
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

/3
/2

02
6 

11
:2

6:
47

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Magnetocaloric e
aLaboratoire de La Matière Condensée et des
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ffect and critical behavior of the
La0.75Ca0.1Na0.15MnO3 compound

Souhir Bouzidi, *a Mohamed Hsini,b Sonia Soltani,c Manel Essid,d M. A. Albedah,e

Hafedh Belmabrouk e and J. Dhahria

In this paper, we have studied the critical behavior and the magnetocaloric effect (MCE) simulation for the

La0.75Ca0.1Na0.15MnO3 (LCNMO) compound at the second order ferromagnetic–paramagnetic phase

transition. The optimized critical exponents, based on the Kouvel–Fisher method, were found to be: b =

0.48 and g = 1. These obtained values supposed that the Mean Field Model (MFM) is the proper model

to analyze adequately the MCE in the LCNMO sample. The isothermal magnetization M(H, T) and the

magnetic entropy change −DSM(H, T) curves were successfully simulated using three models, namely

the Arrott–Noakes equation (ANE) of state, Landau theory, and MFM. The framework of the MFM allows

us to estimate magnetic entropy variation in a wide temperature range within the thermodynamics of

the model and without using the usual numerical integration of Maxwell relation.
1 Introduction

The ferromagnetic (FM)–paramagnetic (PM) second-order
phase transition is one of the most advanced issues in terms
of functionality and fundamental physics of magnetic mate-
rials. As an advanced research interest, it is important to analyze
the magnetocaloric effect when evaluating the effectiveness of
magnetic refrigerators, which should be more economical and
environmentally friendly.1–3 Therefore, the second-order ferro-
magnetic–paramagnetic phase transition may be discussed
based on the concept of critical behavior that links several
thermodynamic properties of the magnetic system.

Around the FM–PM, various phase-transition measurable
quantities can be determined using a series of critical expo-
nents dening the behavior of these magnetic materials.4–7 The
design and development of magnetic refrigeration devices
require a solid thermodynamic description of the magnetic
system, as well as its characteristics during each phase of the
refrigeration cycle. Recently the magnetic properties and the
magnetocaloric effect (MCE) for La0.75Ca0.1Na0.15MnO3

(LCNMO) manganite undergoing a second order (SO) FM–PM
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phase transition, were reported in our previous work.8 Near
room temperature, the LCNMO sample exhibits a large
magnetic entropy change with maxima of 4.83 J kg−1 K−1 and
a high relative cooling power of 230 J kg−1 under 5 T magnetic
eld. These results suggest that the LCNMO sample could be
promising candidates for magnetic refrigeration.

Several numerical methods9–12 can be exploited to solve the
non-algebraic equation relating the magnetization M(H, T) to
the applied magnetic eld H and the temperature T in the
ferromagnetic material. The utility of theoretically efficient
methods can be exploited to simplify data analysis. However,
the magnetic entropy change, −DSM(H, T) is governed by H, T,
the magnetic eld variation (DH), the temperature variation
(DT) andM(H, T) data. As a result, choosing H, T, DH, and DT is
important during evaluating the MCE of the magnetic material.

In this work, the critical behavior of LCNMO has been
studied. Firstly, the critical exponents b and g were calculated
by an iterative method extended to the modied Arrot plot
(MAP). The inverse of the magnetic susceptibility c0

−1(T) and
the spontaneous magnetization Ms(T) were determined. Then,
isothermal M(H, T) and −DSM(T) curves were generated by
resolving the Arrott–Noakes equation (ANE) of state. Secondly,
the use of the Landau model of phase transitions13–15 enables
the simulation of M(H, T) and −DSM(T) curves. However, these
two approaches (ANE and Landau theory) are valid only in a very
narrow temperature region near the Curie temperature, TC.
Thirdly, by analyzing the mean eld equation, the M(H, T) and
−DSM(T) plots of our studied LCNMO magnetic system are
generated. Contrarily to what has been mentioned about the
ANE and the Landau model, the dependence ofM and−DSM on
T, H can be described by using the Mean Field Model (MFM) in
a large temperature region.
RSC Adv., 2023, 13, 16529–16535 | 16529
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2 Results and discussions

The LCNMO manganite8 was prepared by the ux method. The
crystallographic study revealed that the LCNMO compound is
characterized by the coexistence of a mixture of orthorhombic
and rhombohedral structures with Pbnm and R�3c space groups,
respectively. The magnetization data, under 0.05 T magnetic
eld proved that LCNMO exhibited a SO FM–PM near the room
temperature (TC = 301.5 K).
Fig. 1 Modified Arrot plot, M
1
b vs.

�
H
M

�1
g

, for La0.75Ca0.1Na0.15MnO3

(LCMNO) compound.
2.1 Arrott–Noakes equation (ANE)

Overall, the ANE near the second-order ferromagnetic–para-
magnetic transition is expressed as:16

�
H

M

�1
g ¼ aðT � TCÞ þ bM

1
b (1)

It involves two constants, namely a and b and two critical
coefficients, namely g and b.

Using the thermodynamic relation
vS
vM

����
T
¼ vH

vT

����
M
, the

expression of −DSM(M) is given through eqn (1) by:17

�DSMðMÞ ¼
ðM
Ms

agM

0
B@bM

1
b þ aðT � TCÞ

1
CA

g�1

dM (2)

Basing on eqn (1), the initial magnetic susceptibility c0 for T
> TC and the spontaneous magnetization MS for T < TC are as
follows:18

MS = M0(−3)b; T < TC, (3)

c0
−1 = h03

g; T > TC, (4)

M ¼ R0H

�
1
d

�
; T ¼ TC; (5)

where d ¼ 1þ g

b
, 3 ¼ T � TC

T
is the reduced temperature, M0, h0

and R0 present critical amplitudes. The choice of b and g values
is adequate if it results in a parallel set of linear lines for the plot

M
1
b vs.

�
H
M

�1
g

with the passing of the critical isotherm (at T= TC)

from the origin. For T < TC, the abscissa intercepts correspond
to MS

1/b however for T > TC, the ordinate intercepts refer to
(c0

−1)1/g. The involvement of arbitrary critical exponents in eqn
(1) may conduct to unacceptable ts and erroneous values of the
exponents. For this reason, an implemented program based on
a rigorous iterative method19 is oen used to determine the
values of the couple (b, g) aer starting with the initial MFM
critical values (b = 0.5, g = 1). Aer multiple iterations, a set of

nearly parallel straight lines M
1
b vs.

�
H
M

�1
g

have been generated.

In Fig. 1, we report the curves using the values: b = 0.48 and
g = 1.
16530 | RSC Adv., 2023, 13, 16529–16535
It is evident in Fig. 1 that isothermal linesM
1
b vs.

�
H
M

�1
g

were

set under high magnetic elds (greater than H = 1 T). This is
because isotherms are averaged and magnetized in different
directions at lower magnetic elds.20 But, under high magnetic
elds, all isotherms undergo parallel straight lines. The values
of the critical exponent of LCMNO are close to those predicted
by theMFM (b= 0.5, g= 1). Linear ts of theMAP yield theMS1/
b and (c0

−1)1/g described above. The estimated data of MS(T)
and c0

−1(T) are plotted in Fig. 2(a). Fitting MS(T) using eqn (3)
gives the values of: b = 0.48 and TC = 301.49 K. Similarly, tting
c0

−1(T) using eqn (4) gives: g = 1 and TC = 301.5 K. Since the
experimental data of the critical isotherm M(H) at TC = 301.5 K
is not available, the critical exponent d is supposed to be
restricted between M(H) at 299 and 302 K. temperature. The t
of the isotherms M(H, T = 299 K) and M(H, T = 302 K) with eqn
(5) gives the respective values of d as 3.46 and 2.86. Further-
more, this d exponent may be also calculated from Widom

scaling relation:21 d ¼ 1þ g

b
: With the optimized values, b =

0.48 and g = 1, d = 3.08. It is obvious that the d value is
restricted between the ones calculated from the t of isotherms
M(H, T = 299 K) and M(H, T = 302 K) with eqn (5). As a result,
the reliability of the estimated critical exponents was
conrmed.

For the LCMNO compound, the g value matches the MFM
suggesting that the FM–PM phase transition would belong to
the MFM. Thus, the origin of this transition is explained by the
long-range physical interaction. Moreover, for a system of
dimension d and spin n, g varies with extension of the inter-

action s as:22 g ¼ 1þ 4
d

�
nþ 2
nþ 8

�
Dsþ 4ð8n� 4Þðnþ 2Þ

d2ðnþ 8Þ22
6641þ

2G
�
1
2
d
�
ð7nþ 20Þ

ðn� 4Þðnþ 8Þ

3
775Ds2 with Ds ¼ s� d

2
;

G
�
1
2
d
�

¼ 3� 1
4

�
1
2
d
�2

. The renormalization group study
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Fitting ofMS(T) and c0
−1(T), with eqn (3) and (4), respectively. (b) Fitting ofM(H) at 299 and 302 K temperature with eqn (5), for LCMNO

sample.
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suggests that s (or g) indicates the exchange integral J(r) over
a distance r as follows:23 J(r) ∼ r−(d+s). For s > 2 or s < 2, we
observe a 3D system of isotropic long- or short-range spins,
respectively. The 3D Heisenberg model is correct if s > 2, with
J(r) decreasing at short distances faster than r−5. In our case
(with g = 1), s z 1.5; then J(r) decreases as r−4.5. Therefore, J(r)
decreases more slowly than r−5 for LCMNO manganite as
a function of long-range distance.

To simulate M(H, T) and −DSM(T, H) curves, around TC, we
have rst determined the constants a and b given in eqn (1) were

rstly determined. The linear ts of
�
H
M

�1
g

vs. M
1
b yield a(T− TC)

at the interceptions of the axis
�
H
M

�1
g

. The quantity b represents

the slope of
�
H
M

�1
g

vs. M
1
b at TC. Both constants are calculated

as: a= 0.0036 and b= 2.6 10−5 with units ofM in emu g−1 andH
in tesla.

Then the numerical resolution of eqn (1) generates M(H, T)
plots (solid lines). A good agreement is observed with the
experimental data mainly when H is greater than 1 T as pre-
sented in Fig. 3(a).

Using MS(T) and the generated values of M(H, T), a theoret-
ical estimation of−DSM(T, H) can be obtained. These simulated
−DSM curves (solid lines) correlated adequately with experi-
mental −DSM curves which were evaluated using the well-

known Maxwell relation �DSMðT;HÞ ¼ �ÐH2

H1

�
vM
vT

�
H
dH, as

shown in Fig. 3(b). Although a reasonable correlation was ob-
tained in the whole temperature, the simulated curves of
−DSM(T) depart slightly from the experimental ones near TC.
This shi is consistent with saturation effects not contemplated
in the ANE.24
© 2023 The Author(s). Published by the Royal Society of Chemistry
2.2 Landau theory

According to the Landau model, the Gibbs free energy can be
written as follows:25

GðT ;MÞ ¼ G0 þ 1

2
AðTÞM2 þ 1

4
BðTÞM4 þ 1

6
CðTÞM6 �MH

(6)

where A(T), B(T) and C(T) are Landau parameters depending on
temperature. In the equilibrium condition, vG/vM = 0, the
magnetic equation is derived as:

H

M
¼ AðTÞ þ BðTÞM2 þ CðTÞM4 (7)

The variables A(T), B(T) and C(T) can be calculated from the
quadratic t of vs. M2.

The magnetic entropy is given as follows:

�DSMðT ;MÞ ¼
�
vGðH;TÞ

vT

�
H

¼ �1

2
A

0
M2 � 1

4
B

0
M4 � 1

6
C

0
M6

(8)

where A0 ¼ vA
vT

, B0 ¼ vB
vT

and C0 ¼ vC
vT

.
Using the renormalization group, Dong et al.26 pointed out

that in the absence of the external magnetic eld, −DSM(H =

0 T) should differ from zero since it is impacted by spontaneous
magnetization. Therefore, eqn (8) should be adjusted as follows:

�DSMðT ;MÞ ¼ �1

2
A

0ðM �MSÞ2 � 1

4
B

0ðM �MSÞ4

� 1

6
C

0ðM �MSÞ6 (9)

The treatment of eqn (6) leads to the generation of M(H, T)
plots which are represented by red lines and corroborate the
RSC Adv., 2023, 13, 16529–16535 | 16531
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Fig. 3 The experimental (red lines) and the simulated (symbols) curves of (a) M vs. H and (b) −DSM vs. T using the ANE.
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experimental data when H is larger than 0.5 T as indicated in
Fig. 4(a). Then, using generated M(H, T), obtained from eqn (6),
and MS(T) in eqn (8), simulated −DSM curves can be deter-
mined. An acceptable concordance is achieved between the
simulated −DSM curves (red lines) and the experimental −DSM
curves (symbols) estimated by Maxwell's relations as given in
Fig. 4(b).

Some points can be discussed when comparing the ANE with
its derivatives from one side and the Landau theory from the
Fig. 4 The experimental (symbols) and the simulated (red lines) curves

16532 | RSC Adv., 2023, 13, 16529–16535
other side. These two approaches are valid only in a very narrow
region: j3j < 0.1.27 Since the critical behavior at the second FM–

PM phase transition is studied at high magnetic eld, under
weak magnetic elds, the ANE has a limited ability to simulate
the curves of magnetic compounds (in this study), we take the
analysis starting from 1 T because of the inability to obtain

parallel straight lines M
1
b vs.

�
H
M

�1
g

for the total applied

magnetic eld. Landau theory (which starts at 0.5 T) decreases
of (a) M vs. H and (b) −DSM vs. T using the Landau theory.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Evolution of
H
T

vs.
1
T
with 2 emu g−1 step plot (b) fitting Hexch vs. M.

Fig. 6 The experimental (symbols) and the simulated (red lines) curves of (a) M vs. H and (b) −DSM vs. T using the MFM.
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this disability but is still unable to simulate M(H, T) curves
under low magnetic elds.
2.3 Mean eld model

The magnetization values can be expressed according to the
MFM with respect to the saturation magnetization (M0) as28,29
© 2023 The Author(s). Published by the Royal Society of Chemistry
MðH;TÞ ¼ M0

�
2J þ 1

2J
coth

�
2J þ 1

2J

JgmB

kB

�
H þHexch

T

��

� 1

2J
coth

�
1

2J

JgmB

kB

�
H þHexch

T

���
(10)

where mB is the Bohr magnetron, g is the gyromagnetic factor, kB
is the Boltzmann constant, J is the total angular momentum,
and Hexch is the exchange magnetic eld which is given
RSC Adv., 2023, 13, 16529–16535 | 16533
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according to Weiss30 as ~Hexch ¼ l~M, l is the exchange
parameter.

Knowing that M is a function of
H þ Hexch

T
; in other words,

MðT ;HÞ ¼ f
�
H þ Hexch

T

�
, we may obtain the relation:

H

T
¼ f �1ðMÞ � Hexch

T
(11)

Then, DSM between two magnetic elds H1 / H2 can be
estimated theoretically as follows:31

DSMðTÞH1/H2
¼ �

ðMjH2

MjH1

�
f �1ðMÞ �

�
vlðTÞ
vT

�
M

M

�
dM (12)

From the M(H, T) curves evaluated at constant values of

magnetizationM with a step of 2 emu g−1, the evolution of
H
T
as

a function of
1
T
was plotted in Fig. 5(a). A linear behavior of the

isomagnetic curves of
H
T

versus
1
T
is observed. The lines gradu-

ally shi to larger values of the temperature. It is worth studying
the Hexch to sort out the value of the mean-eld exchange

parameter l. From eqn (11), the slopes of
H
T
vs.

1
T
give the Hexch.

Then, Hexch versus M was plotted in Fig. 5(b). Knowing that
magnetization is an odd function of the exchange magnetic
eld:32

Hexch = l1M + l3M
3 (13)

Then, Hexch as a function of M in Fig. 5(b) was tted by eqn
(13). A very low dependence on M3 was noted (l3 = −0.0003 (T
emu−1 g)3). One can consider Hexch = l1M z lM, with l1 = 1.73
T emu−1 g.

For La0.75Ca0.1Na0.15MnO3 manganite, using the Hund rules
in ref. 30, J = g = 2. The saturation magnetization is given by

tting M(H, T) vs.
H þ Hexch

T
with eqn (10) (not shown here) and

its value is found to be M0 = 103.9 emu g−1.
Adding parameters l, J, g and M0 to eqn (10) enables the

generation of M(H, T) curves (red lines) which are plotted in in
Fig. 6(a) with experimentalM(H, T) data (black symbols). A good
agreement between the calculated and the experimental plots of
M(H, T) was found.

Fig. 6(b) shows the comparison between the −DSM curves
using the MFM (red lines) from exploiting eqn (12) and the
related experimental data (solid symbols) by using Maxwell's
relation. The entropy results show a good agreement between
simulated and experimental −DSM curves in the PM region but
some notable discrepancies, especially in the FM range. These
discrepancies may be associated with the high spontaneous
magnetization in the FM area; the phase transition is far from
the area of interest. In fact, this MS(T) obeys eqn (3) for
a temperature range far from the transition where the ANE is
16534 | RSC Adv., 2023, 13, 16529–16535
not valid. When integrating eqn (2), MS(T) has been eliminated.
But eqn (12) does not mentionMS(T). This could be explained by
the fact that the MFM is not able to accurately describe the
magnetization and magnetic entropy in these temperature
ranges (far from TC).33 In addition, some deviations of the
simulated entropy results near TC may be associated to the fact
that the MFM does not consider uctuations and disorder
effects (chemical and structural inhomogeneity) near TC.34
3 Conclusion

In conclusion, three models were exploited to investigate the
MCE of La0.75Ca0.1Na0.15MnO3 (LCNMO) manganite. The ANE
was analyzed to determine the critical exponents of the LCNMO
magnetic system. The deduced critical exponents are found to
be as: b = 0.48 and g = 1. A close relationship between these
estimated critical exponents and those identied by the Mean
Field Model (MFM) with b = 0.5 and g = 1. An excellent
agreement exists between the simulated and the experimental
curves of the isothermal magnetization M(H, T) and the
magnetic entropy change −DSM(T) curves using the ANE and
the Landau model near the FM–PM transition but in a short
temperature range. Considering that the MFMmay be adequate
to analyze the MCE in LCNMO magnetic system, a good corre-
lation was found between the M(H, T) and −DSM(T) curves
generated by the MFM and the corresponding experimental
data. The results of this MFM scaling method are very prom-
ising for a SO magnetic system. Moreover, it is interesting to
emphasize that this analysis is global, in the sense that it
encompasses the consistency of the whole range magnetization
data.
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