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Recent advancements in ultra-sensitive detection, particularly the Aggregation Induced Emission (AIE)
materials, have demonstrated a promising detection method due to their low cost, real-time detection,
and simplicity of operation. Here, coumarin functionalized pillar[5]arene (P5C) and bis-bromohexyl pillar

[Slarene (DP5) were successfully combined to create a linear AIE supramolecular pseudorotaxane
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Introduction

The significance of ultrasensitive response in biological,
chemical, and environmental applications has recently attrac-
ted a lot of attention.'” Many techniques have been employed
up to this point for the crucial guest detection. Liu et al.® show
an ultra-sensitive photodetector based on a graphene/
monolayer MoS, vertical heterostructure operating at room
temperature, while Liao and colleagues” present an orthogonal
framework for cfDNA cancer monitoring via genome-wide
mutational integration, enabling ultra-sensitive detection,
overcoming the limitation of ¢fDNA abundance, and empow-
ering treatment optimization in low-disease-burden oncology
care. The development of an effective material for the ultra-
sensitive response to special guests is still a fascinating task,
despite the abundance of approaches that have been described.

Pseudorotaxanes, a type of typical molecular machine built
by interlocked molecules,® have been greatly implied in drug
delivery,”™ conducting materials,"** artificial molecular
machines," gene delivery,'>'® functional bioimaging,"” supra-
amphiphiles,”'® as well as functional supramolecular

systems.’*>* The supramolecular polymers created from
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polymer (PCDP-G). The use of PCDP-G as a supramolecular AIE polymer material for recyclable ultra-
detection
measurements, the low detection limits of PCDP-G for Fe®* and F~ are 416 x 107° M and 6.8 x
10719 M, respectively. The PCDP-G is also a very effective logic gate and a material for luminous displays.

is an interesting application of the materials. According to

pseudorotaxanes can sense, process, and actuate responses to
external change on their own because of the dynamic and
reversible nature of noncovalent interactions.>*** Due to this
characteristic, supramolecular polymers have a considerable
advantage over other materials when used as ultrasensitive
response material.

Pillar[5]arenes, first reported by Ogoshi,> have been the
main body of the new-generation macrocyclic ring due to its
sophisticated pillar structure with electron-rich cavities, ease of
functionalization,” and aggregation-inducing properties.*®
Moreover, the pillar[5Jarene group provides supramolecular
systems with a variety of assembly-driving forces including C-
H---1t, w7t and cation---7t interactions, which can be
employed as the primary building block for creating stimuli-
responsive supramolecular assembly systems.>** Nowadays,
nonporous adaptive crystals,>® chemical sensors, catal-
ysis,” pseudorotaxanes,*** and supramolecular materials****
have all been made using new supramolecular systems based on
functionalized pillar[5]arenes. The development of a novel
supramolecular system based on pillar[5]arene for the ultra-
sensitive detection of ions is thus of tremendous significance.

In this work, we rationally designed and synthesized a novel
pillar[5]arene host P5C by joining a pillar[5]arene group and
coumarin group via a hydrazide group in light of the afore-
mentioned factors and our long-standing interest in supramo-
lecular systems. A novel AIE bi-component supramolecular
polypseudorotaxane polymer PCDP-G that was created from
P5C and DP5 has the potential to be used as an ultra-sensitive
luminous material. Our strategies are as follows. Firstly, pseu-
dorotaxanes are formed by one side of the alkyl chain of DP5
being threaded into the pillar[5]arene cavities of P5C and the
other being threaded into the pillar[5]arene cavity of DP5.
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Secondly, both the coumarin and pillar[5]arene moieties of P5C
and DP5 could not only act as - interaction sites but also
serve as fluorophores. As expected, P5C and DP5 could self-
assemble into the stable supramolecular polymer PCDP-G.
Interestingly, the polymer PCDP-G shows strong AIE properties
and could ultra-sensitively detect Fe*" and F~. In addition, the
PCDP-G could serve as a fluorescent display material as well as
an effective logical gateway.

Results and discussion

The synthetic details of pillar[5]arene P5C are shown in Scheme
S$1.1 P5C and their intermediates have been characterized by "H
NMR, *C NMR and ESI mass spectrometry (Fig. S1-S4, ESIT).

At first, the P5C and DP5 could self-assemble into a supra-
molecular pseudorotaxanes polymer in cyclohexanol solution
(Table S1, ESIf). The lowest critical gelation concentration
(CGC) is 10% (w/v, 10 mg mL " = 1%), and the higher gel-sol
transition temperature (Tg) is 58-60 °C. Interestingly, the
mixture solution of P5C and DP5 in cyclohexanol showed
negligible fluorescence (T > T); with the temperature of the
hot cyclohexanol solution cooling below the T, the supra-
molecular pseudorotaxanes polymer PCDP-G showed strong
yellow fluorescence at 365 nm and reached a steady state within
three minutes (Fig. S5, ESIT). Meanwhile, the sol-gel transition
process exhibits excellent circularity (Fig. S6, ESIf). These
results indicated that the strong yellow fluorescence of PCDP-G
was induced by aggregation-induced emission (AIE).*®

The self-assembly mechanism of PCDP-G was carefully
investigated by "H NMR, 2D NOESY NMR and scanning electron
microscopy (SEM). As shown in "H NMR (Fig. 1 and S7, ESIY),
the addition of 1 equiv. DP5 caused the proton signal peaks H,,
Hy, H. on P5C and H;, H,, H; on DP5 to show distinct down-
field shifts, respectively, while the proton signal peak H, on
DP5 showed an up-field shifts, which implied that one side of
the alkyl chain of DP5 partially threaded into the pillar[5]arene
cavity of P5C and the other side threaded into the pillar[5]arene
cavity of DP5. As shown in the 2D NOESY spectra (Fig. S8, ESIT),
the correlation peaks A and B between the signals of proton H,
on DP5 with H,. on P5C and H, , on DP5, respectively, also

(a) ;
H, H, H, H,

————

6.9 6.8 6.7 6.6 3.8 3.6 3.4 1.6 1.

Fig. 1 Partial concentration-dependent *H NMR spectra (600 MHz,
298 K) in DMSO-d: (a) free P5C 10 mg mL™%; (b) P5C 10 mg mL~* and
DP5 10.0 mg mL™%; (c) DP5 10.0 mg mL™%.
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evidenced the pseudorotaxanes formed. At the same time, the
correlation peaks C of proton H; with H; , on DP5 and D of
proton H;, with H, . on P5C indicated that the pillar[5]arene
groups of P5C and DP5 are self-assembled through C-H---w
interactions, respectively. Moreover, the proton signal peaks H;,
Hj, Hy, Hj, Hy, on P5C shifted to downfield also supported that
the 7t---7v interactions of coumarin moieties were present. The
-+ interactions mechanism is also supported by the peak E
correlations of Hg, Hy,, with H;, H; on P5C. SEM morphological
features of PCDP showed a regular spherical morphology, which
also supported the self-assemble process (Fig. S9, ESIT).
Therefore, there are firstly formed the supramolecular pseu-
dorotaxanes, and then self-assembly via C-H---7 interactions of
the pillar[5]arene groups on P5C and DP5, respectively, and -+
7 interactions of the coumarin group in the formation of
supramolecular pseudorotaxanes in the system (Scheme 1).

The fluorescence response abilities of PCDP-G toward
cations were studied by diffusion with various cations: Cu*",
C02+, Cd2+, Ni2+, Pb2+, Zl’12+, CI‘3+, Ca2+’ Fe3+’ Mg2+, Ba2+, Tb3+,
Ag", Hg”" and La*" (using their solid perchlorate salts as sour-
ces). After addition of above cations (water solution, 0.1 M), only
Fe®* caused the fluorescence of PCDP-G to quench, and other
cations did not show a similar response (Fig. 2), which implied
that PCDP-G could selectively detect Fe*'. The fluorescence
titration of PCDP-G for Fe** was also carefully carried out. Only
0.009 equiv. Fe*" (water solution, 0.1 M) can induce the fluo-
rescence of PCDP-G to be quenched (Fig. S10, ESIt). Moreover,
according to the fluorescence titration of PCDP-G for Fe** and
calculations based on the 3¢/m method,*” the lowest detection
of the fluorescence spectra change (LOD) of the PCDP-G for Fe**
is 4.16 x 107'° M, which indicated the PCDP-G could ultra-
sensitively detect Fe** (Fig. $10 and S11, ESIY).

Furthermore, the successive response properties of the
supramolecular metal polymer PCDP-GFe (PCDP-G containing
0.01 equiv. Fe**) towards various anions were further discussed

interactions

3

P5C *

A4

Se e = }5

‘
PR

o
Self-assemble

[
i

..DP5

, CH-'n
interactions

-
L 4

°

Scheme 1 The chemical structures, and the self-assemble process of
P5C and DP5 for the formation of the supramolecular poly-
pseudorotaxane polymer PCDP-G as well as the mechanism of PCDP-
G for fluorescence responses of Fe>* and F~.
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Fig.2 Fluorescence response of the PCDP-G upon addition of various
mental agueous solution (Aex = 375 nm) in cyclohexanol system.

by adding aqueous solutions (C = 0.1 M) of various anions,
including ¥, Cl~, Br,1,ClO, ,AcO",HSO, ,SCN,CN™ and
N; (for F, Cl7, Br, I, HSO, , AcO™ and ClO,, using their
tetrabutylammonium (TBA) salts; for CN~, OH , N3, SCN™ and
S,~, using their sodium salts). As shown in Fig. 3, only F~
induced the quenching of the fluorescence of PCDP-GFe
changed to yellow, and other anions could not induce any
change. These results indicated that PCDP-GFe could selectivity
detect F~ in water.

Then, in order to investigate the fluorescent response effi-
ciency of the PCDP-GFe towards F~, we carried out fluorescence
emission titration experiments (Fig. S12, ESIt). After the
increasing concentration of F~ was gradually added into the
PCDP-GFe, the emission intensity of PCDP-GFe recovered. The
limits of the lowest detection of the fluorescence spectra change
calculated on the basis of 3d/s method are 6.8 x 107" M

PCDP-GFe + F-

Fluorescence Intensity (a.u.)

5(')0
Wavelength (nm)

700

Fig. 3 Fluorescence response of the PCDP-GFe upon addition of
various anions aqueous solution (Aex = 375 nm) in cyclohexanol
system.
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(Fig. S13, ESIf), which indicated that the PCDP-GFe could be
used for ultra-sensitive detection of F~. Based on the successive
response properties of PCDP-G for Fe** and F~, we can see that
the cyclic fluorescence detection was recyclable at least 3 times
(Fig. S14, ESIT). These results illustrate that PCDP-G has higher
sensitivity when compared with other fluorescence sensors for
Fe*" and F~ (Tables S3 and S4, ESIt). Therefore, the supramo-
lecular pseudorotaxanes polymer PCDP-G can be used for
recyclable ultrasensitive detections of Fe*" and F.

The fluorescence response mechanisms of PCDP-G were
carefully investigated via FT-IR and SEM. As shown in the FT-IR
spectrum (Fig. 4), the stretching vibration peaks of -NH on
PCDP-G appeared at 3419 cm ™ '. After addition of Fe’’, the
stretching vibration peaks of -NH shifted to 3455 and
3293 em™ ', and the lactone carbonyl stretching vibration on
coumarin moieties at 1722 cm " got shifted to a lower wave
number at 1717 cm ' upon complexation. The results are
attributed to the oxygen atom and nitrogen atom in the
acylhydrazone-based derivatives having strong coordination
abilities with Fe** and the Fe** trigger amide tautomerization
probably.***° The further addition of F~ induced the stretching
vibration peaks of -NH to shift to 3450 cm ™' and 3298 cm™’,
and the stretching vibration peaks of C=O on coumarin
returned to 1720 cm™'. These were attributed to the strong
combination of F~ with Fe*".>* According to the SEM spectra,
the regular spherical morphology of PCDP changed to the cross-
linked spherical morphology by adding Fe*" and subsequently
changed to the dumbbell pattern. These results also support the
above supposition. Therefore, according to these results, the
proposed reversible Fe** and F~ response mechanism is shown
in Scheme 1, which is based on coordination interactions and
competitive binding processes.

As the PCDP-G could act as an Fe*" and F~ controlled “OFF-
On-OFF” fluorescence response switch, this inspired us to apply
it as a logic gate strategy for the detection of ions. Herein, the
sensitization of PCDP-G luminescence enabled the design of an

(¢c) PCDP-GFe + F-

N 3430 3298

S | ) PCDP-GFe

= 1720

£ A

g 3455 5,

& (a) PCDP-G

«

-

= l 1717
3419 S

1722

4000 3500 3000 2500 2000 1500 1000 500
Wavelength (cm™)

Fig. 4 FT-IR spectra of CPDP-G, CPDP-GFe and CPDP-GFe + F~
complex powdered in KBr disks.
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Fig.5 Implementation and truth table for IMP logic function using the

supramolecular polymer PCDP-G.

“IMPLICATION” logic gate. In this logic gate (Fig. 5a and b), the
two inputs are Fe’* and F~; their absence and presence are
defined as “0” and “1”, respectively. The change in fluorescence
intensity of PCDP-G acted as an output. The defined “1” and “0”
represent the strong fluorescence intensity and weak fluores-
cence intensity, respectively. When there is no input (0, 0), the
output is “1”. Similarly, only the Fe’" input (1, 0) caused the
fluorescence intensity to be extremely weak, and the output was
“0”. With only F~ input, there was a strong fluorescence
intensity, and the output was “1”. When the system was input
with Fe®" and F~ together (1, 0), the fluorescence intensity
increased and gave an output signal of “1”. Therefore, this
simple supramolecular polymer material was a potential
candidate for the development of new generations of digital
devices.

Conclusions

In summary, a novel coumarin-functionalized pillar[5]arene
derivative (P5C) was successfully synthesized. P5C and bis-
bromohexyl pillar[5]arene (DP5) could form a linear AIE
supramolecular poly-pseudorotaxane material (PCDP-G) by C-
H--- and 77 stacking interactions, and the PCDP-G exhibits
strong yellow aggregation-induced emission. Interestingly,
PCDP-G can be used as an AIE supramolecular polymer material
for recyclable ultra-sensitive detection of Fe** and F~. The low
detection limits of PCDP-G for Fe** and F~ were measured to be
4.16 x 107" M and 6.8 x 10~ '° M, respectively. Moreover, the
fluorescence changes of PCDP-G upon the addition of Fe** and
F~ were utilized as an “IMPLICATION” logic gate. The new
strategy of preparing supramolecular polymer material with the
yellow AIE effect for sensitive detection of Fe** and F~ may
stimulate the development of new approaches to fabricating
functional supramolecular materials.
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