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1. Introduction

Enhanced inhibition of protein disulfide isomerase
and anti-thrombotic activity of a rutin derivative:
rutin:Zn complexy

Xinyuan Liao, Panpan Ji,° Kunxiang Chi,? Xueying Chen,? Yang Zhou,? Shanli Chen,?
Yuan Cheng,? Robert Flaumenhaft,® Cai Yuan*® and Mingdong Huang (2 *2

Rutin is a flavonoid that exists in plants and in commonly consumed foods. In recent years, rutin has been
demonstrated to have anti-thrombotic efficacy through its inhibition of protein disulfide isomerase.
However, the low aqueous solubility and high dose limit the therapeutic applications of rutin. In this
study, we found that the chelation of zinc ions increased rutin aqueous solubility by 4-fold. More
importantly, the thus-formed rutin:Zn complex inhibited PDI activity more potently than rutin itself. In
a murine model with electric current-induced arterial thrombosis, the rutin:Zn complex slowed mouse
arterial occlusion compared to rutin without increasing bleeding risk. Thus, the zinc chelation not only
improved rutin aqueous solubility but achieved stronger inhibition of PDI. Furthermore, zinc chelation of
a selected list of flavonoids containing the adjacent keto and phenoxy groups also increased their
inhibition of PDI. Hence, our study provides a strategy to promote flavonoids’ anti-thrombotic properties.

flavonoids have low bioavailability and low druggability, partly

Flavonoids are a class of natural substances commonly found in
vegetables, grains, fruits, wine and tea. Flavonoids have been
shown to have a range of biological activities, including anti-
oxidative," anti-inflammatory,” and anti-mutagenic®* activities. In
addition, flavonoids play a significant role in cardiovascular
diseases.” Quercetin-3-O-rutinoside (rutin) is a member of the
flavonoid family. In previous studies, rutin was identified as an
anti-thrombotic molecule by inhibiting protein disulfide isom-
erase (PDI),® which is an endoplasmic reticulum (ER)-resident
chaperone protein facilitating disulfide bond formation. PDI
can also be released into the extracellular environment, and this
pool of extracellular PDI was shown to play a critical role in
thrombosis.” Recently, we identified the molecular binding site of
rutin on PDI using both structural biology and mutagenesis
techniques, and demonstrated that rutin occupies the major
substrate binding site located at the b’ domain of PDI with
residue H256 as the key residue.® Rutin was shown to signifi-
cantly reduce thrombin generation in humans without inducing
bleeding side effects.® Despite their wide biological functions,
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due to limited gastrointestinal absorption, rapid degradation and
excretion, leading to low the requirement of a high dose to induce
an anti-thrombotic effect in clinical trials.’

There are intensive research efforts to improve the
bioavailability of rutin. For example, the Swiss company Zyma
Pharma first described a synthesis of hydroxyethyl derivatives of
rutin, named troxerutin, by reacting rutin with a hydroxyl eth-
ylation agent. Troxerutin showed significantly enhanced rutins’
bioactivity, including anti-oxidant, anti-inflammatory, anti-
diabetic and anti-tumor.’ However, numerous side effects
(e.g. yellow discoloration of the skin, abnormal liver function) of
troxerutin have been reported.' An alternative approach used
nanoparticle systems to overcome the poor bioavailability.
Recently, we developed a self-nano emulsifying drug delivery
system of rutin (NanoR) to increase the solubility, and showed
that orally administered NanoR prolonged the occlusion
formation time."

Metal ion chelation was also shown to improve rutin solu-
bility, and also shown to enhance rutin's bioactivity."*** Pan et al.
developed a sodium rutin formulation (NaR). The NaR was
showed to attenuate neuroinflammation and ameliorate synaptic
plasticity impairment, reversing the deficits in spatial learning
and memory in Alzheimer's animal models."® Zinc ions were
shown to enhance flavonoids' bioactivity and likely bind to
electron donor groups of flavonoids, including phenoxy and keto
groups.' Selvaraj et al. prepared rutin:Zn complex and showed
this rutin:Zn complex facilitated osteoblast differentiation via
activating molecular signaling.” Zinc ion binding to rutin also
enhanced the anti-oxidant capacity of rutin.*®
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In this study, we prepared a rutin:Zn complex by chelating
rutin with zinc acetate, and showed that the complex has 1:2
stoichiometric ratio of rutin:Zn. Importantly, zinc ion chelation
also improved the inhibitory effects of rutin on PDI in vitro and
prolonged clot formation time in vivo. In addition, we measured
the zinc ion binding of a list of flavonoid analogs bearing
similarity to rutin, and showed that zinc chelation significantly
increased these flavonoids’ inhibition to PDI reductase activity.
Thus, our study showed zinc ion chelation is likely a general
strategy to improve the bioavailability and bioactivity of flavo-
noids. It is plausible that other metal ions, like ferric and
copper, could also chelate flavonoids and enhance their bene-
ficial effects. However, further studies are needed to demon-
strate such application.

2. Materials and methods
2.1 Preparation of flavonoid:Zn complex

Flavonoid:Zn was prepared as previously described with slight
modification. The zinc acetate (100 mM, CAS:557-34-6,
Macklin) and flavonoid molecules (10 mM, purchased from
YuanYe Inc.) were dissolved with DMSO separately, and were
mixed (in 10: 1 molar ratio) together to a total volume of 2 mL
for 10 min at the room temperature. The mixture was then
poured into 20 mL methanol to generate precipitate, which was
washed with methanol 3 times and dried at 37 °C to yield the
flavonoids:Zn complex. The yield of the flavonoid-Zn complex
was 50%.

The complex was characterized by a reverse phase chroma-
tography (RPC) column on an FPLC instrument (AKTA™ Pure,
GE Healthcare), which was pre-equilibrated with chromatog-
raphy grade water containing 5% acetonitrile. The rutin:Zn
complex was eluted with a gradient of 5% to 80% of acetonitrile
at a flow rate of 1 mL min~". The key in this experiment was not
to add any trifluoroacetic acid, which is commonly used on C18
column at 0.1% but can disrupt the complex in our case.

2.2 Characterization of rutin:Zn complex

For UV-vis and fluorescence spectra measurements, rutin or
rutin:Zn complex was diluted in either DMSO or ddH,O at room
temperature. UV-vis spectra were recorded using a standard
1.00 cm quartz cell over the range of 250-600 nm. The fluores-
cence was measured using SpectraMax spectrophotometer with
the excitation at 430 nm, and the emission at 460-650 nm.
The elemental analysis was carried out on vario MACRO
cube, which gave %C 38.27, %H 5.19, and %N < 0.03. The Zn
content (12.05%) was measured using inductively coupled
plasma mass spectrometry (ICP-MS). These data were consis-
tent with a molecular formula of rutin:((Zn(OAc),),(H,0)s),
which gave calculated contents of %C 38.73%, %H 5.01%, %N
0, and %Zn 13.27. Fourier transform infrared spectroscopy
(FTIR) spectra were collected in a Spectrum 2000 FTIR spec-
trometer in KBr pellets over the range of 400-4000 cm ™. The
thermogravimetric analysis (TGA) was measured on STA449C/6/
G, Jupiter. The mass of each sample was 5 mg. The carrier gas
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was nitrogen at a flow rate of 50 mL min~'. The samples were
heated from 25-800 °C, and the mass change was recorded.

2.3 Recombinant protein expression and purification

The expression and purification of the recombinant proteins
were carried out as previously reported.’ The recombinant
strain was cultured in the 500 mL LB medium with 100 pg mL ™"
ampicillin at 37 °C for 6 h. The IPTG (isopropyl--p-thio-
galactoside) was added when the ODg, reached 0.6 for the
induction of protein expression at 18 °C. After 12 h induction,
the cells were harvested by centrifugation at 3000g for 20 min.
The cell pellets were re-suspended at 40 mM Tris-HCI (pH 7.4),
150 mM NaCl, 5% glycerol (v/v), 1 mM DTT. The lysate was
crushed at 600 Pa pressure and centrifuged at 12 000g for
40 min. The target protein was captured from the supernatant
using affinity chromatography with Ni Sepharose™ excel resin
(GE healthcare), and eluted with the elution buffer containing
40 mM Tris-HCI (pH 7.4), 150 mM NacCl, 5% glycerol (v/v), 1 mM
DTT and 500 mM imidazole. The eluted protein was further
purified by gel filtration chromatography using Superdex 200
HR 10/300 column (GE Healthcare), which was pre-equilibrated
with the buffer containing 40 mM Tris-HCI (pH 7.4), 50 mM
NaCl, 5% glycerol (V/V), 1 mM DTT. The purified protein was
stored at —80 °C.

2.4 Fluorescence-based direct binding assay

Direct binding of rutin or rutin:Zn complex to PDI-b’x was
measured based on the intrinsic fluorescence of rutin. Different
doses of recombinant proteins were incubated with 50 uM rutin
or rutin:Zn complex in a black 96-well plate at 25 °C for 30 min
before measurements. The fluorescence emission spectrum of
each well was measured with the excitation at 430 nm at room
temperature on a BioTek Synergy microplate reader with
a sensitivity of 100 or 120 and measurements of per data with
100 times.

2.5 Insulin turbidity assay

Rutin or rutin:Zn complex (50 uM) was added into 1.8 uM PDI
and incubated together with 600 pM insulin, 1 mM DTT, 2 mM
EDTA, pH 7.4, in a 96-well plate for 30 min at 37 °C, followed by
the turbidity measurement at 650 nm on SpectraMax spectro-
photometer. The total volume of wells was maintained at 100 pl,
and the reaction was monitored for 1.5 h.

2.6 Thrombin generation assay

The whole blood from volunteers was centrifuged at 160 g for
20 min to isolate the platelet rich plasma (PRP). The PRP (30%)
was incubated with 5 mM Gly-Pro-Arg-Pro peptide, 5 mM CacCl,
and stimulated with 0.1 U mL~"' thrombin in the buffer con-
taining 20 mM Tris (pH 7.4) and 150 mM Nacl, followed by the
addition of 1.8 uM PDI. To compare the inhibition efficacy,
rutin or rutin:Zn complex was added to 35 uM. The samples
were then diluted at 1:4 ratio into PBS containing 80 pM
chromogenic substrate S2288 and 12.5 mM EDTA. The reaction
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was monitored at 25 °C by recording the absorbance at 405 nm
on Spectra Max i3x spectrophotometer for 30 min.

2.7 Clot formation assay

The PRP (30%) and 1.8 pM PDI were incubated with different
doses (35 and 50 puM) of rutin, or rutin:Zn complex, in a buffer
containing 20 mM Tris (pH 7.4), and 150 mM NacCl at 37 °C for
20 min. Subsequently, 5 mM CacCl, (final concentration) was
added to trigger the clot formation. The reaction was monitored
by recording the absorbance at 405 nm for 30 min on a micro-
plate reader (Spectra Max i3x, Molecular Devices, San Jose, CA).

2.8 Direct current-induced arterial thrombosis murine
model

About 20 gram healthy male ICR mice (provided by Experi-
mental Animal Center, Fuzhou) were randomly divided into 4
groups (n = 6), and injected with saline, rutin, or rutin:Zn
complex (0.5 mg kg~* or 1.0 mg kg~ " of body weight) via tail
vein. After 10 min, the mice were anesthetized by 1.5% sodium
pentobarbital (30 mg kg™ "), and the carotid was exposed. The
current-induced probe (animal thrombus formation instrument
YLS-14B, Ji'nan Yiyan Technology Development Co., Ltd, Ji'nan,
China) was placed around the left common carotid artery. The
artery was stimulated with 0.5 mA current, and the arterial flow
was monitored until the artery was occluded (defined as no flow
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for =2 min). Finally, the times to occlusion the artery were
recorded at the end of the assay. All animal experiments were
carried out in accordance with the guidelines for the control
and supervision of laboratory animals as approved by the
institutional animal ethics committee at Fuzhou University.

2.9 Tail bleeding assay

The tail bleeding time was measured as previously described.”
Basically, healthy male ICR mice (about 20 gram) were
randomly infused by tail vein with the saline, 0.5 mg kg™ rutin
or rutin:Zn complex. After 10 min, the tail of the mice was cut at
0.5 cm from the tip, and immediately immersed into a 10 mL
tube containing 8 mL of pre-warmed saline. The time when the
bleeding stopped was recorded.

2.10 Statistics

All data represented the mean from triplicate measurements.
Significance compared with the control is denoted by * for p <
0.05, ** for p < 0.01, or *** for p < 0.001.

3. Results

3.1 Preparation and characterization of rutin:Zn complex

We prepared rutin:Zn by adding zinc acetate solution into
rutin (Fig. S17) and precipitated the complexes with methanol.
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Fig. 1 Characterization of rutin:Zn complex. (a) Rutin:Zn complex is highly pure, as demonstrated by reverse phase chromatography. (b) Zinc
chelation induced red-shift of the UV-vis spectra of rutin in DMSO. (c) Zinc chelation enhanced the fluorescence emission of rutin in DMSO. (d)
Rutin:Zn (right) was dissolved to a higher concentration in water than rutin (left, with precipitation), indicating its significantly enhanced aqueous
solubility. (e) Thermogravimetric analysis of rutin (blue) and rutin:Zn complex (red). The residual weight of the complex did not fall to zero at high
temperature due to the presence of zinc, giving the ratio of rutin:Zn of about 1: 2. (f) The transform infrared spectroscopy of rutin:Zn complex
showed reduced C=O0 stretching vibration at the adjacent keto and phenoxy group than rutin.
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The rutin:Zn complex was shown to have high homogeneity by
reverse phase chromatography (Fig. 1a). The as-prepared
complexes showed a red-shift in their UV-vis spectra in
DMSO compared to the original flavonoids (Fig. 1b). On
fluorescence emission spectrum, rutin:Zn showed signifi-
cantly stronger fluorescence intensity than rutin itself
(Fig. 1c), and its emission peak was slightly red-shifted (em
550 nm vs. ~530 nm). Importantly, the aqueous solubility of
rutin:Zn complex was significantly increased compared to
rutin by 4-fold (500 vs. 125 mg mL™ ', Fig. 1d). To study
whether the rutin:Zn complex was stable in the aqueous
solution, we measured the UV-vis spectra in H,O of rutin:Zn
complex and found a clear bathochromic shift of its maximal
absorption compared with rutin (345 nm vs. 365 nm,
Fig. S2at). Meanwhile, the fluorescence of rutin:Zn complex
was also stronger than rutin when dissolved in H,O
(Fig. S2bt), demonstrating the zinc ion did not dissociate after
rutin:Zn complex dissolved in the H,O.

Next, we used the inductively coupled plasma mass spec-
trometry (ICP-MS) data to measure the amount of zinc in the
complex, which gave a high zinc content (13.7%), clearly
demonstrating the a rutin:Zn ratio of 1:2. For comparison,
a ratio of 1:1 would give a zinc content of 8.99%. Further
elemental analysis on CHN gave a molecular formula of
rutin:(Zn(OAc),),(H,0)s. In thermogravimetric (TGA) analysis,
rutin almost completely burnt off at high temperatures (>600 °©
C, Fig. 1e), losing 98.73% of its weight. For comparison, the
rutin:Zn complex lost only 81.88% (cal. 85.2% based on the
formula of rutin:((Zn(OAc),),(H,O)s) of its weight on thermog-
ravimetric graph at a temperature higher than 450 °C (Fig. 1e).
These results further supported the rutin:Zn ratio of 1: 2.

The Fourier Transform Infrared (FTIR) measurement
(Fig. 1f) displayed a shift of rutin carbonyl stretching vibration
from 1650 to 1620 cm ™" upon zinc chelation, indicating direct
interaction of zinc to the carbonyl group in position 4 of rutin.
Thus, one Zn ion binds to the 4-keto,5-phenoxy group of rutin.
Another zinc ion binds to other phenoxy groups, and most likely
binds to and 3',4-phenoxy groups of the B ring due to the
chelation effect. Such chemical structure of the rutin:Zn
complex is shown in Fig. S3.t
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3.2 Rutin:Zn showed stronger inhibition against PDI than
rutin

Our recent work demonstrated that rutin directly inhibited
protein disulfide isomerase (PDI) activity, leading to an anti-
thrombotic effect.® Here, we compared the binding of rutin
and rutin:Zn complex to PDI in a direct binding assay based on
the change of intrinsic fluorescence of rutin. The inherent
fluorescence of rutin has maximal emission around 530 nm.
The addition of different concentrations of PDI increased the
fluorescence intensity of rutin and caused a red shift of the
maximal emission wavelength to about 550 nm, demonstrating
the direct molecular interaction of rutin with PDIL.® Our results
showed that the presence of PDI in either rutin or rutin:Zn
complex significantly increased the rutin's fluorescence in
a dose-dependent manner (Fig. 2a), demonstrating the direct
molecular interaction of PDI to rutin or rutin:Zn complex. The
rutin:Zn showed a comparable PDI binding than rutin itself (Ki
of 3.19 uM vs. 5.20 uM).

We also measured the effect of rutin:Zn complex on PDI
reductase activity using insulin turbidity assay.>® The disulfide
bonds of insulin were reduced by PDI in the presence of DTT,
leading to the cross linking of the insulin and the development
of turbidity of insulin solution, which can be measured at
650 nm and is proportional to the PDI reductase activity. Our
results showed rutin:Zn complex had a more potent inhibition
of PDI reductase activity than rutin at the same concentration
(Fig. 2b), demonstrating the zinc ion chelation increased rutin's
inhibition of PDI.

3.3 Rutin:Zn inhibited thrombus formation stronger than
rutin

PDI has recently been shown to participate in thrombus
formation, and extracellular PDI is an alternative target of anti-
thrombotic therapy.**® To measure the potential anti-
thrombotic effects of rutin:Zn complex, we first used a chro-
mogenic assay to analyze thrombin generation in human blood
(Fig. 3a). PDI has been shown to be involved in the initiation
and burst of thrombin formation.®** Indeed, the addition of
exogenous recombinant PDI increased thrombin formation

(b) Insulin turbidity assay
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Fig.2 Rutin:Zn showed slightly higher binding affinity and stronger inhibitory effects against PDI than rutin. (a) The intrinsic fluorescence of rutin
or rutin:Zn complex increased in the presence of an increasing concentration of PDI-b’x protein, giving a binding Ki of 3.19 uM for the complex
and 5.2 uM for rutin. (b) Rutin:Zn inhibited PDI activity more potently than rutin in insulin reductase assay.
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Fig. 3 Rutin:Zn showed stronger inhibitory effects in PDI-triggered thrombus formation than rutin in vitro. (a) Rutin:Zn displayed stronger
inhibition on thrombin generation assay than rutin (both at 35 uM). (b) Rutin:Zn (35 uM in DMSO) showed significant inhibition in clot formation
assay, leading to lower clot formation. Values represented the mean + SE of triplicate experiments. Significance compared with the control is

denoted by *p < 0.05,**p < 0.01,***p < 0.001.

(Fig. 3a). Rutin:Zn treatment significantly reduced thrombin
formation compared with rutin treatment group. These results
further indicated rutin:Zn complex exhibited greater inhibitory
efficacy than rutin in anti-thrombotic application.

To further validate this result, we evaluated the anti-
coagulation function of rutin:Zn complex in the plasma
sample using a kinetic clot formation assay on microplates,
where the clot formation was triggered using 10 mM calcium
ion. The results showed that PDI enhanced clot formation, and
such enhancement was reduced by incubation with rutin:Zn or
rutin in 35 uM (Fig. 3b). Notably, rutin:Zn, but not rutin,
inhibited clot formation to the baseline level. These results
clearly demonstrated that rutin:Zn had a stronger capacity to
inhibit PDI than rutin, consistent with the results of the insulin
turbidity assay.
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3.4 Rutin:Zn complex significantly prolonged artery
occlusion time in current-induced arterial thrombosis
without prolonging bleeding

Rutin was previously shown to have an anti-thrombotic effect in
mice without prolonging bleeding.*** We evaluated the effect of
zinc ion on rutin's anti-thrombotic activity in vivo using a direct
current-induced arterial thrombosis murine model (Fig. 4a).
This model uses electric current (0.5 mA) to directly injure the
endothelium of the common carotid artery of mice, inducing
thrombus formation and completely occlusion the artery. The
artery occlusion time in the control group was 154 + 37 s. At
a dose of 0.5 mg kg~ " of body weight, the artery occlusion time
was prolonged to 234 + 28 s in the rutin-treated group, and the
time was further extended to 435 £ 65 s in the rutin:Zn complex-
treated group, which was 2.8-fold compared to the control
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Fig. 4 Rutin:Zn reduced blood occlusion formation in mice compared to rutin and did not affect blood hemostasis based on tail bleeding time.
(a) Rutin:Zn significantly prolonged the occlusion time of mouse carotid artery in mouse thrombosis model. (b) The tail bleeding time of rutin:Zn
was comparable to rutin and the control. Values represented the mean =+ SE of triplicate experiments. Significance compared with the control is

denoted by *p < 0.05, **p < 0.01, ***p < 0.001.
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group and 1.8-fold compared to the rutin-treated group. A
higher dose of rutin:Zn complex (1 mg kg™ of body weight)
further prolonged the occlusion time to 579 + 23 s. Together,
these results demonstrate the powerful anti-thrombotic effect of
rutin:Zn complex.

Next, we measured the effect of rutin:Zn complex on hemo-
stasis using the mouse tail bleeding assay as we previously
described (Fig. 4b).*> The bleeding time of the control group
mice was 144 + 81 s. Importantly, rutin:Zn complex at 0.5 mg
kg ™" of body weight showed a comparable bleeding time (136 +
36 s) to the saline group (144 + 81 s) and the rutin group (136 +
57 s). These results indicated that rutin:Zn complex did not
compromise normal blood hemostasis.

3.5 Zinc chelation to adjacent keto and phenoxy groups
enhanced flavonoid inhibition of PDI reductase activity

We further investigated the effect of zinc ion using four addi-
tional flavonoids (kaempferol, quercetin, isoquercitrin, and
(—)-epicatechin) that are commercially available and structur-
ally similar to rutin (Fig. 5). These flavonoids themselves
showed limited inhibition on PDI reductase activity in the
insulin turbidity assay (Fig. 5). Upon the addition of zinc ions,
kaempferol, quercetin, and isoquercitrin showed stronger
inhibition on PDI reductase activity (Fig. 5a-c). In contrast,
(—)-epicatechin:Zn complex did not inhibit PDI activity at all,
similar to epicatechin itself (Fig. 5d). The first three compounds
contain the 4-keto,5-phenoxy moiety, while (—)-epicatechin
contains 3’,4"-catechol moiety but not 4-keto,5-phenoxy moiety.
Thus, these results demonstrated the importance of chelating
Zn** to the adjacent keto and phenoxy group of flavonoids for
enhancing their inhibitory efficacy against PDI.

It should be mentioned that the addition of zinc ion per-
turbed the UV-vis spectra of the flavonoids with 4-keto,5-
phenoxy moiety (the first three flavonoids, Fig. S4a-ct), but
not (—)-epicatechin (Fig. S4dt), demonstrating that this moiety,
but not catechol, is the primary binding site for zinc ion,
consistent with previous studies that showed 1,2-dihydrox-
ybenzene has a weak chelating affinity to zinc ion.*
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4. Discussion

A range of different metal ions are reported to bind to flavo-
noids, including Na*, Zn>*, Cu®’, Fe**, and others.**?* Both
Cu®" and Fe*" ions can function as oxidants and can oxidize
amino acids,” e.g., methionine and cysteine. In addition, these
two ions can be catalysts for the Fenton reaction, which acti-
vates molecular oxygen and generates reactive oxygen species.
Due to these properties, Cu®>" and Fe®' ions can damage
proteins and even flavonoids. In contrast, zinc ions are not
redox-active metal ion, and thus will likely be more amenable in
biological applications.

Zinc ions likely bind to electron donor groups of flavonoids,
including phenoxy and keto groups. As a flavonoid, rutin con-
tained a total of 10 hydroxyl groups, with two attached to the A
ring (positions 5 and 7), two at the B ring (positions 3" and 4'),
and six distributed on the glucopyranosyl (positions 2", 3", and
4") and rhamnopyranosyl (positions 2", 3", and 4" units. The
catechol group at the B ring (positions 3’ and 4'), and also the
keto and phenoxy group at the C4, C5 positions of ring C, are
two more probable binding sites for zinc ions due to the
chelating effect where one zinc ion binds to two oxygen atoms.
In a 2014 independent synthesis of rutin:Zn complex, the
authors prepared the complex by titrating different concentra-
tions of zinc chloride (1:4, 1:2) into the 5 mM solutions of
rutin in mixed solvents of DMSO/Tris (pH 7.2),* and showed the
zinc ion chelation to rutin in either 1 : 1 ratio (with zinc binding
to A-C rings), 1: 2 (with zinc binding to A-C-B rings) or 2 : 1 ratio
(with zinc binding to A-C rings) based on proton NMR and mass
spectrometry studies. A different study by Ikeda et al. also re-
ported that zinc ion chelated to rutin at 1:2 ratio with zinc
binding to 4-keto,5-phenoxy positions (A-C ring) and 3',4"-posi-
tion catechol moiety (B ring). This different zinc chelation mode
was again confirmed in a recent independent study by Harold
et al* Moreover, Harold et al. also observed differential
rutin:Zn stoichiometric ratios in DMSO (1 : 2, with zinc binding
to A-C-B rings) and methanol solution (2 : 1, with zinc binding to
A-C rings).”” Here, we prepared the rutin:Zn complex similar to
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Fig. 5 The adjacent keto and phenoxy groups are critical for chelating zinc ions to increase the inhibitory effect of rutin against PDI in insulin
turbidity assay. The presence of zinc ions significantly increased kaempferol (a); quercetin (b); isoquercitrin (c) inhibitory effect against PDI
reductase activity compared to native flavonoids, while (d) (—)-epicatechin:Zn showed no inhibitory efficacy against PDI.
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Ikeda et al. paper but with some modifications. Our results
showed zinc ions bind to rutin at the 4-keto,5-phenoxy positions
and the 3/,4’-catechol moiety positions in a 1:2 ratio.

Recently, we delineated the direct molecular interaction of
PDI with rutin and employed NMR spectroscopy, mutagenesis,
function assay, and molecular dynamics to show that PDI
residue H256 is the key mediating the interaction between PDI
and rutin, and the analogs without a phenoxy group at 7-posi-
tion showed no binding to PDI, which demonstrated an
essential role of the 7-position phenoxy group for binding to
PDI.® Moreover, the flavonoid analogs without a phenoxy group
at the 7-position showed no binding to PDI, which demon-
strated an essential role of the 7-position phenoxy group for
binding to PDI. In this study, we did not choose a sodium rutin
formulation (NaR), because the sodium of NaR chelates at the 7-
position of rutin,'® which may intervene with rutin interaction
with PDI. Here, we found that the rutin:Zn maintained the
direct interaction to PDI. In addition, we found that mutant
H256 of PDI also abolished rutin:Zn inhibition efficacy to PDI
reductase activity (Fig. S51), demonstrating that zinc ion
chelation did not affect the rutin 7-position phenoxy group
binding to PDI.

In this work, rutin:Zn complex appeared to be more effective
in blocking PDI-triggered thrombotic events compared to rutin
itself. In addition, our structure-functional activity study of four
additional flavonoids further supported the adjacent keto and
phenoxy group were critical for increasing flavonoid:Zn
complexes inhibition of PDI. Upon zinc ion chelation, the
flavonoids containing the adjacent keto and phenoxy group
exhibited a significant increase in inhibition of PDI (e.g. quer-
cetin, isoquercitrin). The inhibition enhancement also
happened in the compounds containing only the adjacent keto
and phenoxy moiety (e.g. kaempferol). Based on the structure of
rutin:Zn, we generated the molecular dynamic model of its
interaction with PDI (Fig. S6at). This model reveals that the zinc
chelated at rutin's 4-keto,5-phenoxy, which was then embedded
in the major binding pocket on the b’ domain and prevented
other substrates from binding to PDI In contrast, the 3’4"
catechol moiety of rutin was located at the periphery of the
substrate binding site and was solvent exposed, thus its inter-
action with PDI may be weak and transient, and zinc ion
chelation with the catechol group would not affect rutin binding
to PDI. Our results of the structure-functional activity study
further supported this model. Moreover, we also developed
a probe-based assay using a molecular substrate smaller than
insulin.®* Our results showed that adding either rutin:Zn
complex or rutin inhibited PDI cleavage for the GSSG probe at
comparable levels (Fig. S6bt). Such stronger inhibitory efficacy
of the complex in the insulin reductase activity assay (Fig. 2b)
but not in the GSSG cleavage assay was due to the difference in
the substrate used in the assays. The insulin assay requires the
insulin substrate to bind to the major substrate binding site at
the b’ domain, while the GSSG probe is a dipeptide, much
smaller than insulin, and interacted only with the catalytic sites
of PDI in the a and a’ domain, but not with the major substrate
binding located at the b’ domain.
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In summary, this study showed the chelation of zinc to
adjacent keto and phenoxy position was critical for enhancing
rutin and flavonoids' inhibition to PDI, which provides a new
strategy for the clinical translation of flavonoids.
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