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ion metal supported on a mixture
of reduced graphene oxide and silica template for
water splitting†

R. S. Amin,a Amani E. Fetohi,a D. Z. Khater,a Jin Lin,b Yanzhong Wang,b Chao Wangb

and K. M. El-Khatib *a

Exploration of economical, highly efficient, and environment friendly non-noble-metal-based electrocatalysts

is necessary for hydrogen and oxygen evolution reactions (HER and OER) but challenging for cost-effective

water splitting. Herein, metal selenium nanoparticles (M = Ni, Co & Fe) are anchored on the surface of

reduced graphene oxide and a silica template (rGO-ST) through a simple one-pot solvothermal method.

The resulting electrocatalyst composite can enhance mass/charge transfer and promote interaction

between water molecules and electrocatalyst reactive sites. NiSe2/rGO-ST shows a remarkable

overpotential (52.5 mV) at 10 mA cm−2 for the HER compared to the benchmark Pt/C E-TEK (29 mV), while

the overpotential values of CoSeO3/rGO-ST and FeSe2/rGO-ST are 246 and 347 mV, respectively. The

FeSe2/rGO-ST/NF shows a low overpotential (297 mV) at 50 mA cm−2 for the OER compared to RuO2/NF

(325 mV), while the overpotentials of CoSeO3-rGO-ST/NF and NiSe2-rGO-ST/NF are 400 and 475 mV,

respectively. Furthermore, all catalysts indicate negligible deterioration, indicating better stability during the

process of HER and OER after a stability test of 60 h. The water splitting system composed of NiSe2-rGO-

ST/NFjjFeSe2-rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm−2. Its performance is nearly close

to that of a noble metal-based Pt/C/NFjjRuO2/NF water splitting system.
1. Introduction

Water electrolysis is considered a zero-carbon approach for
producing hydrogen; hence there is no consumption of fossil
fuels or CO2 emissions.1 Hydrogen is a clean and efficient
energy source that may be used to generate electricity in the
stationary industrial and domestic and automotive sectors.2–4

There are two main approaches for low temperature water
electrolysis: liquid alkaline using a KOH electrolyte and polymer
electrolyte membrane using a solid ion exchange membrane,
depending on the kind of electrolyte. The most applicable kind
of both is the alkaline one. This technology is designed for long-
term stable operation.5 Water electrolysis is an electrochemical
process that involves two half–cell reactions: hydrogen evolu-
tion reaction (HER) and oxygen evolution reaction (OER).
Because of the high energy barrier for H+ reduction and O2

oxidation in a water molecule, the efficiency of both processes is
very low. As a direct result, the development of various kinds of
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electrocatalysts to facilitate both reactions is a very important
issue.6–9 Nowadays, the most efficient electrocatalysts for water
electrolysis are the noble metals Ir or Ru10 and their oxides for
OER,11 and Pt for HER.6 However, noble metals are very rare and
expensive.12 Therefore, exploring low cost and efficient electro-
catalysts is vital for water electrolysis technology.13,14 Transition
metal-based electrocatalysts, such as oxides,15 hydroxides,16

carbides,17 phosphides,18 suldes,19 and chalcogenides,20 are
considered promising electrocatalysts to replace noble-metal
ones. Transition-metal selenides have important applications
in electrochemical systems and have attracted extensive atten-
tion in water electrolysis, owing to their chemical stability, high
conductivity, and efficient catalytic activity.21,22

It is well known that nickel and iron diselenide electro-
catalysts have good performance in water-splitting reactions.23,24

Lingling Zhai et al.25 have prepared NiSe2 supported on carbon
ber paper by pyrolysis and selenization reactions, the electro-
catalyst exhibited overpotential values of 145 and 280 mV at
a current density of 10 mA cm−2 for HER and OER respectively
in an alkaline medium,. Moreover, iron-doping NiSe2 supported
on Ni–Fe foam is synthesized by Changqin Zhang et al.26 by
oxalic immersion and selenization method. The overpotential is
145 mV for HER and 135 mV for OER. Jing Yu et al.27 prepared
a P-NiSe2@N-CNTs/NC hybrid catalyst that is prepared by
phosphorization and selenization, with an overpotential of 95
and 306 mV gained at 10 mA cm−2 for HER and OER
© 2023 The Author(s). Published by the Royal Society of Chemistry
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respectively in alkaline media. Furthermore, the hydrothermal
method used to prepare FeSe2 nanoparticles embedded in
a selenium matrix by Fanjun Kong et al.28. They tested its elec-
trochemical performance for OER in an alkaline medium and
they found that Tafel slopes of FeSe2 and FeSe2@Se-2 are 70 and
54 mV dec−1 respectively. Tafel slope is a measure of the overall
kinetics of HER and OER so a lower slope means a faster reac-
tion. Huixuan Zhang et al.24 prepared FeSe2/CoFe2O4 by two
steps hydrothermal method, it gained a Tafel slope of 88.76 mV
dec−1 and that of FeSe2 is 107.9 mV dec−1 for HER in an acidic
medium. In addition, X. Xing et al.29 found an easy way to
synthesize bimetallic transition metal selenides electrocatalysts
for water-splitting reactions, they prepared FeSe2/CoSe nano-
sheet by hydrothermal and selenization processes and tested it
in an alkaline medium for water electrolysis. The results reviled
that, at 10 mA cm−2, low overpotential of 73 mV for HER and
183 mV for OER. Moreover, Beibei Sun et al.30 prepared MnSx-
Se1−x@N,F-CQDs using microwave-assisted heating, hydro-
thermal and calcination and tested it as bifunctional
electrocatalyst for water electrolysis in an alkaline medium.
They found that the overpotential at 10 mA cm−2 of 209 mV for
OER and 87 mV for HER. Xiaowei Pan et al.31 developed a CoSe2
nanorods and selenium vacancies using a plasma cleaner
(CoSe2–VSe/CC) to enhance their catalytic activity. The catalyst
exhibited a lower overpotential of 88 mV at 10 mA cm−2 in 1 M
KOH and high durability over 100 h at 100 mA cm−2.

In another point of view, CoSeO3 which is a transition metal
selenite, has gained great interest in lithium-ion batteries.32

Moreover, CoSe2/CoSeO3 is tested as an electrocatalyst in dye-
sensitized solar cells, it is obtained by a micro emulsion-assisted
hydrothermal synthesis.33 ZHAO Dong-Jiang et al.34 prepared
CoSeO3 nanoparticles by low-temperature reuxing method, they
found that the electrocatalyst has good electrocatalytic activity
towards oxygen reduction reaction. Yu Zhou et al.35 synthesized
a Ni–Co4S3 (Sv)/N-V2CTx electrocatalysts by sulfuration and ultra-
sonic treatment, the performance shows that the electrocatalyst
has an overpotential of 127 mV at 10 mA cm−2 for HER.

To further enhance the electrochemical efficiencies of the
prepared electrocatalysts towards water splitting, reduced gra-
phene oxide (rGO), is utilized as a support material. rGO has
a lot of good characteristics as low electrical resistance, high
Scheme 1 Procedure of graphene oxide preparation.

© 2023 The Author(s). Published by the Royal Society of Chemistry
stability, and large surface area.36 Another potential support
material is hollow silica spheres; it has a mesoporous structure
which enables it to be used in catalysis and drug storage
applications. In this paper, reduced graphene oxide and silica
templates were prepared and used as supporting materials for
the electrocatalysts, NiSe2, FeSe2, and CoSeO3 synthesized by
hydrothermal technique. Integration between the supporting
materials with transition metal-diselined (NiSe2 and FeSe2) and
a transition metal selenite (CoSeO3) has occurred. The prepared
electrocatalysts have been tested for water-splitting reactions in
an alkaline medium.

In this study, we report a one-pot solvo thermal method
synthesis strategy to prepare a bifunctional electrocatalyst
composed of Se and transition metals (i.e. Co, Ni, and Fe)
supported on a mixture of rGO & ST. The atomic ratio of sele-
nium to the other transition metals is calculated to be 1 : 1
where the total loading of the electrocatalysts on the support is
xed at 30%. The benets of integrated structural design in
delivering remarkable bi-functional activities for HER/OER. A
water-splitting system composed of NiSe2-rGO-ST/NFjjFeSe2-
rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm−2. Its
performance is comparable to that of a noble metal-based Pt/C/
NFjjRuO2/NF water splitting system. Our research demonstrates
a simple method for creating bifunctional electrocatalysts for
hydrogen production.

2. Materials & methods
2.1. Materials

All chemicals are obtained in analytical grade from Sigma-
Aldrich (USA) and are used without any purication. All
aqueous solutions, including preparation and cleaning, are
made using double-distilled water.

2.2. Support preparation

2.2.1. Graphene oxide preparation. Graphene oxide (GO) is
prepared following a modied Hummers' method as shown in
Scheme 1.37 5 g of graphite powder is put in a round ask
(capacity is 2000 mL) then 360 mL of concentrated H2SO4 and
40 mL of phosphoric acid are added to the graphite under
stirring at room temperature for one hour. Aerward, the round
RSC Adv., 2023, 13, 15856–15871 | 15857
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ask is placed in an ice bath. Aer cooling, the mixture of 18 g
of potassium permanganate is added slowly under continuous
stirring (1 g each 10 min). Aer nishing the addition of
potassium permanganate powder, the mixture remains in the
ice bath for 10 minutes. Then the produced mixture is warmed
up to 40 °C and maintained at this temperature for two and half
hours in a water bath resulting in a thick paste. Subsequently,
an additional 500 mL of water is followed by the addition of
30 mL of hydrogen peroxide (30%). Aerward, 250 mL of 10%
hydrochloric acid is added to the mixture. Lastly, the mixture is
rinsed and centrifuged many times to eliminate supernatant
contaminants until the pH of the supernatant water reaches 5.5.
Then the mixture is dried in a hot air oven at 80 °C for six hours.

2.2.2. Silica template preparation. The silica template is
synthesized by mixing ammonia-catalyzed hydrolysis of tetrae-
thoxysilane (TEOS) in ethanol–water solvents.38 The procedure
of preparation is as follows: 8 mL of double-distilled water and
8 mL of ammonia are added into 200 mL of ethanol mixed with
10 mL of TEOS solution. The mixture is stirred continuously for
24 hours then it is ltered and dried in a dryer at 80 °C for 6
hours.

2.2.3. Mixed GO and silica template support preparation.
An appropriate amount of prepared graphene oxide is added to
a 200 mL aqueous solution of ST under intense magnetic stir-
ring for 1 h. The product is obtained by ltration and washing
with double distilled water. The resulting mixture dried in
a dryer at 80 °C for 6 h.
2.3. Preparation of selenium-transition metal supported on
a mixture of rGO and ST

The electrocatalysts are prepared using the one-pot solvo
thermal method as shown in Scheme 2. The bimetallic elec-
trocatalysts are composed of Se and transition metals (i.e. Co,
Ni, and Fe) supported on a mixture of rGO & ST. The atomic
ratio of selenium to the other transition metals is calculated to
be 1 : 1 where the total loading of the electrocatalysts on the
support is xed at 30%. Chloride salts are used as the precur-
sors for the transition metals. For a typical synthesis, appro-
priate amounts of Se and NaBH4 (it acted as a reducing agent)
are dissolved into 50 mL N,N-dimethyl formamide (DMF). The
Scheme 2 Procedure of selenium-transition metal supported on rGO a

15858 | RSC Adv., 2023, 13, 15856–15871
mixture is then agitated until a uniformly distributed black-
color solution is formed. Aerward, calculated amounts of
metal chlorides are added to this black-color solution. The
produced solution is then placed in a Teon-lined autoclave
and heated at 160 °C for 24 hours. Aer cooling naturally, the
acquired products are ltrated and washed with double distilled
water several times and dried in a dryer at 60 °C for 6 hours.
According to the procedure mentioned above, the electro-
catalysts prepared are namely as follows: CoSeO3/rGO-ST, NiSe2/
rGO-ST, and FeSe2/rGO-ST.
2.4. Physical characterization of the electrocatalysts

The crystalline phase is analyzed via a Rigaku-D/MAX-PC 2500
X-ray diffraction (XRD) system. Scanning electron microscopy
(SEM) and high-resolution transmission electron microscopy
(HRTEM, JEOL-JEM 2010) are utilized to investigate micro-
structure and morphology. X-ray photoelectron spectroscopy
(XPS) (PH1-5700 ESCA system, US) is used to determine the
valence states of the electrocatalyst.
2.5. Electrochemical characterization

2.5.1. Electrode preparation. The catalyst and poly-
vinylidene uoride (PVDF) are blended in N-methyl-2-
pyrrolidone (NMP) solvent with a ratio of 9 : 1 by weight to
obtain catalyst slurry. Then, the mixture is treated by sonication
for more than 1 h until the slurry becomes a uniform dispersion
nickel foam (1 cm × 2 cm) is cleaned by sonication in HCl (3 M)
for 15 min, deionized water, and ethanol, respectively, and then
dried in a vacuum oven at 60 °C for 8 h. The slurry is drop cast
on glassy carbon 3 mm diameter (0.07 cm2) for hydrogen
evolution reaction, and 1 × 1 cm2 nickel foam to make
a working electrode for oxygen evolution reaction (the loading
mass is about 1 mg cm−2).

2.5.2. Electrochemical characterization of electrocatalyst.
The electrocatalytic activities are evaluated using a three-
electrode setup equipped with an electrochemical workstation
Voltalab6. The counter electrode and reference electrodes are
platinum wire and a KCl-saturated Ag/AgCl electrode, respec-
tively. Polarization curves for HER and OER are measured using
nd ST preparation.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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linear sweep voltammetry (LSV) at a scan rate of 5 mV s−1 in
1.0 M KOH and corrected with iR compensation. Electro-
chemical impedance spectroscopy (EIS) measurement is per-
formed in a frequency range of 0.1–105 Hz with a polarized
potential in the turnover region of the HER and OER. All
potentials are corrected to the reversible hydrogen electrode
(RHE) according to the Nernst equation: ERHE = E(Ag/AgCl) +
0.197 + 0.059 × pH. The electrochemically active surface areas
(ECSA) of as-obtained electrocatalysts are achieved from the
corresponding electrochemical double-layer capacitance (Cdl),
which can be calculated from CV curves. Cyclic voltammograms
(CV) are recorded with increasing scan rates (20–140 mV s−1)
within the non-faradaic potential region (0.67–0.77 V vs RHE)
for HER & (1.2–1.3 V vs. RHE) for OER.

3. Results & discussion
3.1. Physical characterization

3.1.1. Physical characterization of support. The X-ray
powder diffraction patterns of the ST, graphene, and gra-
phene oxide combined with the ST are represented in Fig. 1(a).
Regarding the XRD pattern of ST, it showed a single broad
reection at 2q around 22°, and that is equivalent to the average
pore–pore correlation distance in the small-angle region, which
is consistent with the mesoporous structures of the silica
spheres.39 The XRD pattern of graphene oxide reected two
peaks at 2q equal to 10.41° and 42.49°. The sharp peak at 10.41°
representing the (001) GO layers the oxidation of graphite is
conrmed by this diffraction peak that indicated the presence
of oxygen-rich functional groups.40,41 The 42.49° diffraction
peak corresponds to the (101) crystallographic planes of
graphitic materials.42 The XRD pattern of the mixed support
(GO and ST) reected three diffraction peaks at 2q equal to
10.09°, 22.57°, and 42.65° and this conrmed the presence of
Fig. 1 (a) XRD pattern of ST, rGO and rGO-ST, HR-TEM images of the
resolution XPS spectra of the C 1s (h), O 1s (i), and Si 2p (j) on the surfac

© 2023 The Author(s). Published by the Royal Society of Chemistry
both supports, it could be noticed that the intensity of (001) GO
peak is decreased because the presence of ST that covered the
surface of GO (this will be further conrmed by TEM analysis).

The morphology and particle distribution of different
prepared supports and electrocatalysts are determined using
TEM analysis. Fig. 1(b–g) represents the TEM images of the GO
(b and c), silica template (d and e), and a mixture of both (f and
g) under different magnications. GO showed a tulle-like
structure, typically smooth and wrinkled across its surface
owing to its oxygenated functional groups.43 It can also be seen
that the mono- or multi-layered GO particles are created using
thin semi-transparent sheets.44 Furthermore, TEM images of
GO have transparent sheet structures.42 It could be noticed that
obtained GO is composed of a smooth planar structure with
thin individual layers. However, the areas in GO images that
have lower brightness may be attributed to the elastic
corrugations.45

Fig. 1(d and e) represents TEM images of silica samples,
revealing that the obtained silica particles are mesoporous;
however, neither uniform morphology nor is ordered meso-
structure achieved. TEM images conrmed the formation of
partially-bridged hollow nanospheres.46 Moreover, the SiO2

material is composed of round-shape particles on their surface
with smaller-sized particles.47 The mixed support of GO and
silica templates TEM images are displayed in Fig. 1(f and g). It is
noticed that the presence of apertures and slits on the GO
surface is an indication of the existence of silica. A higher
magnication image of the mixed support showed the dispersal
of mesoporous silica on the outer surfaces of the GO (Fig. 1g)
indicating good dispersion of silica particles on the graphene
oxide surface.

The XPS analyses of the mixed support rGO-ST are shown in
Fig. 2(h–j). The C 1s XPS spectra (292.18–281.88 eV) could be
GO (b and c), silica template (d and e), and rGO-ST (f and g), high-
e of the mixed support rGO-ST.

RSC Adv., 2023, 13, 15856–15871 | 15859
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deconvoluted into four peaks that attributed to the C–C, C–O–C,
O–C]O, and C]O at binding energies of 284.63, 285.86, 288.88
and 287.18 eV, respectively as shown in Fig. 2(h). The O 1s is
also deconvoluted into three peaks at 533.48, 532.95, and
534.74 eV that are assigned to Si–OH, Si–O–Si, and O–(C]O)–O,
respectively, as indicated in Fig. 2(i).48 To further investigate the
bonding mode of Si in the support material, the high-resolution
Si 2p (109.08–100.68 eV) spectrum is deconvoluted into two
peaks at 103.94 and 105.17 eV as illustrated in Fig. 2(j), they are
ascribed to SiO2. These results imply the doping of ST in the
rGO.49

3.1.2. Physical characterization of electrocatalyst. Fig. 2(a)
illustrated the XRD patterns of prepared selenium-transition
Fig. 2 XRD analysis of the electrocatalyst (a), HR-TEM analysis of NiSe2/r

15860 | RSC Adv., 2023, 13, 15856–15871
metals supported on mixed rGO and ST, it could be noticed
that there is not any obvious peak of GO, rGO, or ST in the XRD
patterns. We could say that aer hydrothermal reaction GO is
reduced to rGO or this may be due to the presence of transition
metal particles on the surface of the support material that
indicates the complete coverage of the surface with the elec-
trocatalysts particles. Furthermore, there are no diffraction
peaks of any impurities in all the XRD curves which reected the
formation of a pure phase of prepared electrocatalysts. The
diffraction peaks of the FeSe2 XRD diffraction curve are
completely consistent with the orthorhombic FeSe2. Peaks at
around 23.83°, 29.25°, 31.07°, 34.75°, 36.07°, 48.08°, 49.00°,
53.82, 57.37°, 59.65° and 64.02° can be marked as diffraction
GO-ST (b and c), CoSeO3/rGO-ST (d and e), and FeS2/rGO-ST (f and g).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 SEM & EDAX analysis of NiSe2/rGO-ST (a, b and g), CoSeO3/rGO-ST (c, d and h), and FeSe2/rGO-ST (e, f and i).
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peaks of the orthorhombic FeSe2 (110), (011), (101), (111), (120),
(211), (002), (031), (131), (310) and (122), respectively.50 NiSe2
electrocatalysts displayed the diffraction peaks at 2q of 29.86°,
33.79°, 36.79°, 42.43°, 50.56°, 55.30°, and 57.25°, those peaks
are standard for the (200), (210), (211), (220), (311), (230) and
(321) crystal planes.51 Regarding the diffraction curve of
CoSeO3, it had main characteristic peaks at 15.38°. 25.62°,
29.53°, 32.64°, 37.67°, and 52.63° are all observed and matched
well with the crystal planes of (110), (120), (210), (012), (112),
(311), and (033).52

TEM analysis of NiSe2, CoSeO3, and FeS2 supported on rGO-
ST are performed, and their results are presented in Fig. 2(b–g)
respectively, all the nanoparticles are quite ne (around 20 nm
in size) where each nanocrystal is connected tightly with its
neighboring,53 the nanocrystals are composed of irregularly
shaped nanoparticles that distributed homogenously on the
rGO-ST support. It is also noticed that the ST particles are
shown in the form of large dark gray circles furthermore, the
wrinkles of reduced graphene could also be observed in all
samples indicating well hybridization with MSex nano-
particles.54 Heavy distribution of nanoparticles on the mixed
support is observed for NiSe2/rGO-ST and CoSeO3/rGO-ST while
it is not the case in FeS2/rGO-ST images where there are larger
areas of the support without the electrocatalysts nanoparticles.
It is well known that nano-scale size and the coverage of the
© 2023 The Author(s). Published by the Royal Society of Chemistry
nanoparticles on the support in a dense way provide multiple
catalytic sites.

Fig. 3(a–f) represents the SEM images of different electro-
catalysts, by reference to the morphology of prepared electro-
catalysts, lots of nanoparticles could be easily observed on the
substrate, and those particles are stacked together. These
nanoparticles are in the form of nanospheres for NiSe2/rGO-ST
(a and b). Min Zhu et al.55 synthesized Fe-doped NiSe2 nano-
spheres supported on reduced graphene oxide through low-
temperature reux and solvo thermal process. They found
that the presence of reduced graphene as support limits the
excess growth of the nanosphere of the electrocatalysts during
the synthesis procedure. Moreover, the nanospheres of NiSe2
tend to agglomerate in the absence of reduced graphene. In the
case of CoSeO3/rGO-ST (c and d) and FeSe2/rGO-ST (e and f) the
particles tended to be cubes this is in agreement with Kaviyar-
asu56 who prepared cubic ZnSe and Balamuralitharan et al.57

who prepared MnSe2 cubes. Abundant mesoporous structures
are spreading all over the matrix, which increases the surface
area (in agreement with TEM analysis).

Fig. 3(g–i) presents EDAX spectra and elemental composition
of MSe/rGO-ST which exhibits peaks for selenium (Se), car-
bon(C), oxygen (O), silicon (Si), and M where M is Ni, Mn, Co,
Zn, and Fe, respectively. These peaks suggest the formation of
MSe/rGO-ST. The intensity of different peaks is different. The
elemental analysis indicates that selenium and carbon peaks
RSC Adv., 2023, 13, 15856–15871 | 15861
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Fig. 4 XPS spectra of CoSeO3/rGO-ST (a and b), NiSe2/rGO-ST (c and d), and FeS2/rGO-ST (e and f) electrocatalysts.
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correspond to the substrate while oxygen peaks are from the
oxygen present in the atmosphere.58 It is also noticed that Ni has
intense peaks; this is in coincidence with its corresponding
elemental composition.

The stoichiometry and valences state of each electrocatalyst
are further carried out using XPS analyses from the wide
survey's spectra of CoSeO3/rGO-ST, FeSe2/rGO-ST, and NiSe2/
rGO-ST lms that measured over a binding energy range of 0 to
Fig. 5 OER performance of the electrocatalysts Pt/C E-TEK, NiSe2/r
comparison of the overpotential, (c) Tafel plots derived from LSV curv
double-layer capacitance (Cdl) plots.

15862 | RSC Adv., 2023, 13, 15856–15871
1400 eV and the graphs are displayed in Fig. S1(a–c).† It could
be observed that the presence of main photoemission intensity
peaks appeared at ∼285.95, 533.63, 104.78, 57.02, 783.13,
713.41 and 858.21 eV. The previous binding energies corre-
spond to the C 1s, O 1s, Si 2p, Se 3d, Co2p, Fe2p, and Ni2p
regions, respectively, as the main species in the as-prepared
electrocatalysts. The high-resolution XPS spectra of Se 3d
spectra regions for all prepared electrocatalysts are presented in
GO-ST, CoSeO3/rGO-ST and FeSe2/rGO-ST. (a) LSV curves, (b) the
es, (d) Nyquist plots, (e) chronopotentiometry (CP) curve, and (f) the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 A performance comparison with recently published non-noble metal-based for HER, OER and water splitting catalysts

Electrocatalyst

HER OER Water electrolysis

Overpotential
h (mV)@10 mA cm−2

Tafel slopes
(mV dec−1)

Overpotential
h (mV)

Tafel slopes
(mV dec−1)

Potential (V)@10
mA cm−2

NiSe2/rGO-ST (this study) 52.5 67 280@20 mA cm−2 236 NiSe2-rGO-ST/
2NFjjFeSe2-rGO-ST/NF (1.75)

400@50 mA cm−2

CoSeO3/rGO-ST (this study) 246 191 284@20 mA cm−2 127
475@50 mA cm−2

FeSe2/rGO-ST (this study) 347 363 229@20 mA cm−2 106
297@50 mA cm−2

NiSe2/CF (NSN/CFP)25 145 72 280@10mA cm−2 81 1.66 (bifunctional)
P-NiSe2@N-CNTs/NC27 95 82 306@10 mA cm−2 61 1.61 (bifunctional)
Se–NiSe2/CC

86 133 128 350@100 mA cm−2 190 1.57 (bifunctional)
TiN@NiO–NiSe2/CC

87 115 59 � 4 240@10 mA cm−2 29 � 3 1.57 (bifunctional)
NiSe2/Ni2P@FeP109 113 73.1 202@10 mA cm−2 42.1 1.554 (bifunctional)
Fe–NiSe2/CC

110 — — 257@10 mA cm−2 43 —
NiSe2/Ni2O3/FeOOH

111 — — 270@100 mA cm−2 54.7 —
10%P–NiSe2/CoSe2 (ref. 88) — — 287@50 mA cm−2 68 —
NiSe2/FeSe2/NiFe (NFS/NFF)23 — — 274@40 mA cm−2 57.07 —
Ni0.7Fe0.3Se2/rGO-30% — — 265@10 mA cm−2 57 —
Ni0.7Fe0.3Se2 325@10 mA cm−2 70
NiSe2 (ref. 55) 422@10 mA cm−2 79
Cu-(a-NiSex/c-NiSe2)/TiO2 (ref. 85) 156.9 51.2 339@10 mA cm−2 54.2 1.62 (bifunctional)
NiSe2/Ni–Fe

26 145 — 135@10 mA cm−2 — 1.58 (bifunctional)
KMF3 (M = Co/Fe)112 — — 254@10 mA cm−2 37.5 —
Fe2OF4/nickel foam

113 — — 238@10 mA cm−2 48 —
Fe–NiCoP114 — — 266@10 mA cm−2 75.2 Fe–NiCoPjjPt/C

1.72
FeSe2 — — 338@10 mA cm−2 139 —
CoSe2 346@10 mA cm−2 65
NiSe2 305@10 mA cm−2 91
NiSe2/FeSe2 (ref. 115) 256@10 mA cm−2 50
FeSe2–CoSe2/CoSe2 (ref. 116) — — 260@10 mA cm−2 51.3 —
CoSe2@NSC — — 364@10 mA cm−2 114.78 FeSe2/CoSe2@NSCjjPt/C
FeSe2/CoSe2@SC 407@10 mA cm−2 110.50 1.57
FeSe2/CoSe2@NSC117 278@10 mA cm−2 53.08
Fe–Co–S/CC89 320 82.60 258@10 mA cm−2 61.20 1.51 (bifunctional)
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Fig. 4(a–c). As displayed in Fig. 4(a) in the case of CoSeO3/rGO-
ST, exhibited the presence of three tted peaks at 58.7, 59.51,
and 60.67 eV that is in accord with Se–O bonding structures,
which indicates the presence of SeO3

2− as previously illus-
trated.59,60 Whereas, Fig. 4(b and c) showed that there are
monovalent (Se−) and divalent (Se2−) oxidation states of sele-
nium, in addition to the existence of SeOx (58.29 eV) that is
caused by surface oxidation.61 As shown in FeSe2/rGO-ST, the
characteristic oxidation state of Se− is assigned to binding
energies of ∼54.53 and ∼56.6 eV.62,63 Moreover, the atomic Se−2

corresponds to ∼53.84 eV and 57.37 eV in the case of NiSe/rGO-
ST.56 The high-resolution XPS spectra of Co2p, Fe 2p, and Ni 2p
are also separately presented in Fig. 4(d and e), respectively. The
Co 2p spectrum as illustrated in Fig. 2(t) is deconvoluted into
two spin–orbit doublets (Co 2p3/2 at 776.78 eV and Co 2p1/2 at
795.8 eV) along with two respective satellite peaks, as reported
previously.64,65 Besides, the occurrence of six major peaks posi-
tioned at 781.2, 798.48, 796.3, 783.91, 787.09, and 801.98 eV are
correlated to Co2+ ions.66 Furthermore, the prominent satellite
peaks are located at 790.13 and 805.84 eV which are attributed
© 2023 The Author(s). Published by the Royal Society of Chemistry
to the coexistence of Co2+.5,67 Similarly, the Fe 2p spectrum
reveals two spin–orbit doublets for Fe 2p3/2 and Fe 2p1/2 at
706.98 and 737.48 eV, respectively. The rst doublet is decon-
voluted at 711.62, 713.99 and 720.93 eV, indicating the presence
of Fe2+.68 The second one is also deconvoluted at 717.65 and
728.67 eV which can be assigned to Fe3+.69 Moreover, the pres-
ence of two broad satellite peaks at 725.27 and 733.36 eV
(Fig. 2(u)). In the case of the Ni 2p3/2 and Ni 2p1/2 spectra are
correlated to the binding energies of 856.58 and 873 eV,
respectively, as indicated in Fig. 4(f). In addition, the existence
of shake-up satellite peaks at binding energies of 866.28 and
882.15 eV.70,71 Furthermore, the obtained peaks at 856.58,
859.72, and 874.99 eV are accredited to Ni2+.72,73 Whereas,
862.96 and 873.23 eV are assigned to Ni3+.74–76 Ni3+ may be
produced by the low coordination or partial oxidation of Ni ions
at the surface.77 Consequently, the Ni selenide mainly show
a divalent state.

Moreover, for all specimens, to further probe the bonding
mode of Si as illustrated in Fig. S2(a),† the tted high-resolution
Si 2p spectrum region is deconvoluted into two distinguishable
RSC Adv., 2023, 13, 15856–15871 | 15863
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peaks at∼103.98 and∼105.05 eV that ascribed to –C–Si–O bond
and O–Si–O bonds of SiO2, respectively.49 Signicantly, the high-
resolution C 1s spectra revealed a major peak tted at 284.68 eV
that corresponded to the C–C/C]C bonds of sp2 hybridized
graphite carbon atoms in Fig. S2(b).† Another oxygen-
containing group that could be assigned to C–O, C–O–C, C]
O, O–C]O chemical bonds at 286.08, 286.4, 287.64, 289.42 eV,
respectively, these values are consistent with those for rGO.78–80

The accompanying O 1s spectra manifest the coexistence of
three peaks with binding energies at 530.86, 532.97, and
534.4 eV that could be attributed to the C]O, Si–O–Si, and
O–(C]O)–O, respectively, that assists as a nucleus structure on
the surface of rGO in Fig. S2(c).† It could be concluded that the
XPS results are in line with XRD data.

3.2. HER performance

HER performance of electrocatalysts NiSe2/rGO-ST, FeSe2/rGO-
ST, and CoSeO3/rGO-ST is tested in a three-electrode system
using 1 M KOH as electrolyte. For comparison, the performance
of the mixed support rGO-ST and Pt/C E-TEK is also evaluated
under the same conditions. The iR-corrected linear polarization
curves (LSV) are represented in Fig. 5(a). At a current density of
10 mA cm−2, NiSe2/rGO-ST had an overpotential of 52 mV,
which is somewhat comparable to Pt/C E-TEK (29 mV) and
much smaller than those of FeSe2/rGO-ST (337 mV), and
CoSeO3/rGO-ST (246 mV). The linear polarization curve (LSV)
without iR correction for the electrocatalysts for HER is shown
in Fig. S3(a).† Furthermore, h values at 50mA cm−2 are 125, 158,
518 and 615 mV for Pt/C, NiSe2/rGO-ST, CoSeO3/rGO-ST, and
FeSe2/rGO-ST, respectively as shown in Fig. 5(b). The ESI† (rGO-
ST) exhibited poor performance indicating that the improved
catalytic activity is related to the metal electrocatalysts.81 From
the thermodynamics point of view, to have the same current
Fig. 6 OER performance of the electrocatalysts RuOx, NiSe2/rGO-ST, Co
the overpotential, (c) Tafel plots derived from LSV curves, (d) Nyquist plo

15864 | RSC Adv., 2023, 13, 15856–15871
density at lower overpotential means better performance of the
electrocatalyst because of less electrical energy consumption. In
addition, h value at 10 mA cm−2 of the NiSe2/rGO-ST surpasses
that of some recently reported HER catalysts in alkaline
medium, for example, nickel diselenide (NiSe2) anchored on
carbon ber paper (CFP) (145 mV),82 iron-doping NiSe2 nano
wrinkles (145 mV),83 copper-incorporated heterostructures of
amorphous NiSex/crystalline NiSe2 (156.9 mV),84 CNTs encap-
sulating P-doped NiSe2 nanoparticles on carbon framework (95
mV),85 hybrid nanosheet arrays NiSe2/CC-180 (133 mV),86 NiO–
NiSe2 nanosheet-based heterostructures shelled titanium
nitride array (115 mV),87 NiSe2/Ni2P@FeP interface nanosheets
(113 mV).88 To the best of our knowledge, CoSeO3/rGO-ST and
FeSe2/rGO-ST catalyzing HER have been rarely reported in the
literature. However, they both have a reasonable and compa-
rable overpotential at 10 mA cm−2, for example, Xueying Li
et al.89 prepared different HER electrocatalysts composed of Fe–
Co–S nanoakes grew on the carbon cloth by hydrothermal
method and annealing treatment, they found that at the current
densities of 10 mA cm−2, the overpotential of Co–S/CC, Fe–Co–
S/CC-37.5, Fe–Co–S/CC-75, and Fe–Co–S/CC-150 is 330, 320,
260, and 320 mV respectively. Moreover, the Co–BTC (1,3,5-
benzene tricarboxylic acid) electrocatalyst prepared by pulsed
laser ablation in dimethyl formamide90 showed an overpotential
of 437 mV toward HER at a current density of 10 mA cm−2 in
1.0 M KOH. More performance comparison with recently pub-
lished non-noble metal-based for HER catalysts is listed in
Table 1.

As shown in Fig. 5(c) the outstanding HER catalytic activity of
NiSe2/rGO-ST is further veried by the corresponding Tafel
slope of 67 mV dec−1 revealing a typical Volmer–Heyrovsky
pathway with the Volmer step being the rate-limiting step,91

Tafel slopes of FeSe2/rGO-ST is 363 mV dec−1 and that of
SeO3/rGO-ST, and FeSe2/rGO-ST. (a) LSV curves, (b) the comparison of
ts, and (e) chronopotentiometry (CP) curve at 30 mA cm−2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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CoSeO3/rGO-ST is 191 mV dec−1. The small Tafel slope of NiSe2-
rGO-ST will lead to a faster incrimination of the HER rate with
increasing overpotential.92

The Nyquist plots are represented in Fig. 5(d), and equivalent
circuits of the electrocatalysts are shown in the inset of Fig. 5(d).
The Rs (resistance of the solution), Rct (resistance of the charge
transfer), and CPE (constant phase element) values are repre-
sented in Table S1.† The charge transfer resistance values (Rct)
are determined by the semicircular diameter in the high-
frequency region.93,94 The Rct values for Pt/C E-TEK, NiSe2/rGO-
ST, CoSeO3/rGO-ST, and FeSe2/rGO-ST and are 27.29, 40.07
and 87.41, 168.90 U respectively in 1 M KOH. From a general
point of view, small values of Rct mean good contact between
nano electrocatalysts and supporting materials. Moreover,
NiSe2/rGO-ST has the smallest Rct value, in other words, it has
the fastest charge transfer ability among tested
electrocatalysts.93,94

Fig. 5(e) shows the chronopotentiometry curve of different
electrocatalysts at an overpotential of −10 mV in 1 M KOH
solution for 3600 s. The current density showed only a little
deterioration, which might be attributed to H+ consumption or
residual H2 bubbles on the electrode surface, which hampered
the process.81 The NiSe2/rGO-ST showed the largest and the
most stable current when compared to CoSeO3/rGO-ST and
FeSe2/rGO-ST. As a result, the NiSe2/rGO-ST showed superior
stability for the HER in the alkaline electrolyte.

To gain further insight into HER activity, we determine the
electrochemical sensitive area (ECSA) which is directly affected
by the number of active sites for the HER.95 The ECSA is
calculated by measurement of the capacitance as it is linearly
proportional to the double-layer capacitance (Cdl).96 ECSA is
calculated according to the following equation:97

ECSA (cm2) = capacitance (mF)/40 mF cm−2 (1)

The electrochemical active surface area is estimated using
the simple cyclic voltammetry (CV) method. Fig. S4(a–c)† rep-
resented CVs of the prepared electrocatalysts in the potential
region from (0.67 to 0.77 V vs. RHE) at different scan rates of 40–
Fig. 7 (a) LSV curves of Pt/C/NFjjRuO2/NF and NiSe2-rGO-ST/NFjjFeSe2
and NiSe2-rGO-ST/NFjjFeSe2-rGO-ST/NF at 10 mA cm−2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
200 mV s−1. The double-layer capacitances (Cdl) for each elec-
trocatalyst are directly proportional to the surface area. It is
determined by plotting DJ= ja− jc at a given potential (0.72 V vs.
RHE) against the CV scan rates and illustrated in Fig. S4† 98 in
which the slope is equal to twice that of Cdl.99 A linear plot with
slope values of 18.04, 2.41, 1.45, and 0.68 mF cm−2 for Pt/C E-
TEK, NiSe2/rGO-ST, CoSeO3/rGO-ST, and FeSe2/rGO-ST, respec-
tively as shown in Fig. 5(f). These Cdl values resemble those
obtained by Zhu et al.100 who obtained a Cdl value of 2.77 mF
cm−2 for CoSeO3/rGO-ST and 1.93 mF cm−2 for NiSe2/rGO-ST.

Pt-E-TEK retained a high ECSA of 270.75 cm2 while those of
NiSe2/rGO-ST, CoSeO3/rGO-ST and FeSe2/rGO-ST are 36.12,
14.25 and 12.32 cm2. The superior HER catalytic performance of
NiSe2/rGO-ST could be due to the large electrochemically active
surface area and subjected active sites.

Based on the above ndings, we may conclude that NiSe2/
rGO-ST is a potential low-cost catalyst for the hydrogen evolu-
tion process in an alkaline medium depending on its remark-
able overpotential, Tafel slope, electrochemical surface area,
and stability values.
3.3. OER performance

OER activities of prepared electrocatalysts are further investi-
gated using linear sweep voltammetry (LSV). Similar measure-
ments are also taken for bare NF and RuOx/NF with the same
loading. Their linear sweep voltammetry (LSV) curves vs. the
reversible hydrogen electrode (RHE) scale is shown in Fig. 4(a).
All potentials shown are corrected for the ohmic potential drop,
and current densities are calculated using the projected
geometric area of the electrode. As shown in Fig. 6(a), NiSe2-
rGO-ST/NF exhibits an oxidation peak around 1.35 V vs. RHE
before H2O oxidation, which is attributed to the transformation
of NiII to NiIII species.101,102 The linear polarization curve (LSV)
without iR correction for the electrocatalysts for OER is shown
in Fig. S3(b).† The overpotential is affected by metal insertion in
the MSex-rGO-ST/NF electrocatalyst. FeSe2-rGO/NF demon-
strated signicantly better OER performance than RuOx/NF,
NiSe2-rGO-ST/NF, and CoSeO3-rGO-ST/NF, with overpotential at
-rGO-ST/NF, (b) the chronoamperometry curve of Pt/C/NFjjRuO2/NF

RSC Adv., 2023, 13, 15856–15871 | 15865
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20 mA cm−2 of 270, 229, 280, and 284, respectively. At 50 mA
cm−2, the overpotential for RuOx/NF, FeSe2-rGO/NF, NiSe2-rGO-
ST/NF, and CoSeO3-rGO-ST/NF are 325, 297, 400, and 475,
respectively as shown in Fig. 6(b).

The electrocatalytic performances of FeSe2-rGO-ST/NF for
OER in 1 M KOH are compared with previously reported liter-
ature. The overpotential value at 10 mA cm−2 for different iron
composite electrocatalyst e.g. FeSe2 supported on CoSe using
hydrothermal and selenization process is 183 mV,29 Fe–Co–S/
CC-37.5 and Fe–Co–S/CC-150 using hydrothermal process is
320 mV,89 Fe–Mo supported on Te is 300 mV,103 Fe(Se0.5S0.5)2
using hydrothermal process is 247 mV,104 FeSe2 using hydro-
thermal process is 330 mV,105 FeP and FeCoNiP prepared by
chemical reduction and phosphorization process are 325 and
200 mV, respectively,106 Fe0.5Co0.5Se2 supported on carbon ber
cloth prepared by solvo thermal and selenization process is
290 mV,107 NiFeSex supported on carbon ber cloth prepared by
electrodeposition followed by solvo thermal process is
310 mV.108 Additional LSV and Tafel slope comparison of
recently published non-noble metal-based for OER catalysts are
shown in Table 1.

The kinetics of OER is estimated using corresponding Tafel
plots (h versus log(j)) for these electrodes (Fig. 6(c)). The Tafel
slope for Fe–Se2-rGO-ST/NF is 106 mV dec−1, which is less than
that of RuOx/NF (117 mV dec−1), CoSeO3-rGO-ST/NF (127 mV
dec−1) and Ni–Se2-rGO-ST/NF (236 Ni–Se2-rGO-ST), implying
a faster OER rate for Fe–Se2-rGO-ST/NF electrode.

The Nyquist plots (Fig. 6(d)) show that FeSe2-rGO/NF has the
smallest charge transfer resistance (Rct) of 4.31 U, which is
much lower than those of RuOx/NF (4.685 U), NiSe2-rGO-ST/NF
(6.627 U) and CoSeO3-rGO-ST/NF (4.425 U), suggesting its high
charge transport efficiency of FeSe2-rGO/NF in OER process.

In order to evaluate the stability of the electrocatalyst, the
OER stability is tested by chronoamperometry (CA). Fig. 6(e)
shows that all the electrocatalyst indicates negligible deterio-
ration, and better stability during the process of OER aer the
stability test of 60 h at the current density of 30 mA cm−2.

To determine the precise number of active sites engaged in
the electrochemical process, the ESCAs of the electrocatalyst for
OER are gathered. The double-layer capacitance (Cdl), which is
correlated positively with the ESCAs of the catalysts, can be
measured at different scan rates in the potential area between
(1.2 and 1.3 V vs. RHE) to determine the Cdl value (Fig. S5†).
According to Fig. 6(f), Fe–Se2-rGO-ST/NF has a substantially
higher Cdl value (3.46 mF) than other catalysts, which shows
that under the same loading situation, Fe–Se2-rGO-ST/NF has
more active sites.
3.4. Water splitting performance

Stimulated by the best performance of the NiSe2-rGO-ST/NF for
HER and FeSe2-rGO-ST/NF for OER, the water electrolysis cell is
assembled by using FeSe2-rGO-ST/NF as anode and NiSe2-rGO-
ST/NF as cathode, for comparison Pt/C/NF and RuO2/NF is
tested as cathode and anode, and the overall water splitting
performance is further investigated in 1 M KOH. As shown in
Fig. 7(a), the as-assembled NiSe2-rGO-ST/NFjjFeSe2-rGO-ST/NF
15866 | RSC Adv., 2023, 13, 15856–15871
system indicates excellent overall water-splitting performance
with low cell voltages of 1.75 V at a current density of 10 mA
cm−2, which is close to the value of a noble metal-based elec-
trocatalysts Pt/C/NFjjRuO2/NF. Furthermore, the NiSe2-rGO-ST/
NFjjFeSe2-rGO-ST/NF system exhibits outstanding electro-
catalytic stability with a negligible potential decline at the
constant applied current density of 10 mA cm−2 for 12 h as
shown in Fig. 7(b). The excellent water decomposition activity
and stability of NiSe2-rGO-ST/NFjjFeSe2-rGO-ST/NF system
indicate a promising application potential. The overall water
splitting performance is compared with updated published data
is listed in Table 1.

4. Conclusion

In conclusion, we have used a simple one-pot solvo thermal
method synthesis strategy to construct a bifunctional electro-
catalyst of metal selenium nanoparticles (M = Ni, Co & Fe)
anchored on the surface of reduced graphene oxide and silica
template (rGO-ST). The combined benets include the
improved mass-transport capacity of pores, high conductivity,
and an abundance of numerous active sites of NiSe2-rGO-ST and
FeSe2-rGO-ST enabling to deliver of remarkable bifunctional
catalytic activity towards HER (52.5 mV at 10 mA cm−2), and
OER (235 mV at 10 mA cm−2). The assembled electrolyzer with
the optimized NiSe2-rGO-ST/NFjjFeSe2-rGO-ST/NF electrodes
only needs 1.75 V at 10 mA cm−2. The high performance for
water splitting is even comparable to those of noble metal
catalysts.
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