
mL ™" (Fig. 9(b)). However, when lowering the concentration,
CC1 showed lower cytotoxic and was comparable to CC4 (75-
95% cell viability). CC6 was observed to show no effect at lower
concentrations ie., 62.5 and 125 pug mL~'. However, at
a concentration ranging from 250-1000 pg mL ™', the cell
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viability of CC6 was the lowest compared to CC1 and CC4.
Therefore, within this range of concentration, CC6 showed
a certain degree of cytotoxicity. Interestingly, at 2000 pg mL™ ",
the cell viability of CC6 was the highest, i.e., about 65% for CC1
and CC4. Both CN and CC NPs showed some cytotoxicity
towards the RAW 264.7 macrophages. Based on the previous
section, both CN and CC NPs showed a-glucosidase inhibition
activity. This might show that the medium cytotoxicity of CN
and CC NPs might cause some inhibition of a-glucosidase
inhibition activity. Similar results were shown by Sar-
avanakumar et al. in which they reported biocompatible CeO,
NPs that showed a-glucosidase inhibition activity.*®

CA NPs (Fig. 9(c)) showed low cytotoxicity at concentrations
ranging from 62.5 to 2000 ug mL ™", yet only CA1 showed slight
cytotoxicity at the concentration of 2000 pg mL ™' compared
with the CA4 and CA6. This can also be seen that the low a-
glucosidase inhibition activity of CA NPs was seen in Fig. 7(c).
Overall, the present result indicates that CA1-CA6 and CN1 at
all concentrations and CC and other CN NPs between 62.5 to
125 ug mL " have high potential in pharmacological applica-
tions since they were not toxic to human cells at various
concentrations which is
reports.’”**

in agreement with previous
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5. Conclusion

Cerium oxide nanoparticles (CeO, NPs) was synthesized using
a modified conventional polyol method. In this study, the
diethylene glycoland water (DEG)/H,O ratio was varied from 0/
25, 5/20, 10/15, 15/10, 20/5, and 25/0 mL, respectively. Apart
from that, three different cerium precursor salts (Ce(NOs)s,
CeCl;, and Ce(CH3COO);) were also used to synthesize CeO,
NPs. The structures, size, and morphologies of the synthesized
CeO, were studied based on the variations of factors in the
synthesis. An average crystallite size of 13 to 33 nm was ob-
tained from the XRD analysis for all the synthesized CeO, NPs
using NO; ™, Cl™, and CH;COO™ cerium anions precursors, as
well as the different DEG/H,O ratio. The synthesized CeO,
showed spherical, sheet-like, and fiber-like morphologies.
Average particle sizes in the range of 16-36 nm were obtained by
varying the DEG/H,O ratio and using different cerium anion
precursors. The presence of DEG molecules on the surface of
CeO, NPs was confirmed using FTIR. Inhibition of a-glucosi-
dase enzymes using the synthesized CeO, NPs was carried out.
CeO, synthesized using Ce(NO3); and CeCl; precursors showed
approximately 40.0% inhibition activity, while CeO, synthesized
using Ce(CH3COO); showed the lowest a-glucosidase enzyme
inhibition activity. The probable mechanism of a-glucosidase
enzyme inhibition activity using CN, CC, and CA NPs was also
discussed. Cell cytotoxicity was also conducted, and it was
found that CN and CC NPs were not cytotoxic to RAW 264.7
macrophage cells at lower concentrations, while CA NPs were
found to be non-toxic at all concentrations. Therefore, CeO, NPs
synthesized using different DEG/H,0 ratio and cerium anions
precursors are biocompatible and have shown potential in a-
glucosidase inhibition property.
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