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f a novel scaffold of benzoxazole
derivatives as anticancer agents by 3D-QSAR,
molecular docking and molecular dynamics
simulations†

Yuhan Jiang,‡a Wei Yang,‡b Fangfang Wang *a and Bo Zhouc

The vascular endothelial growth factor receptor-2 kinases (VEGFR-2) expressed on tumor cells and vessels

are attractive targets for cancer treatment. Potent inhibitors for the VEGFR-2 receptor are novel strategies

to develop anti-cancer drugs. In this work, template ligand-based 3D-QSAR studies were performed on

a series of benzoxazole derivatives toward different cell lines (HepG2, HCT-116 and MCF-7).

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis

(CoMSIA) techniques were used to generate 3D-QSAR models. Good predictability was derived for the

optimal CoMFA models (HepG2: Rcv
2 = 0.509, Rpred

2 = 0.5128; HCT-116: Rcv
2 = 0.574, Rpred

2 = 0.5597;

MCF-7: Rcv
2 = 0.568, Rpred

2 = 0.5057) and CoMSIA models (HepG2: Rcv
2 = 0.711, Rpred

2 = 0.6198; HCT-

116: Rcv
2 = 0.531, Rpred

2 = 0.5804; MCF-7: Rcv
2 = 0.669, Rpred

2 = 0.6577). In addition, the contour maps

derived from CoMFA and CoMSIA models were also generated to illustrate the relationship between

different fields and the inhibitory activities. Moreover, molecular docking and molecular dynamics (MD)

simulations were also conducted to understand the binding modes and the potential interactions

between the receptor and the inhibitors. Some key residues (Leu35, Val43, Lys63, Leu84, Gly117, Leu180

and Asp191) were pointed out for stabilizing the inhibitors in the binding pocket. The binding free

energies for the inhibitors agreed well with the experimental inhibitory activity and indicated that steric,

electrostatic and hydrogen bond interactions are the main driving force for inhibitor-receptor binding.

Overall, a good consistency between theoretical 3D-SQAR and molecular docking and MD simulation

studies would provide directions for the design of new candidates, avoiding time-consuming and costly

synthesis and biological evaluations. On the whole, the results derived from this study could expand the

understanding of benzoxazole derivatives as anticancer agents and would be of great help in lead

optimization for early drug discovery of highly potent anticancer activity targeting VEGFR-2.
1. Introduction

In vertebrates, many physiological processes including
embryogenesis, organ development, estrus, and wound healing
require vascular growth and remodeling.1–3 Furthermore,
several diseases such as tumor growth, metastasis, psoriasis,
rheumatoid arthritis, macular degeneration and retinopathy are
closely related to angiogenesis.4–7 Activation of tumor angio-
genesis originates from the imbalance between pro-
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angiogenesis and anti-angiogenesis factors.8,9 Extensive
studies have been carried out and have discovered several
factors: vascular endothelial growth factor (VEGF), angiopoietin
(Ang), and ephrins. VEGF as a specic endothelial cell growth
factor has been shown to be essential for angiogenesis
cascade.10 Anti-VEGF monoclonal antibodies have been
employed to inhibit the VEGF pathway, which result in inhib-
iting a variety of human tumors.11

Among angiogenic factors, vascular endothelial growth
factor-A (VEGF-A) is involved in the basic signaling of angio-
genesis, especially signals for endothelial cell growth and
survival in vivo.12 And it activates two tyrosine kinase receptors,
VEGFR-1 (Flt-1) and VEGFR-2 (KDR in humans/Flk-1 in mice).13

VEGFR-1 and VEGFR-2 possess different signaling pathways
and functions. VEGFR-1 is mainly responsible for the regulation
of monocyte and macrophage migration, VEGFR-2 is the major
signal transducer for the differentiation of endothelial cells
from precursor mesodermal cells and the growth of endothelial
© 2023 The Author(s). Published by the Royal Society of Chemistry
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cells in early embryogenesis.14 Since VEGFR-2 plays a substan-
tial role in tumor neoangiogenesis, thus it has become an
appropriate target for suppression of solid tumor growth.15

VEGFR-2 including 1356 amino acids in humans can be
divided into 4 domains: the extracellular ligand-binding
domain with seven immunoglobulin (Ig)-like domains, trans-
membrane domain, tyrosine kinase domain with an about 70
amino acids insert and carboxyl terminal domain.16 Studies
have proven that VEGFR-2 can bind all VEGF-A isoforms, further
induce a cascade of different signaling pathways. The dimer-
ization of the receptor and the autophosphorylation of the
intracellular tyrosine kinase domain result in the simultaneous
activation of PLC-g-Raf kinase-MEK-MAP kinase and PI3K-AKT
pathways, leading to following cellular proliferation and
endothelial-cell survival. Therefore, specic inhibitors binding
with the different domains of VEGFR-2 would be employed for
the treatment of cancers.17,18

In the early years, a rat mAb named DC101 was developed
against VEGFR-2, whichmainly interferes the binding of VEGF to
VEGFR-2, and blocks tumor growth in mice.19 However, this
ligand cannot bind the human VEGFR-2, thus limiting its further
development. For this reason, more efforts are devoted to nding
molecules for clinical use,20 for example, ramucirumab (IMC-
1121B) is the only tested in human subjects, which is a novel
human IgG1mAb that would inhibit VEGFR-2 (selectively bind to
the extracellular domain) with IC50 of 0.8–1.0 nM.21,22 Addition-
ally, orally active and small inhibitors of VEGFR-2 have been
studied: phthalazines,23 indolinones,24 quinazolines,25 iso-
thiazoles,25 thienopyridines,26 thiazoles,27 pyridines,28 indoles,29

imidazopyridines,30 benzimidazoles,31 pyrimidines,32 biheter-
oaryls,33 sorafenib,34 sunitinib,34 pazopanib34 and apatinib.35

Some VEGFR-2 inhibitors undergoing clinical evaluation are also
developed, for example, PTK-787,36 SU-11248,37 ZD-6474,25 CP-
547632,38 and CEP-7055.39 Recent paper has found that a series of
benzoxazole derivatives as VEGFR-2 inhibitors exert anticancer
activity against HepG2, HCT-116, and MCF-7 cells. However, the
structure–activity relationship for these inhibitors have not been
performed on these inhibitors.

In the present work, a molecular modeling study combining
three dimensional structure–activity relationship (3D-QSAR),
molecular docking, molecular dynamics (MD), and molecular
mechanics Poisson–Boltzmann surface area (MM-PBSA) were
employed to discover the detailed binding mode of these
inhibitors and identify the key amino acid residues responsible
for inhibition. Finally, the best 3D-QSAR models were thor-
oughly analyzed. The interpretations derived from molecular
docking, MD simulation were compared for model validation.
Overall, this study would offer useful references for the
discovery and design of novel VEGFR-2 inhibitors, and serve as
the approachable end resultant hits that can be applied further
for clinical trials evaluation in cancer.

2. Methods and materials
2.1. Preparation of data set

A series of substituted benzoxazole derivatives as VEGFR-2
inhibitors expressed inhibitory activity (IC50) against the
© 2023 The Author(s). Published by the Royal Society of Chemistry
HepG2, MCF-7, and HCT-116 cell lines were employed for the
current study.40 The inhibitory activities were initially converted
into corresponding pIC50 (−log IC50) values, which have been
used as dependent variables in the 3D-QSAR analyses, as shown
in Table 1. Additionally, to derive the 3D-QSAR models, the
whole data set was divided into the training set for the
construction of CoMFA and CoMSIA models and the test set for
validating the reliability of the model.

According to related ref. 41–43, the following criteria was
considered when selecting the test set (labeled as a in Table 1):
the inhibitory values in the test set should be distributed in
various orders of magnitude in proportion to the whole data
set.

2.2. Molecular modeling and alignment

All structures of inhibitors were constructed using Sybyl-X 1.1
(Tripos Associates, St. Louis, MO). Then, the structures were
optimized using the default Powell method with Gasteiger-
Hückel charge, Tripos force eld,44 the maximum number of
iterations of 1000, and the termination of 0.005 kJ mol−1.
Furthermore, the other parameters were set as default values as
in Sybyl soware.

Molecular alignment is a crucial procedure in building
accurate and reliable 3D-QSAR models.45 Some alignments
approaches have been developed, i.e., rigid body-based,
pharmacophore-based, and docking-based alignment to
understand the effect of different substitutions on the inhibi-
tory activity. In the present work, template ligand-based align-
ment was applied to derive the optimum 3D-QSAR models. In
template ligand-based alignment, compound 11, exhibiting the
highest activity in the whole data set, was selected as the
template compound. The remaining compounds were aligned
by the maximum common substructures (shown in blue in
Fig. 1A). The alignment results of all inhibitors targeted on
HepG2, HCT-116 and MCF-7 are shown in Fig. 1B–D.

2.3 3D-QSAR studies

In this work, CoMFA and CoMSIA methods were employed to
explore the structure–activity relationships of the active inhib-
itors, which can connect different force elds of compounds
with related activity in a quanticational way.46

In CoMFA analysis,47 the steric and electrostatic elds were
computed by Lennard Jones and coulombic potential functions,
respectively. The aligned compounds were placed in the 3D
cubic lattice with a grid spacing of 2 Å. A sp3 carbon atom with
van der Waals radius of 1.52 Å and a charge of +1.0 were used to
derive CoMFA descriptors. In addition, the CoMFA eld was
scaled using the CoMFA-STD method with a default energy of
30 kcal mol−1.

In addition to steric and electrostatic elds, hydrophobic,
hydrogen bond donor and hydrogen bond acceptor elds were
also calculated in the CoMSIA method.48 CoMSIA descriptors
were also derived with the same lattice box as used in CoMFA.
The probe atom possessed a hydrophobicity property of +1, and
hydrogen bond donor and acceptor properties of +1. The
attenuation factor and minimum column ltering was set to 0.3
RSC Adv., 2023, 13, 14808–14824 | 14809
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Table 1 Molecular structures of benzoxazole derivatives and the binding affinity pIC50 values

Compound n R R1 pIC50 (HepG2) pIC50 (HCT-116) pIC50 (MCF-7)

1 1 H H 4.0508 4.3152 4.2278

2 1 H 4.6048a 4.7650a 4.7846a

3 1 H 4.8142 4.7857 4.7375

4 1 CH3 H 4.3496a 4.5955 4.5709
5 2 H H 4.1712 4.2019a 4.1352a

6 2 CH3 H 4.7442 4.5782a 4.4594a

7 1 H 4.8811 4.7368 4.7111

8 1 H 4.8502 4.6828 4.5508

9 2 H 5.2269a 5.1463a 5.0491a

10 2 H 5.058 5.0214 5.0022

11 2 CH3 5.384 5.1593 5.0620

12 2 CH3 5.1818 5.0410 4.9952

13 1 CH3 4.6702 4.5319 4.4342

14 2 H 5.0915 5.1018 4.9097

15 2 CH3 5.0022 4.9038 4.8041

14810 | RSC Adv., 2023, 13, 14808–14824 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 (Contd. )

Compound n R R2 pIC50 (HepG2) pIC50 (HCT-116) pIC50 (MCF-7)

18 1 H 4.3669 4.5018 4.3408

19 1 H 4.3775 4.5158 4.4148

20 1 H 4.1661 4.1880a 4.1236a

21 1 H 4.1311a 4.3363 4.2530

24 1 H — 4.1230 4.1065

25 1 H — 4.1066 4.0898

Compound n R R3 pIC50 (HepG2) pIC50 (HCT-116) pIC50 (MCF-7)

16 1 H 4.4444 4.3458a 4.2608a

17 1 CH3 4.9401a 4.9851 4.8604

22 1 H 4.3143 4.3429 4.3746

23 1 H 4.4407 4.3536 4.3882

a Represents the test set.

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 14808–14824 | 14811
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Fig. 1 (A) Cpd11 is used as a template for alignment. The common substructure is shown in blue. (B) Present the alignment for HepG2
compounds. (C) Present the alignment for HCT-116 compounds. (D) Present the alignment for MCF-7 compounds.
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and 2.0 kcal mol−1, respectively. More importantly, the distance
dependence between the probe atom and each inhibitor atom
was measured by a Gaussian function.49 Compared with CoMFA
method, CoMSIA possesses a good performance in visualization
and explanation of the contained correlations in terms of eld
contributions.50
2.4 Partial least-squares (PLS) analysis

PLS regression analysis was applied to build statistically
signicant 3D-QSAR models, which establish correlations
between the CoMFA/CoMSIA descriptors and inhibitory activi-
ties, as independent and dependent variables, respectively.
Initially, the cross-validation using leave-one-out (LOO) method
was performed to evaluate the reliability of the constructed
models, resulting in the optimum number of components
(ONC), the cross-validated correlation coefficient (Rcv

2) and the
standard predicted errors (SEP). The Rcv

2 is computed with
equation:

RCV
2 ¼ 1�

P�
Ypred � Yexp

�2

P�
Yexp � Ymean

�2 (1)

where Ypred, Yexp and Ymean represent the predicted activity, the
experimental activity and the mean activity, respectively.

Then, non-cross-validation analysis was performed using the
derived ONC to generate the nal PLS regression models with
the conventional correlation coefficient (Rncv

2), standard error
of estimation (SEE) and the F values calculated.
14812 | RSC Adv., 2023, 13, 14808–14824
2.5 3D-QSAR model validation

The robustness and statistical signicance of the 3D-QSAR
models was evaluated with the test set inhibitors.51 The inhib-
itory activities of the test set were predicted based on the
derived models and the predictive correlation coefficient
(Rpred

2) is computed using the following equations:

Rpred
2 ¼ 1� PRESS

SD
(2)

PRESS =
P

(Yexp − Ypred)
2 (3)

SD =
P

(Yexp − Ymean)
2 (4)

where the PRESS is the sum of squared deviation between the
experimental activity and the predicted activity of each inhibitor
in the test set; SD is the sum of the squared deviations between
the inhibitory activities of the test set and the mean activities of
the training set.
2.6 Molecular docking

The crystal structure of VEGFR-2 in complex with a novel 4-
amino-furo[2,3-d]pyrimidine (PDB ID: 1YWN) obtained from
the RCSB Protein Data Bank (https://doi.org/10.2210/pdb1YWN/
pdb) was employed for molecular docking with AutoDock
soware (version 4).52 Prior to molecular docking, all the
hetero-atoms including co-crystallized ligand as well as water
molecules and ions were rstly removed from the protein. Polar
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.2210/pdb1YWN/pdb
https://doi.org/10.2210/pdb1YWN/pdb
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra01316b


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 7
:5

3:
44

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
hydrogen atoms and Gasteiger charges were added to the
receptor. In addition, the inhibitors employed in the present
work were prepared by merging non-polar hydrogens, adding
Gasteiger charges, dening the rotatable bonds, and assigning
AutoDock type.53

The 3D grid box with 60 × 60 × 60 Å grid points with grid
spacing of 0.375 Å was generated using the AutoGrid algorithm
to evaluate inhibitor-receptor interactions energy.54 Addition-
ally, Lamarckian algorithm (LGA) approach was also used to
search for the globally optimized conformations. Each molec-
ular docking procedure was derived from 100 different runs that
were set to terminate aer a maximum of 250 000 energy eval-
uations. Finally, the binding modes with lower binding free
energies were chosen for further analysis.
2.7. Molecular dynamics simulation

The docked complexes VEGFR-2/Cpd11 and VEGFR-2/Cpd15
were used as initial structures for the next MD simulations by
using the AMBER v 20 (PMEMD) with CUDA acceleration by
HPC cluster facility of Warshel Institute for Computational
Biology.55 The parameters for inhibitors Cpd11 and Cpd15 were
generated by Antechamber of Ambertools 21.55,56 The RESP
charges57 and the bond constraints were extracted from
Gaussian 09 by calculating the DFT function of B3LYP/6-
31G**,58,59 and Amber GAFF,60 respectively. In addition, the
AMBER 14SB force eld61 was used for VEGFR-2 receptor. The
topology le of the inhibitor-receptor complexes was retrieved
and the structures were simulated in a periodic solvent TIP3P
box with thickness of 16 Å in layer for each system.62 The total
charge of the systems was then neutralized by adding counter
ions (Na+ and Cl−). Finally, the system of VEGFR-2/Cpd11 and
VEGFR-2/Cpd15 is 82.09 × 86.83 × 86.55 Å3 (50 222 atoms) and
82.09 × 86.83 × 86.54 Å3 (50 218 atoms), respectively.

The solvated systems were then minimized by 10 000 steps to
remove bad contacts between water, ions and the complex
systems. Then, the temperature of the systems were heated
from 0 to 300 K with 50 ps in the NVT ensemble. Furthermore,
the equilibrium simulations at 300 K and 1 atm were incorpo-
rated. A Langevin thermostat was used for temperature control
and the SHAKE algorithm63 was employed for hydrogen bonds,
the detailed setting was as follows: 50 ps of density equilibration
with weak restraints (5 kcal mol−1) on the complex followed by
500 ps of constant pressure (1 atm) equilibration at 300 K at
a time step of 2 fs, the non-bonded cut-off was set to 20.0 Å.
Finally, a 500 ns production run with 3 replicates was conducted
by setting different velocities of random seeds to the equilib-
rium structure. And the trajectories were sampled every 10 ps.
2.8 Binding free energy calculation

MM/PB & GBSA64,65 with MMPBSA.py.MPI66 provided in the
Amber program was employed to calculate the Gibbs binding
free energies (DGbinding) between receptors and inhibitors
(Cpd11, Cpd15), which was computed according to the
following equations:

DGbinding = DGcom − (DGrec + DGlig) (5)
© 2023 The Author(s). Published by the Royal Society of Chemistry
DGcom/rec/lig = DH − TDS (6)

DH = DEgas + DGsol (7)

DEgas = DEint + DEvdw + DEele (8)

DGsol = DGPB/GB + DGNP (9)

DGNP = gSASA + b (10)

where DGcom, DGrec and DGlig is the free energy of the complex,
the receptor and the ligand, respectively. Each of the term
(DGcom/rec/lig) represents the discrepancy between enthalpy
contribution (DH) and the conformational entropy (TDS). T and
DS is the temperature of the simulated environment and the
entropy of the molecule, respectively.64 The enthalpy (DH)
includes the internal energy from gas phas (DEgas) and the
solvation free energy (DGsol). DEgas is the interaction energy
between the receptor and inhibitor in the gas phase, which
consists of DEint (internal energy), DEvdw (van der Waals inter-
actions), and DEele (electrostatic energies). Since complex MD
simulations are only performed here, the DEint to the binding
free energy is zero. DGsols the solvation energy is the sum of
DGNP (non-polar energy) and DGPB/GB (electrostatic energy).
DGPB is calculated from Poisson-Boltzmann function with the
default cavity radii from AMBER pomtop les. While theDGGB is
an alternative part for DGGB which uses Hawkins, Cramer, and
Truhlar pairwise generalized Born model67,68 with the parame-
ters described by Tsui and Case.69 The SASA (solvent accessible
surface area) is calculated by the LCPO approach.70 The g

(0.00542 kcal mol−1 × Å2) and b (0.92 kcal mol−1) are taken
from a linear regression of the solvation free energy.71,72
3. Results and discussion
3.1. 3D-QSAR analysis

In the present work, template ligand-based alignment was
carried out in both CoMFA and CoMSIA analyses. All combi-
nations of different elds (Tables S1–S3†) were tried to produce
the optimal model, which would be evaluated by some signi-
cant parameters, including the cross-validated correlation
coefficient (Rcv

2), the conventional correlation coefficient
(Rncv

2), the standard error of estimation (SEE), standard error of
prediction (SEP) and F values. Furthermore, the optimal CoMFA
and CoMSIA models are summarized in Table 2.

3.1.1. 3D-QSAR results for HepG2. The statistical results
(Table 2) obtained aer PLS regression analysis for CoMFA and
CoMSIA models (HepG2) were recorded to evaluate the reli-
ability of the developed models.

In case of CoMFAHepG2, the cross-validated correlation
coefficients Rcv

2 and the regression coefficient Rncv
2 for the

training set are 0.509 and 0.904 with optimal principal
component Nc of 3, standard error of estimation SEE of 0.134,
and F value of 44.077. Furthermore, the relative contributions of
steric and electrostatic eld of the CoMFA model are 72.9% and
27.1%, respectively, indicating that the steric eld has higher
impact on the inhibitory activity to HepG2 cell line than
RSC Adv., 2023, 13, 14808–14824 | 14813
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Table 2 Summary of the results of CoMFA and CoMSIA analysesa

Parameters

HepG2 HCT-116 MCF-7

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

Rcv
2 0.509 0.711 0.574 0.531 0.568 0.669

Rncv
2 0.904 0.865 0.746 0.984 0.755 0.981

SEE 0.134 0.153 0.171 0.047 0.157 0.048
F 44.077 48.191 49.903 218.135 52.355 179.713
Rpred

2 0.5128 0.6198 0.5597 0.5804 0.5057 0.6577
SEP 0.302 0.224 0.222 0.256 0.209 0.255
Nc 3 2 1 4 1 4

Field contribution
S 0.729 0.262 0.623 — 0.623 —
E 0.271 — 0.377 0.375 0.377 0.372
H — — — — — —
D — 0.738 — 0.625 — 0.628
A — — — — — —

a Rcv
2 = cross-validated correlation coefficient using the leave-one-out

methods; Rncv
2 = conventional correlation coefficient; SEE = standard

error of estimate; F = ratio of Rncv
2 explained to unexplained = Rncv

2/
(1 − Rncv

2); Rpred
2 = predicted correlation coefficient for the test set of

compounds; SEP = standard error of prediction; Nc = optimal
number of principal components.
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electrostatic eld. Overall, the parameters derived from the
CoMFA model suggest the reliability of this model. Besides, the
test set inhibitors were also employed to validate the CoMFA
model, and the predicted correlation coefficient Rpred

2 of 0.5128
suggests that the model is strong enough to t new observa-
tions. The plot of experimental against calculated values of
inhibitory activity by the CoMFA model is listed in Fig. 2A. As
shown in this gure, most points are equally dispersed anong
the line y = x, further demonstrating the good quality of the
CoMFA model.

The best CoMSIAHepG2 model was obtained using a combina-
tion of steric and hydrogen bond donor elds. The CoMSIAmodel
has a cross-validated correlation coefficient Rcv

2 of 0.711 with 2
optimal components. PLS analysis with non-cross-validation
method gives Rncv

2 of 0.865, F value of 48.191, and a SEE value
of 0.153. The CoMSIA model also has a predicted correlation
coefficient Rpred

2 of 0.6198 which is higher than 0.5, indicating
a good external predictive ability of this model. Additionally, the
contributions of the steric and hydrogen bond donor elds are
26.2% and 73.8%, respectively, suggesting that the contribution of
the hydrogen bond donor is predominant in the CoMSIA model.
Fig. 2B shows predicted and experimental activities of training and
test set compounds using the CoMSIA model.

3.1.2. 3D-QSAR results for HCT-116. In the CoMFAHCT-116

model, the cross-validated correlation coefficients Rcv
2 and

optimal number of components Nc are 0.574 and 1, respec-
tively, which indicate that the model has good internal predic-
tive ability. The non-cross-validated correlation Rncv

2, the
standard error of estimation SEE, and F value of the model are
0.746, 0.171, and 49.903, respectively, indicating that the model
has good tting. The contribution rates of the steric and elec-
trostatic elds of the model is 62.3% and 37.7%, respectively,
which shows that the steric has more signicant impact on the
14814 | RSC Adv., 2023, 13, 14808–14824
inhibitory activity. The external validation results shows that
the predicted correlation coefficient Rpred

2 is 0.5597, and the
plot of the predicted versus the experimental values is shown in
Fig. 2C, which demonstrate that the model has good external
predictive ability.

The best CoMSIAHCT-116 model (combination of electrostatic
and hydrogen bond donor elds) gives an Rcv

2 of 0.531, Rncv
2 of

0.984, SEE of 0.047, Nc of 4, F value of 218.135, indicating that
the model had good tting ability and predictive ability. The
proportions of electrostatic and hydrogen bond donor contri-
butions account for 37.5% and 62.5%, respectively, indicating
that the hydrogen bond donor distribution of the group has
more effect on the activity of HCT-116. The activity of the test set
compounds were also predicted to verify the accuracy of the
model. Through PLS analysis, the external predicted correlation
coefficient Rpred

2 is 0.5804, which suggests the derived model
possesses good external prediction ability of the 3D-QSAR
model. Fig. 2D indicates a strong linear association between
the predicted pIC50 values and those observed.

3.1.3. 3D-QSAR results for MCF-7. The results of CoM-
FAMCF-7 studies are listed in Table 2. The optimum number of
components Nc for CoMFA model is one, which were calculated
by selecting the highest Rcv

2 value. The generated CoMFAmodel
illustrates an Rcv

2 value of 0.568 with a Nc value of 1, Rncv
2 of

0.755, SEE of 0.157, and F value of 52.355. The contribution of
the elds are 62.3% of the steric eld and 37.7% of the elec-
trostatic eld. It is found that the steric eld plays more
important role in the CoMFA model. In addition, the CoMFA
model has a statistically signicant effect on the capability in
predicting the activity. Fig. 2E indicates that the actual and
predicted activities of the training and test set compounds
possess strong linear correlations. The Rpred

2 value of the
CoMFA model is 0.5057, further indicating the external
predictive capability.

The optimal CoMSIAMCF-7 model was constructed by using
different combinations of steric, electrostatic, hydrophobic,
hydrogen bond donor, and acceptor elds. Finally, CoMSIA-ED
model gives signicant results with Rcv

2 of 0.669, Nc of 4, Rncv
2

of 0.981, SEE of 0.048, and F of 179.713. The contributions of
electrostatic and hydrogen bond donor elds are 37.2% and
62.8%, respectively, which suggest that the hydrogen bond
donor descriptor has more impact on compounds' inhibitory
activities than electrostatic eld. The above statistical values
suggest that the developed CoMSIA model is satisfactory.
Additionally, to further validate the model's predictive ability,
the activities of the test set compounds were predicted (shown
in Table 2). The CoMSIAmodel exhibits excellent result in terms
of predictive correlation coefficient Rpred

2 of 0.6577. Fig. 2F
depicts the relationship between the observed and predicted
activities for the CoMSIA model, suggesting that the predicted
values are in agreement with the experimental values in the
allowable error range.
3.2. Contour maps

The results of 3D-QSAR models were graphically represented by
contour maps using the eld type ‘StDev*Coeff’. In order to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Graphs of the predicted versus the experimental pIC50 values of the optimal models for (A) CoMFA model for HepG2. (B) CoMSIA model
for HepG2. (C) CoMFA model for HCT-116. (D) CoMSIA model for HCT-116. (E) CoMFA model for MCF-7. (F) CoMSIA model for MCF-7.
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facilitate the contour map analysis, the most potent Cpd11 was
chosen as the reference in the 3D coefficient contour maps.
Furthermore, a default value of 80% contribution for favored
regions was dened to visualize the contour maps, while the
disfavored regions was 20%.
© 2023 The Author(s). Published by the Royal Society of Chemistry
3.2.1. Contour maps for HepG2. Fig. 3 displays the steric
and electrostatic contour maps of the CoMFA model. The steric
eld is presented in green and yellow contour maps, and the
electrostatic eld is show in blue and red contour maps.
RSC Adv., 2023, 13, 14808–14824 | 14815
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Fig. 3 CoMFA StDev*Coeff contour plots for HepG2 compounds in combination of Cpd11. (A) The steric contour map, where the green and
yellow contours represent 80% and 20% level contributions, respectively. (B) The electrostatic contour map, where the blue and red contours
represent 80% and 20% level contributions, respectively.
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For the CoMFA steric eld (Fig. 3A), a green contour map is
observed around R1 substituent, suggesting that bulky substi-
tution in this area is favorable for the inhibitory activity. This
explains the lower activity of Cpd06 (pIC50 = 4.7442) with –H

group when compared to Cpd11 (pIC50 = 5.384) with

group. In addition, there is also a larger yellow contour map is
observed around the above green map, indicating that the size
of the substituent at this place needs to be carefully selected. A
yellow contour map covering the R substituent indicates that
a small group in this region generally gets better inhibitory
activity. This is in good agreement with the experimental data,
for example, Cpd14 (R = H) > Cpd15 (R = CH3).

Fig. 3B shows the CoMFA electrostatic eld contour map.
There is a red contourmap located in the R1 position, indicating
that compounds with electronegative groups are benecial for

inhibitory activity, as observed from Cpd02 ( ), Cpd03

( ) > Cpd01 (H). Several blue contour maps are located

around group, suggesting that the introduction of

electropositive moieties into this position would be of benet to
activity. For the most active Cpd11, the substituents here can be
modied to improve its activity.

The contour maps of CoMSIA steric eld are shown in
Fig. 4A, which are found to be quite similar to the contour maps
derived from the CoMFA model, thus are not discussed here.
Fig. 4 CoMSIA StDev*Coeff contour plots for HepG2 compounds in co
yellow contours represent 80% and 20% level contributions, respectively.
contours represent 80% and 20% level contributions, respectively.

14816 | RSC Adv., 2023, 13, 14808–14824
In hydrogen bond donor contour map of CoMSIA (Fig. 4B),
only purple contours and one cyan contour are discovered,
illustrating that the hydrogen bond acceptor property is crucial
for the inhibitory activity. In addition, the purple contour maps
are mainly distributed at the nitrogen atom of the common
skeleton and Region A, indicating that the atoms at these
positions would act as hydrogen bond acceptors to interact
favorably with the receptor. A cyan contour map is involved in
the –NH group of Region A, indicating that a hydrogen bond
interaction with the receptor (acting as a hydrogen bond donor)
favors the activity, as is the case with Cpd16 and Cpd22. The
activity of Cpd16 (pIC50 = 4.4444) is higher than that of Cpd22
(pIC50 = 4.3143).

3.2.2. Contour maps for HCT-116. As shown in Fig. 5A,
sterically benecial and detrimental interactions are displayed
as green and yellow contours, respectively. A small green poly-
hedron on R substitution indicates that bulky groups in this
position could improve the activity. Different activities of Cpd01
and Cpd04 (Cpd01 pIC50 = 4.3152, Cpd04 pIC50 = 4.5955) are
probably caused by the presence of larger group (CH3) in Cpd04
than Cpd01 (H). Similarly, the activity of Cpd06 (pIC50 = 4.5782)
is higher than that of Cpd05 (pIC50 = 4.2019) because the –CH3

at this position in Cpd06 is larger than that of the –H in Cpd05.
A large green contour appeared near R1, which indicates that
adding substituents at this area might increase the activity, for

example, Cpd03 ( ) > Cpd02 ( ), Cpd19 ( ) >

Cpd18 ( ).
mbination of Cpd11. (A) The steric contour map, where the green and
(B) The hydrogen bond donor contour map, where the cyan and purple

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 CoMFA StDev*Coeff contour plots for HCT-116 compounds in combination of Cpd11. (A) The steric contour map, where the green and
yellow contours represent 70% and 30% level contributions, respectively. (B) The electrostatic contour map, where the blue and red contours
represent 80% and 20% level contributions, respectively.
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For CoMFA-electrostatic map in Fig. 5B, blue and red
contours represent regions where electron positive and electron
negative groups would increase the activity, respectively. There
is red contour near R1 substituent, where electropositive occu-
pation will enhance the activity. This can explain well why
Cpd18 (pIC50 = 4.5018) has lower activity than Cpd19 (pIC50 =

4.5158). The red contour map near R position indicates that
groups with negative charges may increase the activity. Aer
analysis, it is found that all the compounds used in the present
work are positively charged groups. Therefore, it can be modi-
ed to improve the activity. Furthermore, some blue contour
maps are situated around Region A, thereby indicate the exis-
tence of electropositive groups in this region would improve the
activity. Therefore, modications can be made for Cpd11 at this
position to improve the activity.

The electrostatic eld of CoMSIA model (Fig. 6A) is similar to
that of CoMFA model, for example: a red contour map at R1

substituent, a blue contour at Region A. However, the difference
is that the red contour map at R substituent disappears.

The contour maps of the CoMSIA hydrogen bond donor eld
are shown in Fig. 6B. There is a purple contour at the sulfur
Fig. 6 CoMSIA StDev*Coeff contour plots for HCT-116 compounds in co
and red contours represent 80% and 20% level contributions, respectiv
purple contours represent 80% and 20% level contributions, respectively

© 2023 The Author(s). Published by the Royal Society of Chemistry
atom of the common skeleton, which indicate hydrogen bond
acceptor substituents here would increase the activity. It is also
noted a cyan contour map appeared near the –NH of Region A,
suggesting hydrogen bond donor in this position is important
to the activity. This result can be explained by the Cpd11 and
Cpd06 (pIC50 = 5.1593 for Cpd11, pIC50 = 4.5782 for Cpd06).

3.2.3. Contour maps for MCF-7. The steric contour map of
CoMFA is displayed in Fig. 7A. A small green contour is near R
position of the template molecule, indicating that introducing
bulky atoms on this position can improve the activity. This can
be illustrated by the fact that Cpd04 with –CH3 at this position
shows higher activity than the corresponding Cpd01 with –H at
this site. This phenomenon is also consistent with Cpd06 (R =

CH3, pIC50 = 4.4594) and Cpd05 (R = H, pIC50 = 4.1352).
Another big green contour map near R1 substituent suggests
that bulky groups would enhance the inhibitory potency. This
nding is consistent with the fact that Cpd19 bearing larger

group ( ) exhibits higher value than Cpd18 ( ).

The contour map of the electrostatic eld in Fig. 7B shows
a red contour map around R substituent, which indicate that
mbination of Cpd11. (A) The electrostatic contour map, where the blue
ely. (B) The hydrogen bond donor contour map, where the cyan and
.

RSC Adv., 2023, 13, 14808–14824 | 14817
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Fig. 7 CoMFA StDev*Coeff contour plots for MCF-7 compounds in combination of Cpd11. (A) The steric contour map, where the green and
yellow contours represent 70% and 30% level contributions, respectively. (B) The electrostatic contour map, where the blue and red contours
represent 80% and 20% level contributions, respectively.
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electronegative groups at this location are favorable for the
activity. However, all compounds possess positively charged
groups here, therefore, it can be electrically modied to improve
the activity. On the other, another red contour map is observed
near R1 group, it results that the introduction of electronegative
group in this region favors the inhibitory activity. Therefore, the
higher activity observed in Cpd19 than Cpd18may be explained
by the presence of electronegative group –Cl at this position. In
addition, around Region A, several blue contour maps are
observed, indicating that electropositive substituents would
enhance the inhibitory activity, therefore, modications can be
made to this substitution.

The electrostatic CoMSIA contour (Fig. 8A) is somewhat
similar as the CoMFA contour. Therefore, it is no reason to
describe it here as it is already explained in detail during
CoMFA contour analysis. Here, we mainly focus on the
hydrogen bond donor eld.

The CoMSIA hydrogen bond donor contour maps are shown
in Fig. 8B. A purple contour is appeared at the sulfur atom of the
common skeleton, signifying that the hydrogen bond acceptor
substituent would increase the activity. Moreover, two cyan
Fig. 8 CoMSIA StDev*Coeff contour plots for MCF-7 compounds in com
and red contours represent 80% and 20% level contributions, respectiv
purple contours represent 80% and 20% level contributions, respectively

14818 | RSC Adv., 2023, 13, 14808–14824
contour maps near the –NH group of Region A indicate that
hydrogen bond donor groups are preferred at this position.
Thus, Cpd09, Cpd10, Cpd11 with hydrogen bond donor groups
are more active than Cpd06.

3.3. Molecular docking studies

To validate the accuracy of molecular docking, the co-
crystallized ligand of the protein was extracted and re-docked
into the same binding site of the receptor. The conformation
with lowest energy and the co-crystallized ligand were super-
imposed, as shown in Fig. 9, and the RMSD value is 0.863 Å,
which is within the reliable range of 2 Å,73 illustrating that the
docking procedure is rational. Although small rotation angle is
presented, the binding site is same for the re-docked compound
and the original structure. In addition, cross-docking with other
VEGFR-2 structures 3VO3 was also done on Cpd11, the docked
structures of 1YWN-Cpd11 and 3VO3-Cpd11 are aligned
together to compare (Fig. S1†), the RMSD value is 0.324 Å and
we nd that the two docking structures are located at the same
binding site, and the conformations are slightly different,
further validating the reliability of molecular docking.
bination of Cpd11. (A) The electrostatic contour map, where the blue
ely. (B) The hydrogen bond donor contour map, where the cyan and
.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Re-docking pose and the crystal ligand (cyan = docked, green
= original).
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Therefore, the relevant settings were employed for docking the
most active Cpd11 and the lowest active Cpd15 into the binding
pocket of VEGFR-2 to evaluate the detailed binding mode of this
series of benzoxazole derivatives into the active site of VEGFR-2.

Fig. 10A shows the binding environment of Cpd11 in VEGFR-
2, which is surrounded by Leu35, Gly36, Val43, Ala61, Val62,
Lys63, Glu80, Ile83, Leu84, Ile87, Val93, Val94, Phe113, Cys114,
Lys115, Phe116, Gly117, Asn118, Leu164, His171, Ile189,
Cys190, Asp191, and Phe192. As seen in Fig. 10B, the –NH group
in Region A that acts as a hydrogen bond donor, forms
a hydrogen bond with the backbone of Asp191 (–O/HN, 2.19 Å,
143.1°) (H-1). Furthermore, the backbones of Lys63, which act
as hydrogen bond donors and form hydrogen bonds with the –

SO group at Region A (–O/HN, 2.89 Å, 70.8°) (H-2), (–O/HN,
2.29 Å, 105.3°) (H-3). In addition, the cyan and purple contour
maps from the above CoMSIA models (Fig. 4B, 6B and 8B) are
fallen in this region, thus, the obtained results from molecular
docking and QSAR models are harmonious. It also reveals that
the groups at Region A are signicant for the activity of VEGFR-2
inhibitors, and agree with the higher inhibitory activity of some
inhibitors.

It can be seen from Fig. 10A that the R1 substituent is
anchored in a bulky and electropositive pocket made by Ile83,
Fig. 10 (A) The residues in VEGFR-2 active site around Cpd11. (B) The
hydrogen bonds are shown as dotted black lines, and the nonpolar hydr

© 2023 The Author(s). Published by the Royal Society of Chemistry
Leu84, Ile87, Leu164 and His171, suggesting that large and
electronegative groups are favorable in the site. This is in
consistent with the positioned green and red contour maps
(Fig. 3, 5 and 7). Additionally, the substituent at Region A is
adjacent to amino acid residues Glu80, Val94, and Asp191,
which indicates that electropositive groups are favored in this
direction. This result is in concordance with the CoMFA results
for electrostatic interactions shown in Fig. 3B, 5B and 7B.

The interactions between Cpd15 and the active site of
VEGFR-2 are depicted in Fig. 11. The Cpd15 is surrounded by
amino acid residues Met1, Cys12, Val43, Ala61, Val62, Lys63,
Ser79, Glu80, Ile83, Leu84, Ile87, Val93, Val94, Val109, Ile110,
Val111, Leu164, Cys169, Ile170, His171, Arg172, Ile189, Cys190,
Asp191 and Phe192. Furthermore, the ligand is docked into the
binding pocket via two hydrogen bonds and one arene–cation
interaction. The hydrogen bond distances are observed to be
2.13 Å (Met1-NH/O]) (H-1), and 2.64 Å (Met1-NH/O]) (H-2).
The arene–cation interaction is observed between Lys63 and the
benzene ring and ve-membered heterocyclic ring at the
common skeleton. Analyses show that Cpd15 possess several
interactional amino acids as Cpd11, but different residues are
also exist, especially residues Lys63, Glu80, and Asp191, which
can interact with Cpd11 via hydrogen bond interactions,
affecting the inhibitory activity of this series of inhibitors from
the eld distributions in the CoMSIA models. This is the reason
why Cpd11 has higher activity than Cpd15.

On the other hand, to explore the detailed binding modes
between the receptor VEGFR-2 and the inhibitors in the
aqueous solution, MD simulations were carried out to describe
the most active and least active inhibitors during the dynamic
binding process.

3.4. MD simulations

Two docked complexes (VEGFR-2/Cpd11 and VEGFR-2/Cpd15)
were performed with MD simulations to examine the reliability
of the molecular docking process, and in turn to gain insights
into the stability and dynamics of the systems.

3.4.1 Plasticity of the MD systems. The resilience of the
receptor and the inhibitors were investigated by calculating the
enlargement for Cpd11 in the binding site, which is displayed in stick,
ogens were removed for clarity.

RSC Adv., 2023, 13, 14808–14824 | 14819
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Fig. 11 (A) The residues in VEGFR-2 active site around Cpd15. (B) The enlargement for Cpd15 in the binding site, which is displayed in stick,
hydrogen bonds are shown as dotted black lines, and the nonpolar hydrogens were removed for clarity.
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Root Mean Square Deviation (RMSD) of the backbone atoms
(Ca, N, O, C) and the heavy atoms of the docked ligands from
the production phase trajectories by using Gromacs v 5.11.74

The RMSD of each inhibitor and the VEGFR-2 receptor is
depicted in Fig. 12. The curve shows that the VEGFR-2 protein in
the Cpd15 is more volatile throughout the MD simulation than
that in the Cpd11. Additionally, the RMSD of Cpd11 is slightly
lower than Cpd15. In run2 of the VEGFR-2/Cpd15 system, the
RMSD value drops sharply, and then go up sharply in run3,
indicating that the Cpd11 binds more stable to VEGFR-2 than
Cpd15. In addition, the change of the secondary structure of
VEGFR-2/Cpd11 and VEGFR-2/Cpd15 with the simulation time
is shown in Fig. 13, different colors are used to represent the
secondary structure.75 From this gure, we can see that the
secondary structures has been stable for the two systems.

Additionally, the Root Mean Square Fluctuation (RMSF) of
the backbone atoms that were summarized to exhibit the
contribution on the residue-level. The trajectories were aligned
by the Ca atoms of the starting structures of MD simulations
beforehand to eliminate the rotation and transitions of the
whole systems. The detailed analysis of RMSF of VEGFR-2
residues for the two MD systems are shown in Fig. 11. Firstly,
Fig. 12 The RMSD of the backbone atoms relative to the docking structu
The three replicates of VEGFR-2/Cpd15.

14820 | RSC Adv., 2023, 13, 14808–14824
the N-terminal of the protein is also seen large uctuation for
both systems at residues (7.28 ± 3.22 Å), this might because the
truncation effect of recombinant protein itself. Secondly, the
second largest uctuation area locates in the exible loop,
Thr154 to Ser166 of domain II (6.87 ± 2.18 Å for VEGFR-2/
Cpd11, 5.24 ± 1.25 Å for VEGFR-2/Cpd15). It is because of the
missing 12 residues in the original crystal structure. Thirdly, the
ligand binding domain (LBD) of Cpd11 containing system
uctuated lower (0.89 ± 0.14 Å) than that in Cpd15 system (1.23
± 0.34 Å), which also suggesting the binding of Cpd15 is not as
stable as that of Cpd11 (Fig. 14).

3.4.2 MM/PB & GBSA analysis. Moreover, to gain insights
into the interactions between inhibitors and receptor VEGFR-2,
the binding free energy of VEGFR-2-Cpd11/15 was elaborately
calculated by MM/PBSA & GBSA. The snapshots extracted from
the most stable trajectories were used in these calculations.

The results of binding free energy using MM-GBSA and MM-
PBSA method are shown in Table S4.† The calculated binding
free energy for Cpd11 and Cpd15 is −27.16 kcal mol−1 and
−1.99 kcal mol−1, respectively for GBSA, and −7.87 kcal mol−1,
14.08 kcal mol−1 for PBSA (Table S1†). These total free energies
indicate that Cpd11 is quite a better ligand for VEGFR-2
res as function of time. (A) The three replicates of VEGFR-2/Cpd11. (B)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Secondary structures as a function of time for VEGFR-2-Cpd11 and VEGFR-2-Cpd15.
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compared to Cpd15. Indeed, the ranking of the binding free
energies of the two compounds are consistent with the pre-
dicted ranking that was calculated from the developed 3D-QSAR
models, which further validated the reliability of the con-
structed models. It can be seen from the binding free energy
components that the van der Waals and electrostatic interac-
tions in the gas phase are the pivotal contributions for the
inhibitor binding. On the other hand, the solvation energy
(DELTA G solv) calculated from both GB and PB contributes
negatively to the total binding affinity (131.84 kcal mol−1 and
54.82 kcal mol−1 for Cpd11, and 151.13 kcal mol−1 and
70.89 kcal mol−1 for Cpd15 respectively), illustrating that the
solvation energies are unfavorable for stabilizing the binding of
the two compounds. It might because of the large volume of the
binding pocket that exposes to the massive solvent. Interest-
ingly, the entropy contribution of the two systems are similar
(29.23 kcal mol−1 for Cpd11, and 29.16 kcal mol−1 for Cpd15),
owing to the similar size of the two compounds.

3.4.3 Binding free energy decomposition. To get the
detailed effects of individual residues on binding affinity of the
simulated systems, the binding free energy (GBSA) was
decomposed to the contributions of residues (Fig. 12). For
Fig. 14 The RMSF plot of the protein twoMD systems (residue number
are ranging from 1 to 310). Replicate trajectories of the same system
are combined.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Cpd11, major favorable energy contributions are originated
predominantly locating at Leu35, Val43, Lys63, Leu84, Gly117,
Leu180 and Asp191, while Met1, Leu84 and Arg172 as favorable
contributions can be detected in the binding of Cpd15. Notably,
the residue Glu80 has negative effect on the binding in Cpd15,
suggesting that the structure of Cpd15 can still be altered at the
R1 part to improve the activity (Fig. 15).

3.4.4 Comparison with previous work. For this series of
VEGFR-2 inhibitors, to our best knowledge, no corresponding
3D-QSAR models have been conducted on them. Only El-Adl
et al. employed molecular docking for this series of
compounds to assess the binding pattern and affinity toward
the VEGFR-2 active site, but the analysis is simple. Furthermore,
no MD simulations have been used to study this series of
VEGFR-2 inhibitors, which would provide the inhibitor-receptor
interactions more precisely. Overall, the ow of computational
calculation employed in the manuscript are carried out for the
rst time.

3.4.5 Design of new compounds. Based on the above 3D-
QSAR analyses, the binding conformations of molecular dock-
ing and the binding free energies, new VEGFR-2 inhibitors were
designed, shown in Table 3. And the inhibitory activities were
predicted by the developed CoMSIA (HepG2), CoMFA (HCT-
116), and CoMSIA (MCF-7) models. The structure–activity rela-
tionship indicates that Region A of Cpd11 is mainly responsible
for the hydrogen bond interactions with the receptor, so this
group is kept. Therefore, the alteration is mainly focused on the
R and R1 substituents. Based on the contour maps, small
substituent for HepG2, bulky and electronegative groups for
HCT-116 and MCF-7 at R substituent are favorable for the
activity, thus –Cl, –OCH3 and –NH2 groups are introduced to
this region. In addition, large and electronegative groups at R1

are favored for enhancing the activity, therefore, groups

and are introduced. Additionally, we

nd that the CoMSIA model for HepG2, CoMFA model for HCT-
116, and CoMSIA model for MCF-7 are superior to the other
RSC Adv., 2023, 13, 14808–14824 | 14821
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Fig. 15 Per residue average energy contributions to binding free energy.

Table 3 The structures and predicted activities of novel designed compounds

No R R1 Predicted pIC50 (HepG2) Predicted pIC50 (HCT-116) Predicted pIC50 (MCF-7) Docking scores

D1 –Cl 5.4010 5.1634 5.0912 −10.5 kcal mol−1

D2 –Cl 5.3980 5.2023 5.1011 −9.8 kcal mol−1

D3 –OCH3 5.3975 5.1874 5.0897 −9.3 kcal mol−1

D4 –NH2 5.4062 5.2053 5.0989 −11.7 kcal mol−1
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model, thus these 3D-QSAR models were chosen to predict the
inhibitory activities. Then, the designed compounds are docked
into the active site to the receptor. We nd that D4 exhibits
higher predicted inhibitory activities and docking scores. D4 is

introduced one bulk and electronegative to R1

substituent, one moderate electronegative –NH2 to R substit-
uent, which improve the binding activity, especially the R
substituent form electrostatic interactions with amino acid
residues Lys33 and Lys115. In conclusion, based on the analysis
discussed above, some novel VEGFR-2 inhibitors, especially D4
shows higher predicted binding activity to the receptor VEGFR-
2, further suggesting that the above ndings would provide
useful guidance to rational design novel and potent VEGFR-
2inhibitors.
4. Conclusion

In the present work, the 3D-QSAR study combined with
molecular docking and MD simulations were conducted on
a series of VEGFR-2 inhibitors against HepG2, HCT-116, and
14822 | RSC Adv., 2023, 13, 14808–14824
MCF-7 cell lines. The CoMFA and CoMSIA models possess
excellent internal and external validation. The steric, electro-
static and hydrogen bond donor elds of these models for
different cell lines have been veried that alterations for these
characteristics can affect the inhibitory activity. The developed
models were analyzed to show the effects associated with
position of each group in the ligand, resulting in better insights
for designing novel VEGFR-2 inhibitors. Molecular docking was
used to provide initial conformation for MD simulation, which
help in the investigation on the behavior of the inhibitors and
point possible effects that are responsible for the inhibitory
activity. Based on the derived information, a bulky group with
higher electron-withdrawing ability at the R1 position, minor
group at R position, and electron-donating ability and hydrogen
bond donor group at Region A would be favorable for anticancer
activity against HepG-2. In addition, using a bulky group and
electronegative group in R1, bulky and electronegative group in
R, and electropositive and hydrogen bond donor group at
Region A would lead to an increase in inhibition activity for
HCT-116. Furthermore, bulky and electronegative groups at R1

and R, electropositive and hydrogen bond donor groups at
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Region A would be favorable for the activity against MCF-7 cell
line. The powerful approaches, including 3D-QSAR studies,
molecular docking and MD simulations led to the design of
inhibitors with enhanced VEGFR-2 inhibitory activities. The
newly designed inhibitors have improved VEGFR-2 inhibitory
activities. Overall, the ndings could represent good drug
candidates for the treatment of cancer.
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