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The challenges associated with photocatalysts including their agglomeration, electron-hole
recombination and limited optoelectronic reactivity to visible light during the photocatalysis of dye-
laden effluent make it necessary to fabricate versatile polymeric composite photocatalysts, and in this
case the incredibly reactive conducting polyaniline can be employed. The selection of polyaniline
among the conducting polymers is based on its proficient functional impacts in composite blends and
proficient synergism with other nanomaterials, especially semiconductor catalysts, resulting in a high
photocatalytic performance for the degradation of dyes. However, the impacts of PANI in the
composite matrix, which result in the desired photocatalytic activities, can only be assessed using
multiple characterization techniques, involving both microscopic and spectroscopic assessment. The
characterization results play a significant role in the detection of possible points of agglomeration,
surface tunability and improved reactivity during the fabrication of composites, which are necessary to
improve their performance in the photocatalysis of dyes. Accordingly, studies revealed the functional

impacts of polyaniline in composites including morphological transformation, improved surface
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Accepted 8th May 2023 functionality, reduction in agglomeration and lowered bandgap potential employing different
characterization techniques. In this review, we present the most proficient fabrication techniques
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blending of two or more nanomaterials to form composites with
multiple properties that are required for efficient photon
capture and degradation of dyes in effluents associated with
significant environmental toxicity.”” In this case, materials
such as metals (Fe, Ag, Au, Sn, Wn, Ni, Pb, Co, etc.), metal oxide
semiconductors (TiO,, ZnO, Cu,0, SiO, Nb,Os, Fe,O3, FeO,
WnOs3;, etc.), polymeric materials and other semiconductors
such as graphene oxide, reduced graphene oxide, 2D-hexagonal
boron nitride and carbon-based nanomaterials have been used
independently and blended as nanocomposite
photocatalysts.>*” However, these materials exhibit major
drawbacks of agglomeration, sensitivity to visible light and
frequent electron-hole recombination in single and composite
photocatalysts. Thus, to address these issues, the conducting
polymer polyaniline (PANI) has been incorporated in the
blend.®® Some other examples of conjugated conducting poly-
mers are polyacetylene, polypyrrole, poly(thiophene), poly(para-
phenylene vinylene) and poly(carbazole).'**> Among them, the
recent emphasis on PANI is based on its incredible morpho-
logical, reactive and functional impacts upon its incorporation
in the fabrication of photocatalyst composites, enhancing their
spontaneous degradative activities in the photocatalysis of
recalcitrant dyes, which are present in large quantities in
effluents.” The impacts of PANI in the blend have the potential
of tackling challenges of agglomeration and electron-hole
recombination, which are major setbacks in photocatalysis.>**
Furthermore, the PANI functionally is superior to other con-
ducting polymers due to its unique charge transport dynamics,
which accounts for its high photon-sensitizing impacts, while
equally enhancing the sorption activity on fabricated compos-
ites.’*'* However, accessing the functional impacts of PANI
during the fabrication of composites requires intensive micro-
scopic and spectroscopic elucidation.'®"” A critical investigation
employing microscopic and spectroscopic techniques gives vital
information on the structural, functional, elemental and reac-
tive effects as a result of the incorporation of PANI in the blend.
The obtained information indicates the morphological modifi-
cation and other alterations that influence the electron-hole
recombination and agglomeration during photocatalysis.'®*
Also, the use of multiple microscopic and spectroscopic
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techniques can enable the fabrication of well-engineered pho-
tocatalyst composites with improved and ideal performances in
the dye photocatalytic process. Thus, the informative readouts
from these instruments suggest proficient pathways for the
fabrication of improved photocatalyst composites.'*'” Funda-
mentally, the spectroscopic characterization of fabricated
composites is related to the energy difference between the
molecular energy levels of the composite catalysts under elec-
tromagnetic radiation.”® Alternatively, microscopic character-
ization with emphasis on electron microscopy (EM) provides
vital information on the morphological impact of PANI in
composite catalysts.'®** These instruments enable the investi-
gation of the point of possible set-backs during the fabrication
of composites and the impacts of PANI regarding surface
adjustment, bandgap lowering, surface functionalities and
particle size together with the proficiency of the fabrication
technique, which are vital features of ideal photocatalyst
composites.”*>* Therefore, in this review, we critically investi-
gate the functional impacts of polyaniline in the fabrication of
nanocomposite photocatalyst, their properties and perfor-
mance in dye photocatalysis via instrumental overview.

2 Synthesis and mechanistic action of
PANI composites in dye photocatalysis
2.1 Synthesis mechanism of PANI

Structurally, polyaniline (PANI) consists of a well-ordered
structure of benzoid and quinoid functional groups, which is
commonly synthesized via the oxidative polymerization of
aniline in acid with ammonium persulphate (APS) to form
leucoemeraldine, emeraldine or pernigraniline (Fig. 1).**°
However, among its forms, the emeraldine homopolymer has
the highest electron mobility, exceptional charge transport and
lower band gap during photon irradiation.® The other synthetic
routes for this conducting macromolecule are described in
Fig. 2. Besides oxidative polymerization, Fig. 2 indicates the use
of an electrochemical oxidative route involving the application
of an electrical current on the electrodes in the electrolyte
(aniline in an acidic medium) of the electrothermal set-up.>®
The applied current results in the electrochemical deposition of
monomers on the oxidized positively charged electrode, leading
to the deposition of the polymeric film.>”*® The advantage of
this synthetic technique is its ability to control the desired
parameters such as time, working temperature and solvent
(acid dopant), which influence the morphology of the synthe-
sized polymer.* It should be noted that the choice of dopants
used for the synthesis of this polymer results in a variation in its
yield and electron transport dynamics, and consequently its
conductivity (Fig. 3). In contrast to the above-mentioned route,
the plasma polymerization route is initiated via ionization/
excitement of the monomeric precursor, leading to the effec-
tive collision of monomeric molecules with a plasma-generated
electron from the glow discharge of RF.*® Furthermore, elec-
troless polymerization is similar to the electrochemical process
but its novelty is the use of an electrochemical set-up without
the application of an external potential for the deposition of

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra01243c

Open Access Article. Published on 22 May 2023. Downloaded on 11/6/2025 8:43:17 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

HoN

Ii:' + (NH),S20s _ HA

HA= protonic acid

View Article Online

RSC Advances

Emeraldine salt

NH 5. H,O

Quinoid segments de‘ﬁop‘ng
| % Bipolarons
]\ polarons

Emeraldine base

<<
IS
N
i
A SN
Pernigarniline

Fig.1 Mechanism for the synthesis of PANI.

N ~] “E@gr__, ey

Leucoemeraldine

Synthesis of poiyaniline (PANT)

v

Ammonium per sulphate

N Similar

(’ N Electrode Electrode
HA= protonic acid \ v/ applied potential using
|| platinum of palladium
— 8 electrode | Gas emission
region

Ionic migration

-"

Aniline in HAin

Ice bath+ stirring
Precipitated

polyaniline

Electrodeposition of P ‘Acidified aniline
electrolyte

Fig. 2 Various synthetic routes for polyaniline.

PANI using specified inert electrodes such as platinum or
palladium.*®

Generally, based on instrumental characterization, the
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properties, which suggests its application as a network or poly-
meric support for other materials especially during the fabrica-
tion of composite photocatalysts with desired porosity.*® Also,
the optoelectronic properties of the synthesized PANI are
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Fig. 3 Yield and conductivity of synthesized polyaniline with respect to protonic acid by Motlatle et al.**®.
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reflected in its incredible charge transport dynamics as a result of
the polarons and bipolarons in its polymeric backbone together
with the nitrogen of the protonated imine group.* For instance,
the emeraldine salt exhibits three distinct bands, i.e., a band at
330 nm (7-7c* transitions) and two other bands in the visible
region at 430 nm (7 — polaron band) and 800 nm (polaron —
7*), having photon capture potential in the photocatalysis of
dyes upon irradiation in the UV or visible spectrum.>*

2.2 Photocatalytic mechanism

Generally, photocatalysis is a photon-induced molecular trans-
formation process that occurs at the surface of an excited photo-
active nanomaterial (photocatalyst) that has adsorbed organic
pollutants (e.g:, dye molecules) from the wastewater.>* This process
entails a five-stage mechanism of photon capture, excitation of
electrons from the valence band to the conduction band, genera-
tion of radicals such as hydroxyl radicals ("OH), superoxide radical
anions ("0”7), and hydroperoxyl radicals ("OOH) and radical attack,
leading to the degradation of dye molecules (Fig. 4).***** Polyani-
line and other materials in their pure or composite form follow this
trend of generating radicals upon irradiation to mineralize adsor-
bed dye molecules into CO, and H,0.**

2.3 Fabrication of PANI composite catalysts and mechanism
in the process of dye photocatalysis

The fabrication of various composites of PANI for use in the
photocatalytic degradation of dyes in effluent together with
their merits and limitations is described in Table 1. Studies
have classified nanomaterials that can be combined with PANI
for the fabrication of composite photocatalysts as polymers,
carbon-based materials, metals or metal oxide
semiconductors.***"** Among them, the emphasis on the use of
semiconductors is based on their adsorption capacity, ability to
undergo redox reactions during photoexcitation and morpho-
logical support.** The capture of photons by these photocatalyst
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semiconductors leads to the generation of electron-hole pairs.
However, they exhibit the limitations of electron-hole recom-
bination, agglomeration and large band gap, influencing their
photon capturing ability in the visible region. This has led to
engineered fabrication with PANI to form composites.***

The properties of high charge transport dynamics and elec-
tron delocalization of the polymer lower the bandgap, while
serving as a macrostructural support for semiconductor mate-
rials.**** For instance, as shown in Fig. 4, the fabrication of
composites consisting of PANI and reduced graphene oxide via
in situ polymerization results in unique structural features with
higher adsorption capacity and lower bandgap, hindering
electron-hole recombination. During irradiation, the excited
electron jumps form HOMO to LUMO through m-7* in the
polymer, forming positively charged holes.*** However, due to
the synergistic interaction of the composite constituents, as the
electron returns to the HOMO for recombination, it jumps into
the empty conduction band of the semiconductor, creating
efficient charge separation and impeding electron-hole
recombination.*

2.4 Functional impacts of PANI in the fabricated composite
catalysts

Various pathways have been adopted for the fabrication of
PANI-based composites (Table 1). Consequently, studies
revealed that notable functional impacts arise from the incor-
poration of PANI in the composite blend, which gives the
fabricated composite photocatalyst ideal features. One impor-
tant feature is the decreased agglomeration of the formed
nanoparticles, which is one of the main challenges associated
with the application of photocatalysts in dye photocatalysis.*®
The process of agglomeration of photocatalysts in nano form
(107?) involves the aggregation of the particles up to the point of
adhesion to each other, forming a higher degree of agglomer-
ates as a result of their higher surface energy (Fig. 5).**** This
action limits the penetration of light, which is necessary for

Mechanism of dye degradation
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Fig. 4 Synthesis of PANI composite and mechanism for the degradation of methylene blue dye.
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Table 1 Techniques for the fabrication of polyaniline composite catalysts
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Fabrication technique Description Advantages Limitations Reference
Sonochemical Polymerization of monomer Effective mass transport Requires sophisticated 65
with other materials, reactors
forming a composite under Hight dispersion of particle- Inefficient for large-scale
the impact of acoustic forming composites production
cavitation from ultrasonic Improved homogeneity of Low yield
irradiation the mix
Environmentally friendly The problem of energy
efficiency
Requires no additives
Shorter duration
High energy and pressure
within a short time
In situ Polymerization of monomer Production of composites Complicated steps and 66
blended in a solution with with higher interfacial techniques
another nanomaterial strengths
simultaneously Occurrence of simultaneous Difficulty in knowing the
polymerization and yield of PANI after
composite fabrication polymerization
Sol-gel It is a two-stage sequential Simple May require a toxic organic 67
process involving the solvent
formation of the colloidal Cost-effective Long duration
solution by hydrolysis (sol) Production of high-purity Possibility of contraction of
before gelation (gel) grade material material during processing
Residual hydroxyl of carbon
group
Emulsion and inverse Incorporation of surfactant Ability to control size and Requires a large amount of 68
emulsion to form micelles on the structure by different surfactants
surface of the nanomaterial surfactants
before polymerization with Synthesis of stabilized Not suitable for materials
the monomer, while inverse composites with a high melting point
emulsion involves Formation of low viscous
emulsification of monomer materials
using a nonpolar organic Simple
solvent Low energy cost
Mixing This is an ex situ Simple and direct Requires solvent 69
polymerization approach Cost-effective Difficult in solvent removal
involving the physical Ability to control the process Possibility of solvent
blending of materials via contamination
solvent with polymer Weak phase interaction
solution under mechanical
agitation
Hydrothermal Synthesis of polymeric Versatile in the synthesis of High energy consumption 66
composites through unstable materials
hydrolysis reactions at high Synthesis of high composite High equipment cost
temperatures of the various material
compounds directly in an
autoclave
Electrospinning It is electrostatic spinning Very efficient for nanofibre Requires high voltage 70
involving the extrusion of Simple
microfibre composites Cost-effective
through a micro-syringe Adjustable fiber diameter
pump or spinneret in the
presence of an applied
voltage
Chemical vapour deposition It involves the collaborative Very effective in the Long duration 71

formation of composites by
combining the organic
synthesis of polymers in the
liquid phase with the
formation of a coating by
other materials forming
composites in the vapour
phase

formation of thin films
Polymeric composites
formed are free coatings
High deposition rate
Forms composites with
appreciable mechanical
strength
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Fig. 5 Mechanism of aggregation of TiO, and its interaction with
PANI.

excitation in photocatalysis, and also results in the loss of
surface area. A high surface area is desirable for the contact of
the active site of the catalyst with the adsorbed dye molecules in
the effluent.*® Alternatively, the introduction of PANI in the
catalyst (TiO,, ZnO, Fe,03, FeO, Ag,0, etc.) is based on the
premise of anchoring the metal oxide nanoparticles on the
macromolecular network of PANI, consequently reducing their
agglomeration and appreciable interfacial distance (Fig. 5).**®
For instance, a study of commercial TiO, nanoparticles as
photocatalysts revealed the formation of clustered particles
with a low surface area (agglomerate). However, the introduc-
tion of PANI nanorods to form composites led to the encapsu-
lation and uniform dispersion of the TiO, nanoparticles on the
surface of the conducting macromolecule (PANI).* Further-
more, the spherical shape of TiO,, as reported by Zarrin and
Heshmatpour,® revealed the agglomeration of nanoparticles to
form larger particles. However, the introduction of PANI with
Nb,Os resulted in the improved and uniform distribution of
TiO, on the polymeric network, thereby enhancing the reduc-
tion in particle aggregation.

Additionally, Yuan® revealed that the large surface area of
nanoparticles results in their aggregation, and consequently
agglomeration. For instance, one of the commonly used semi-
conductors (graphene) exhibits a large surface area, resulting in
the bundling of graphene sheets based on van der Waals
forces.’* However, during the fabrication process, the incorpo-
ration of a polymer using procedures such as ultrasonication
and surfactant and chemical modification improve the syner-
gistic homogeneity of the constituent composite, thereby
wrapping the semiconductors used around the polymer chain,
leading to the formation of nanocomposite photocatalysts with
less possibility of agglomeration.>*** The impact of reduced
agglomeration by the polymer equally improves the overall
conductivity and imparts appreciative mechanical features in
the composite.>*>

Additionally, it should be noted that another cause of
agglomeration of catalysts in photocatalysis can arise from the
use of excess catalyst during in the photocatalytic process of
dye-laden effluent.**** Furthermore, the other impacts of PANI
in the composite blend include improved optoelectronic
features of the photocatalyst blend. This feature is vital and

15472 | RSC Adv, 2023, 13, 15467-15489
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suggests the kinetics and responsive rate of the fabricated
photocatalyst for use under irradiation with different photon
sources (UV or visible) and intensities.>** The features define
the combination of optical and electronic properties of the
photocatalyst, including the bandgap value, excitation rate, and
electron-hole recombination rate during photocatalysis.*>**
Most semiconductors used are affected by their high bandgap,
affecting their sensitivity to photons from visible irradiation,
which are required for higher performance in dye mineraliza-
tion.””*® Interestingly, the incorporation of PANI to form
a nanocomposite photocatalyst significantly lowers both the
bandgap and rate of electron-hole recombination.**® This
impact is based on the unique m-conjugated electron systems of
the conducting polymer, leading to proficient electron
mobility.> In addition, the attributes originating from the
protonated nitrogen in the imine group and the well-ordered
polymer chain with high conjugation produce unique electron
mobility via an incredible hopping mechanism.* However, it is
worth noting that the various fabrication techniques high-
lighted in Table 1 play a significant role in features such as
internal stresses and overall mechanical features of the mate-
rials in the composite system, which indicates their respective
photocatalytic performance and recovery for reuse.®>** Also,
conditions such as the categories of nanofillers/semiconductors
used, dispersion conditions, stirring rates and mixing ratio
equally influence the thermal, mechanical and optoelectronic
contribution of polyaniline in the blend.”* These functional
impacts of the polymer in the fabrication process account for its
extensive applications beyond photocatalysts to use in sensor
fabrication based on its sensitivity to pH, while having appre-
ciable thermal stability. Also, the resilience impact of PANI in
the fabrication of films holds great future prospects®*

Thus, the fabrication of composites via the blending of PANI
with semiconductors causes a band shift from hypsochromic
(blue) to bathochromic (red shift) (Fig. 6), lowering the bandgap
energy and the sensitivity of the composites to irradiation in the
visible region of the electromagnetic spectrum.***»”> Also, Bou-
ziani et al.” reported that the presence of PANI in the composite
enhances the fast separation and transfer of photogenerated
electrons and holes, which improves the degradation efficiency.
Other notable impacts of PANI include improving the
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Fig. 6 Band shift mechanism of pure semiconductor and PANI
composites.
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functional properties and reactivity of the photocatalyst and the
modification of the surface morphology of the composites,
besides appreciable thermal and chemical stability.**”* These
features enhance the significant adsorption capacity of the
catalyst when in contact with dye molecules in the effluent,
establishing various bonding interactions such as van der
Waals and electrostatic bonding, which facilitate dye degrada-
tion."™* Also, due to the effective anchoring of the materials
along the polymeric network, the leaching of the catalyst and
the rate of catalyst deactivation are reduced owing to the pres-
ence of more active site in the composite blend compared to the
pure semiconductor material.*®

3 Properties and performance of
fabricated PANI composites in dye
photocatalysis

The properties of fabricated PANI composites used as photo-
catalysts in the remediation of dye-laden effluent originate from
the respective properties of their constituents, formulation, and
generally the fabrication techniques, as highlighted in Table 1.
Also, the properties of these catalysts dictate their correspond-
ing performance in the mineralization of dye-laden effluent.
These vital properties are elucidated via multiple characteriza-
tion techniques, which are predominantly microscopic and
spectroscopic. The different instruments that are available with
unique principles and sample preparation, together with
specific information on the fabricated photocatalyst are sum-
marised in Table 2. The microscopic techniques involve the
interaction of light or beams of an electron with matter to
access properties such as size, distribution/dispersion in the
solvent, degree of aggregation/agglomeration and morphology
of nano polymeric composite photocatalysts.”>”¢ Alternatively,
spectroscopic techniques elucidate the features of fabricated
PANI composite photocatalysts based on the interaction of
these nanomaterials with electromagnetic radiation from
photon sources.>*”””® This is done by quantitative assessment of
the difference in the energy of their molecular energy levels,
which are different for atomic and molecular structures.”®” The
use of the multiple instrumental techniques provides a wide
spectrum of information on the properties of the fabricated
material, which is in tandem with their performance in the
degradation of dyes in effluent, as highlighted in Table 3. Table
1 indicates the various fabrication processes for catalyst
composites, whereas the results in Table 3 indicate that the
functional impacts of PANI in the blend, fabrication tech-
niques, wt/wt% ratio of the composite constituents and nature
of other materials equally determine the resultant properties
and overall performance of the photocatalysts in dye
photocatalysis.****5*

For instance, the technique employed (in situ polymeriza-
tion) in doping PANI with photon active metals such as Ag to
form Ag-ZnO/PANI composites creates high photon absorption
at the visible spectrum of electromagnetic radiation, resulting
in a high photocatalytic performance of 98.6% for malachite
green (MG).'” Table 3 reveals that in situ polymerization

© 2023 The Author(s). Published by the Royal Society of Chemistry
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techniques are the most prevalent due to the formation of
composite blends with better self-organization, improved
optoelectrical and conductive properties of the mix, and
decreased aggregation of the nanoparticles because of the
effective interfacial synergism, as revealed by the instrumental
characterization.®*

Also, the notable performance of the PANI-TiO, blend
recorded in Table 3 (99% and 96%) for MB and RB5 dye,
respectively, is consistent with the reduced crystallite structure
from the electron imaging and the lowered bandgap brought
about by the incorporation of PANI. The impact of PANI in this
blend limited the agglomeration and improved the photon-
capturing potential of the composite up to the visible region.*®
The other novel methods with a high performance for the
degradation of MB, as indicated in Table 3, are electrospinning
and dispersion, suspension, self-assembly, hydrothermal, arc-
discharge, sonochemical, and sol-gel methods with the
performance of 91.5, 99, 78.7, 99, 97, 74 and 99%, respectively.
However, the preference for in situ techniques is due to their fast
reaction rate, cost-effectiveness and ability to control the
conditions for the formation of composite blends.***'* In
addition, in situ polymerization is a one-step technique for the
fabrication of nano composite photocatalysts with beneficial
attributes such as effective spatial distribution of associated
nanomaterial in the polymeric matrix of PANI and higher
interfacial strength, which contribute to lower interparticle
spacing and improved optoelectronic potentials in compos-
ites.®**'** Furthermore, instrumental elucidation of the internal
morphology of the materials via SEM and TEM revealed the
well-ordered distribution of the nanoparticles, low degree of
agglomeration and occurrence of surface modification via
coupling of PANI with metal oxide semiconductors (TiO,, ZnO,
Si0,, rGO and Cu,0) and metals such (Ag and Fe). For instance,
Zarrin & Heshmatpour® described the functional impacts of
PANI in the blend forming TiO,/Nb,O5s/PANI via SEM imaging.
According to their results, the composites exhibited a spherical
morphology, lower degree of agglomeration and larger surface
area. Also, the presence of PANI in this hybrid composite serves
as a physical barrier and conduction path, which are essential
for the effective separation and transport of photogenerated
electrons and holes and to hinder their possible recombina-
tion."»'* The variation in morphological attributes of the
composites such as wire-like morphology (nanowire) for PANI-
TiO,/rGO, enclosed uniform dispersion (nanoparticle) for PANI/
ZnO composites, flake-like (nanoflake) for PANI/SiO,, and
quasi-nano spherical for Cu,0/ZnO-PANI described in Table 3 is
a function of the nature, mode of fabrication and interactive
synergism of PANI with the semiconductors in the mix.**3*1%

Likewise, the XRD elucidation of the nanocomposites, as
shown in Table 3, demonstrated a reduction in peak intensity
for most of the fabricated composites except for the PPy-PANI/
TiO, blend. This exception suggests the stability of TiO, despite
its interfacial coordination with PANI and polypyrrole.'*”
However, the predominant reduction in the peak intensity is
due to the successful incorporation of the amorphous PANI in
the well-ordered crystalline structure of the semiconductors
used.* This reduction in intensity is related to the reduction in
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the crystalline properties of the mix, which is associated with
the reduction in crystallite size calculated using Scherrer's
equation.’®'* It is worth noting that the reduction in the
crystallite size is predominant in Table 3 except for PANI/Fe-
TiO,. The XRD characterization of this composite showed the
tetragonal lattice structure of titanium, which was altered via
the substitution of titanium ions by iron ions, increasing the
average crystallite from 19 nm to 20 nm and leading to a low
efficiency of 28% for MB dye, as shown in Table 3. Hence, the
altered peak intensity and pattern revealed by the instrument
indicate the successful formation of a composite blend with
either improved crystalline or amorphous properties, which
influence its functional performance and chemical stability.'*

The XRD data was compared with the EDX results to show
the elemental composition of the composites, which is consis-
tent with the stoichiometric ratio of the elemental constituent.
Alternatively, XPS gives the relative binding energies and relates
the hybridization based on the interaction of the coupled
composite photocatalyst.>*3*

Also, according to this, the FT-IR spectra revealed the func-
tional properties, bonding sequences, linkages and spectra shift
occurring in the composite molecules. Composites such as
PANI/ZnO and PANI/TiO, in Table 3 exhibit an observable shift
in their characteristic peak, which is based on the interactive
linkages between the PANI and metal oxides. This often results
in the alteration of the electron densities and bond energies of
PANI.*?**** A shift to lower wavenumbers indicates an increase
in the electron density of the PANI chains.” This action is
desirable in dye photocatalysis with the nanocomposite catalyst
and indicates the efficient insertion of the semiconductor into
the macromolecular network of PANI.***

Also, a notable redshift was reported for many of the
composites in Table 3 by UV spectroscopic elucidation. Shaha-
buddin et al.* reported that this shift can be due to van der
Waals linkages, -7 or electrostatic interaction. At this point,
the positively charged polymeric backbone establishes
a synergic interaction with the compositing materials during
fabrication.”"** This interaction enhances the light absorption
propensity of metal oxides such as TiO, in the visible region of
the electromagnetic spectrum.*** For instance, for the Ag-ZnO/
PANI nanocomposite in Table 3, its first absorption band arises
from the m-m* electron transition in the benzenoid segments,
while the second and third absorption bands are related to the
doping and formation of polarons, respectively.'**** In addition,
the reduction in the bandgap evaluated from the spectra shows
the interactive mechanism and improved optical absorptivity of
the mix especially composites such as PANI/TiO, PANI/Fe-TiO,,
TiO,/Nb,0O5/PAN and Ag-ZnO/PANI.

4 Selected instrumental
characterization of fabricated PANI
composite photocatalysts

4.1 Selected microscopic overview

A microscopic overview on the functional impacts of PANI in the
composite morphology studied via FE-SEM and TEM
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Fig. 7 FE-SEM image of pure PANI and composite of PANI with 5 wt/
wt% of 2Dh-BN. Image adapted from Shahabuddin et al.* Reproduced
with permission from, Elsevier.

techniques gives the descriptive morphological property and
surface topology of the fabricated nanocomposites at various
wt/wt%. Shahabuddin et al.* studied the degradation of meth-
ylene blue and methyl orange using a polymeric composite
fabricated from polyaniline and 2D-hexagonal boron nitride.
The FE-SEM and TEM images are shown in Fig. 7. The FE-SEM
micrograph reveals the tubular morphological characteristics of
the pure polyaniline. However, after the addition of 2D h-boron
nitride via in situ polymerization, the fabricated nano-
composites transformed into granular structures, as shown in
Fig. 7. The altered surface modification after fabrication was
equally described by the FE-SEM image of the polyaniline/TiO,
photocatalyst studied by Gilja et al.”* and Aamir et al.**® in the
synthesis and characterization of polyaniline/Zr-Co-substituted
nickel ferrite nanocomposites for the photodegradation of
methylene blue.

Mitra et al.®® also reported the microscopic assessment of
a composite consisting of aluminum-doped zinc oxide/
polyaniline (AZO/PANI), where the morphological features of
PANI appear as nanorods, which are similar to the commonly
used conventional catalysts (titanium dioxide) studied by
Egerton.” It is worth noting that the arrangement of these
nano-rods of PANI enhances the ease of the formation of the

Fig. 8 (a and b) TEM images of h-BN nanosheets (c) SAED pattern for
h-BN (d and e) TEM images of PANI nanotubes and (f) SAED pattern for
PANI nanotubes Image adapted from Shahabuddin et al.* Reproduced
with permission from Elsevier.
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composite mix, which provides active sites for adsorption-
desorption before the photodegradation of adsorbed dye
molecules.”*"* Ameen et al.** studied the morphology of novel
graphene/polyaniline nanocomposites and their photocatalytic
activity toward the degradation of rose Bengal dye. According to
the microscopic FE-SEM study, the tubular structure of PANI
transformed into a layered sheet morphology with an average
thickness of several hundred nanometres after the fabrication
of the composite. Additionally, the TEM result of PANI and its
corresponding composite (2D-hBN and PANI-2Dh-BN) by Sha-
habuddin et al.* gives a two-dimensional image of the tubular
structure of PANI (Fig. 8).

This implies that the functional interaction of PANI with the
disc-like structure of 2D-hBN (Fig. 8) enhances the surface
modification of the composite, transforming it into a granular
structure.* A similar surface transformation was reported by
Aamair et al™® from the SEM study of polyaniline/Zr-Co-
substituted nickel ferrite (NiFe, ,Zr, 4C0,40,) nanocomposite
photocatalyst, leading to a high degradation efficiency of 97%
for methylene blue dye. The image in Fig. 8 indicates the
amorphous rod-like structure of polyaniline compared to the
well-ordered disc-like crystalline structure of the 2Dh-BN, which
enhances its size and optoelectronic reactivity.**** These
microscopic techniques are capable of revealing the point of
agglomeration during the fabrication of the composite, as
described in Fig. 9. Gilja et al** and Shahabuddin et al*
revealed that pure PANI does not undergo agglomeration due to
its smaller aggregate sizes from its lower inverse barrier. This
effect is due to the ability of aniline molecules to create a barrier
effect, which lowers the aggregation of polyaniline."** However,
the FE-SEM study by Chatterjee et al.*** on a polyaniline-single-
walled carbon nanotube composite showed that PANI
undergoes agglomeration at a high concentration of aniline,
similar to Fig. 9. Meanwhile, the interaction of PANI with the
single-walled carbon nanotube after the fabrication of the
composite hindered the formation of agglomeration, while
increasing the surface area of the blend.**

The agglomeration revealed in Fig. 9 consequently alters the
synergistic effect with available binding sites, limiting the dye-
degrading propensity of the composite photocatalyst.* Hence,

10PANLTIO2 15PANL.TiO2 20PANLTiIO2

",
.'V:“"\Sg A q

Clrvdd o

"“"-”‘*‘?‘.vfi'?-:#

w;r

Point of agglomeration

Fig. 9 SEM micrographs of (a) 10PANI/TiO,; (b) 15PANI/TiO, and (c)
20PANI/TiO, composites (magnification x15000). Image adapted
from Gilja et al.#* Reproduced with permission from MDPI.
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microscopic elucidation projects the point of agglomeration
and reveals the morphological transformation that occurs
during the fabrication process before dye photocatalysis.***

4.2 Selected spectroscopic overview

4.2.1 Fourier transform infrared spectroscopy (FT-IR). One
of the vital spectroscopic instruments commonly used to
elucidate the functional groups of fabricated photocatalytic
nanocomposite is the FT-IR spectrometer.”*® The characteriza-
tion using this instrument provides information on molecular
structure, chemical bonding and molecular environment,
which suggests the expected chemical interaction, dye adsorp-
tion and degradation mechanism during photocatalysis."**'**
Fig. 10 reveals the spectra resulting from the application of this
instrument for comparative assessment of pure polyaniline and
its corresponding composite. The fabricated nanocomposite
consisted of PANI blended with single-wall carbon nanotubes
(SWCNT) at 1% SWCNT (b), 2% SWCNT (c) and 4% SWCNT (d).
According to this figure, peaks such as 820 cm ™" vividly describe
the aromatic C-H bending for the 1,4 di-substituted benzene
rings, while the peaks at 1348 cm™" and 1384 cm™ " correspond
to the C-N stretching of the secondary aromatic amine. The
stretching indicates the stronger bonding interaction of the
functional groups in PANI with the SWNT coupled with the
respective blue shift to 1416 cm ™', 1557 cm™*, and 1643 cm™*
from 1384 cm™ ', 1506 cm ™" and 1633 cm ™, respectively. Also,
the peaks located at 1633 cm ™" and 1560 cm ™" confirmed the
presence of the C=C quinoid ring and benzoid, respec-
tively."*>'*> As shown in Fig. 10a-c, Chatterjee et al.'** reported
that reveals the chemical interaction of SWCNT with PANI at
different reaction sites. Similarly, this action was observed by
the FT-IR study of the PANI/nano-SiO, composite and PANI-
MWCNT, where the bond strength and the bond weakness of
the formed composite were a function of the wavenumber."%*%”

Furthermore, Yang et al.**® applied FT-IR for the character-
ization of graphene oxide and polyaniline (GO/PANI) nano-
composites, where the absorption bands of PANI decreased in
the spectra of the GO/PANI composites. This indicates the
substitution of most of the functional groups present via

Point of substitution
f most functional

group of PANI

Transmittance (a.u.)

Wavenumber (cm'1)

Fig. 10 Pure PANI (a); PANI-1% SWCNT (b); PANI-2% SWCNT (c); and
PANI-4% SWCNT (d). Image adapted from Chatterjee et al.**? Repro-
duced with permission from RSC Advances.
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chemical reduction."® Sarmah and Kumar** observed a shift in
the C-N stretching of the benzenoid unit from 1296 to
1315 cm™ " when a composite of PANI is formed with TiO,
(PANI/TiO,). The shift to a higher wavenumber described the
impact of the chemical interaction of N atoms from C-N in the
polymer chain with the O atoms of TiO,, which suggest electron
delocalization. Also, Shahabuddin et al* observed a similar
band shift when a composite of polyaniline and 2D hexagonal
boron nitride was fabricated. Their study confirmed that the
band shift may be due to weak interactions such as van der
Waals attraction between the positively charged PANI back-
bones and the h-BN molecules. King et al.**® and Li et al.*” re-
ported that the photon-capturing potential of the catalyst
composite is based on the functional interaction of PANI with
the semiconductor, which strengthens the composite reactivity
during photon irradiation for dye degradation.

4.2.2 X-ray diffraction (XRD). The use of this instrumental
technique holds great importance in the analysis of fabricated
composites regarding their crystalline and amorphous orien-
tation, size, shape and internal stress of small crystalline
regions. However, the measurement of this parameter depends
on the peak position, width and intensity.****** Shahabuddin
et al.* studied the orientation of pure polyaniline, 2Dh-boron
nitride (2D-hBN) semiconductor and a composite comprised
of these two materials at different weight percents (Fig. 11). The
highly ordered structural pattern of the semi-conductor (2D-
hBN) was reflected by the peaks with 26 values of 26.80°,
41.70°, 42.95°, 50.20°, 55.28°, 71.41°, 75.98° and 82.27, corre-
sponding to the expected crystallographic planes of pure h-BN
of (002),(100),(101),(102),(004),(104),(110),and (1
1 2), respectively, according to JCPDS file number 01-073-
2095.1*>1* Furthermore, the pure conductive PANI exhibited
peaks at 15.76°, 20.35°, and 25.25°, showing a polycrystalline
structure; however, the regions with broader peaks are the
amorphous potion of the polymers.

The peak value was also affirmed by Chatterjee et al.”** in
their comparative study of PANI and SWNTSs. The broad peak of
PANI was equally observed for PANI and PANI/ZrCo-substituted

Intensity (a.u.)
Intensity (a.u.)

904
b (110)
(112)

1 L] L 0 2 % 4« %N O 80 %0

2 Theta

c PaNS

PN

Intensity (a.u.)
{
Z

¥
3
s
s
3
8

2 Theta

Fig. 11 XRD patterns of (a) h-BN nanosheets, (b) PANI nanotubes and
(c) h-BN nanosheet-doped nanocomposites. Image adapted from
Shahabuddin et al.?? Reproduced with permission from Elsevier.
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nickel ferrite composite. According to their study, the prom-
inent peaks of the conducting polymer were located at 20.4°,
25.4°, and 28.2°. However, the altered structural pattern was
due to the reported extra peaks at 35.83°, 37.20°, 43.5°, 50.1°,
54.3°, 57.2°, 63.0°, and 74.8° when matched with the standard
pattern.””® The intense peaks commonly observed at around
20.35° and 25.25° can be linked to the repetitive sequence of the
benzenoid and quinoid rings, respectively in the PANI back-
bone.™* However, for the composite mix at different wt%, the
sharp decline in the peak value and the increasing intensity, as
shown in Fig. 11, are related to the successful interaction of the
semiconductor with the highly amorphous homopolymer.* This
is because the semiconductor used in its pure state exhibits an
appreciable level of crystallinity, as deduced from the peak
intensity in Fig. 11. However, with the addition of the amor-
phous PANI, the peak intensity decreased due to the amorphous
interaction of the macromolecule network (PANI) with the well-
ordered molecules of the semi-conductor.* Aamir et al.**® sug-
gested that reduction in peak intensity is directly proportional
to the increase in the concentration of PANI, which functionally
influences the bandgap tunability and photocatalytic perfor-
mance. Furthermore, Sarmah and Kumar* studied the fabri-
cation of a PANI/TiO, composite for the remediation of dye
effluent. The result of the XRD spectra for PANI in the
composite mix of PANI/TiO, did not exhibit changes in peak
positions and shapes compared to the TiO, rod. This observed
action illustrates the mere attachment of PANI to the surface of
the semiconductor rod.****** This action could be due to the
method employed for the fabrication of the composite or the
experimental conditions set during the fabrication process.™
The orientation of the formed composite affects the band gap
tunability, which indicates its photon-capturing propensity
during photocatalysis of dye effluent.*****

4.2.3 UV-visible spectroscopy. The spectra of materials can
be measured in the wavelength range of 800 nm to 2500 nm
using a ultraviolet spectrophotometer (UV), visible spectro-
photometer (vis), and near-infrared spectrophotometer
(NIR).>>*#>14¢ Composite quantification with these instruments
uses ultraviolet and visible light in the wavelength range of 200
and 780 nm.*” Studies show that these instruments induce
analyte electronic transitions such as T — ©*,n — w* n — o¥,
d — O and charge transfer transitions.>'* However, the
predominant transitions occurring during the spectroscopic
investigation of an emerging polymeric composite of PANI are 7
— m* (molecules with 7 bonds) and n — w* transitions,
involving lone pair electrons that exist on heteroatoms such as
oxygen and nitrogen atoms.”>'*® These transitions generate
spectra whose readout gives vital information on optoelectronic
stability and the response of the nanocomposite, calculated
bandgap, and synergic interaction of polymers with other
materials.**®* As shown in Fig. 12, the assessment of a PANI
composite by Chatterjee et al.*** revealed that two distinct peaks
appeared at 373 and 417 nm, which is consistent with the
excitation characteristics of the quinoid ring and the m-m*
transition of the benzenoid ring.****** However, the reduction in
peak intensity with the increasing addition of nickel ferrite NPs
to form composites distinguishes the optoelectronic behaviour

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Normalized UV-vis spectra of (a) PSA, (b) PC1, (c) PC2 and (d)
PC4. Where, PSA is acid doped PANI without SWCNT-single-wall
carbon nanotube; while PC1 (1% SWCNT composition), PC2 (2%
SWCNT composition) and PC4 (4% SWCNT composition) with poly-
aniline. Image adapted from Chatterjee et al***> Reproduced with
permission from RSC Advances.

and unique band gap of the composites compared to pure PANI.
This resulted in an increase in the calculated band gap value
from 2.2 eV for pure PANI to 2.4 eV with the addition of nickel
ferrate.®* Furthermore, an investigative assessment of PANI
and graphene oxide composite using UV spec by Yang et al.**®
showed a similar transition of the quinoid, while the n-m*
transition justified the presence of heteroatoms (oxygen) in the
functional group of graphene oxide."** The new absorption at
distinct wavelengths identified from the spectra revealed the
formation of new composites with distinct band gaps.***° In the
instrumental elucidation by Sarmah and Kumar,'* they further
observed a characteristic peak at 430 nm, indicating the p band-
polaron band of protonated PANI chains, while the peak at
840 nm indicates the polaron band w* of doped PANIL.* The
features revealed by the spectra indicate the presence of a single
broad polaronic band deep in PANI stabilized by the coulombic
interactions, dielectric screening and local disorder in the
polyaniline.

4.2.4 X-ray photoelectron (XPS). The X-ray photoelectron
spectroscopic technique is another vital instrumental technique
that relates the elemental composition to the binding energies,
valence states and chemical environment of the constituent
elements forming composites.**?

Although similar to energy-dispersive X-ray spectroscopy
(EDX), EDX is strictly applied for elemental composition and its
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Fig. 13 High-resolution O 1s, N 1s, and C 1s (a—c) spectra; and (d) full
XPS survey of polyaniline—nitrogen-doped carbon dot nano-
composite. Image adapted from Maruthapandi et al*** Reproduced
with permission from MDPI.
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respective abundance. Fig. 13(a-c) shows the high-resolution
XPS spectra of O 1s, N 1s, and C 1s and comprehensive XPS
investigation PANI composites (polyaniline-nitrogen-doped
carbon dot nanocomposite).

The spectra show the characteristic peaks of the elemental
composition of the composite under investigation, indicating
the presence of C, N, and O and the elemental interaction in the
composite as a function of their respective binding energies.
Equally, the XPS investigative elucidation of graphene/
polyaniline showed a unique binding energy peaks at approxi-
mately 284.4 eV, 397 eV and 529 eV for C 1s, N 1s and O 1s,
respectively. These deconvoluted peaks reveal the interaction
and bonding sequence between the conducting polymer (PANI)
and the semiconductor graphene, forming composites.**»*** The
peak value at C 1s at 284.4 eV also indicates the sp® C of gra-
phene, Gr, and the C=C conjugation of the benzenoid ring of
the polymer, showing the interactive mechanism of protonation
of imine and amine during the fabrication of the composite.*
Similarly, Chatterjee et al.*** reported the binding energy of
285.5 eV and 530.5 eV for C 1s and O 1s related to the pure PANI
SWNT having 283.9 eV and 283.5 eV, respectively, while that of
nitrogen (N 1s) was approximately 399.2 eV, which indicates the
quinoid amine in the backbone of PANI, while the positively
charged nitrogen is indicated by the higher peak of 401.2 eV,
representing a protonated amine.’*”*** This shows the syner-
gistic interaction and formation of partial hydrogen bonding
between the cationic nitrogen radical and the carboxylate group
of the graphene moiety.'***%

5 Conclusion and future prospects

In this review, we revealed the functional impacts of PANI in the
fabrication of composite catalysts for dye photocatalysis via
instrumental outlook. It was revealed that particle agglomera-
tion, poor surface area, porosity, frequent electron-hole
recombination, and large bandgap limiting photon capture in
the visible region are the major limitations in the photocatalytic
treatment of dye-laden effluent. Considering this limitation, it
is necessary to incorporate the conducting polyaniline, which
when characterized via microscopic and a spectroscopic tech-
nique, creates functional attributes of improved surface
morphology and topology, reduction in electron-hole pair,
lowering of the band gap and impedes the formation of
agglomeration by the nanocatalyst. Also, the study indicated the
techniques for the fabrication of composites greatly influence
the functional attributes of PANI and the corresponding prop-
erties of the mix, while in situ polymerization was identified as
the most effective based on its excellent interfacial synergism.
However, the future outlook involves the use of instrumental
characterization to effectively study the bond mechanism of the
fabricated composites and their interaction with dye molecules
in the effluent. Furthermore, it is necessary to quantitatively
determine the limits of PANI concentration required in the mix,
beyond which may result in the possible agglomeration of the
catalyst and ineffective recovery and reuse for other treatment
runs.
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