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Synthesis and photoluminescent characterization
of ceramic phosphors Li,MgGeO,:Ln>* (Ln** = Pr3*
or Tm>*) under different excitation wavelengths
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In the current work, germanate phosphors Li,MgGeO,4:Ln** (Ln = Pr, Tm) have been synthesized and then
investigated using luminescence spectroscopy. The X-ray diffraction analysis demonstrate that ceramic
compounds Li,MgGeO, containing Pr¥* and Tm*' ions crystallize in a monoclinic crystal lattice.
Luminescence properties of Pr’* and Tm®" ions have been examined under different excitation
wavelengths. The most intense blue emission band related to the D, — S3F,4 transition of Tm>* is
overlaps well with broad band located near 500 nm, which is assigned to F-type centers. These effects
are not evident for Pr¥* ions. Ceramic phosphors Li,MgGeO,:Ln®* (Ln = Pr, Tm) are characterized based
on measurements of the excitation/emission spectra and their decays. The experimental results indicate
that germanate ceramics Li,MgGeO, doped with trivalent rare earth ions can be applied as inorganic
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Introduction

Germanate ceramics with olivine structure are promising inor-
ganic compounds due to their excellent low-permittivity
microwave dielectric properties, solid electrolytic properties
for lithium-ion batteries and emission properties for modern
visible or infrared photonics. In particular, germanate ceramics
belonging to olivine-type family with general chemical formula
Li,MGeO,, where M = Co,' Zn or Mg” are interesting from the
scientific and technological points of view. They crystallized
into an orthorhombic or monoclinic phase. Also, the reversible
phase transformation monoclinic (low-temperature) < ortho-
rhombic (high-temperature) can occur. These ceramic systems
are able to accommodate transition metals or rare earth ions
and then can be applied as efficient phosphors emitting visible
light or near-IR radiation. Recently published studies were
limited to inorganic phosphors Li,ZnGeO, (ref. 3 and 4) and
Li,MgGeO; (ref. 5 and 6) singly doped with Mn** emitting blue/
green light. Moreover, olivine-type phosphors (Li,-Mg;_,)(Sc,—
Mg,_,)GeO, singly doped with Cr’" present tunable near-IR
emission and have practical applications as light sources for
nondestructive food analysis.” In contrast to transition metals,
germanate ceramics with rare earth ions have not been often
examined. Inorganic phosphors Li,SrGeO, present enhanced
emission through energy transfer process between Ce®" and
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phosphors emitting orange (Pr**) or blue (Tm>*) light.

Tb**/Dy**.® The enhanced persistent blue emission was also
realized in Li,ZnGeO, phosphors by rare earth doping (Pr*',
Nd*", Gd*").?

Among rare earths, the Pr** and Tm>" ions are interesting
optical dopants due to presence of several multicolor 4f-4f
luminescent transitions. The increasing demand for crystalline
and amorphous host matrices has promoted the researchers to
develop various types of ceramic phosphors' and inorganic
glasses" doped with Pr*" and Tm?®' ions for their potential
applications as luminescent materials. Trivalent Pr’* ions can
offer luminescence in the blue, green, red and white spectral
ranges depending on the kind of host matrices. Luminescence
properties of Pr’* ions have been examined under ultraviolet?
or blue light*® irradiation. Most of the inorganic phosphors
containing Pr*" ions emit intense orange or red light.**'®
Special attention has been paid to Pr’* doped phosphors
emitting white light.”* Novel optical temperature sensor was
also proposed based on emission of Pr** ions in Bay ;Sr, ;TiO5.2°
In contrast to Pr**, ceramic compounds doped with Tm*" ions
are known mainly as a blue-emitting phosphors.**** Thulium
doped inorganic phosphors could be also applicable in white
light emitting diodes (WLEDs) through Dy** co-doping.>

Structural, thermal and optical properties of ceramics Li,-
MgGeO, un-doped and doped with Er*" and Ho®" ions were
described in our previous work.”® Direct energy band gaps for
Li,MgGeO, with Er’* and Ho®" are found to be 5.67 and 5.77 eV
and they are comparable to the values reported earlier.>®
Further results of the Rietveld refinement confirmed that Li,-
MgGeO, crystallize in a monoclinic crystal lattice.>® Here, we
show preliminary results for ceramics Li,MgGeO, doped with

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Pr** and Tm*". In particular, emission properties of rare earths
have been analyzed under different excitation wavelengths. The
experimental results suggest that germanate ceramics Li,-
MgGeO, doped with rare earth ions can be applied as inorganic
phosphors emitting orange (Pr**) or blue (Tm*") light.

Experimental
Synthesis

Li,Mg(100-GeO04:xLn’" (given in molar%), where Ln** denotes
Pr’** or Tm?*, in the form of pellets have been synthesized via
a conventional high-temperature solid-state reaction method.
The concentration of Ln*" was equal to 0.5 mol%. They are
referred here as LMG-Pr and LMG-Tm, respectively. High purity
initial reagents were Li,CO3z (99.997%), MgO (99.99%), GeO,
(99.99%), and depending on the sample: Pr,0; (99.999%) or
Tm,03 (99.999%). The stoichiometric amounts of raw materials
in appropriate mass ratios were milled and homogenized
thoroughly in an agate mortar for about 1 hour, with ethanol
(POCH Basic 96% pure) as a medium. In the next step, groun-
ded samples were calcinated in a non-covered platinum
crucible at 1100 °C for 6 h in the air atmosphere to achieve
decarbonization. Calcination was divided into two steps:
reaching the temperature of 800 °C in 30 minutes, then getting
to 1100 °C in 10 minutes. Subsequently, calcinated samples
were grounded again and divided into smaller batches. Pellets
(10 mm in diameter) were formed using PVA as a binder and
cold pressed at 375 MPa. Prepared pellets were subjected to heat
treatment to remove the binder at 550 °C for 2 hours (with
a heating rate of 3 °C min~") under ambient air conditions.
After cooling down to room temperature, the ceramic samples
were sintered in the high-temperature furnace at 1200 °C for 5 h
and naturally cooled down to room temperature in a closed
furnace. The sintering process includes several steps: rise to
800 °C in one hour, then sintering for 15 minutes, heating up to
1200 °C (9 °C min '), and sintering for 3 hours.

Methods

In order to study germanate ceramics singly doped with
praseodymium and thulium ions, several measurements at
room temperature were performed, including XRD, SEM, exci-
tation and photoluminescence spectra, and decay curves.
Chromaticity coordinates were also calculated. The nature of
the studied germanate ceramics was identified using an X'Pert-
Pro diffractometer. All X-ray diffraction measurements were
done with a use of the CuK,;,nhq- radiation. The microstructure
of samples was observed using JSM6480 scanning electron
microscope (SEM) along with JSM-7100F TTL LV. Excitation and
luminescence measurements were registered using laser
equipment consisting of a Photon Technology International
(PTI) Quanta-Master 40 (QM40) UV/VIS Steady State Spectro-
fluorometer coupled with a tunable pulsed optical parametric
oscillator (OPO) pumped by the third harmonic of a Nd:YAG
laser. The laser system included a double 200 mm mono-
chromator, a xenon lamp as a light source, and a multimode
UVVIS PMT R928 (PTI Model 914) detector. The spectra were
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registered with a resolution of +0.5 nm. Decay curves with an
accuracy of +0.5 us were recorded using the PTI ASOC-10 [USB-
2500] oscilloscope (Horriba Instruments). It should be also
pointed out that the Commission Internationale de I'Eclairage
(CIE) chromaticity coordinates (x,y) and chromaticity diagram
were calculated from the emission spectra and plotted using
Color Calculator software.

Results and discussion

The X-ray diffraction patterns of the germanate ceramics Li,-
MgGeO,:Pr** (LMG-Pr) and Li,MgGeO,:Tm*" (LMG-Tm) are
presented in Fig. 1. The typical SEM micrographs of the studied
ceramic samples are also shown.

The XRD analysis confirmed that all diffraction peaks can be
well assigned to ceramic compounds crystallize in a monoclinic
lattice with P24/n space group, which is isostructural to Li,-
ZnGeO, (ICDD PDF-4 database - card no 04-015-4929).> More-
over, no additional phases associated to impurities exist
compared to pure Li,MgGeO, monoclinic phase.”® It evidently
reveals that rare earth doping has no effect on the crystalline
structure of germanate ceramics and Pr** (or Tm*") ions are well
entered into the lattice Li,MgGeO,. The SEM images illustrate
germanate samples LMG-Pr and LMG-Tm, which consist of
micrometer-sized and irregular-shaped grains similar to
ceramics Li,MgGeO, containing Er*" or Ho®" ions.>® Previous
studies for La;GasSiO;,:Pr*" phosphors well demonstrated that
the crystalline grains in micron size and irregular morphology
can be successfully observed and these effects are related to the
high-temperature sintering process.”” In our case, rare earth
doping caused a reduction of the grain size compared to the un-
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Fig.1 The XRD patterns and SEM images of ceramic phosphors LMG-
Prand LMG-Tm.
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Fig. 2 Ceramic particles observed with SEM-BE images for ceramic
phosphors LMG-Pr and LMG-Tm.

doped ceramics Li,MgGeO, crystallized in a regular oval-like
shape.*® Moreover, the SEM-BS images for ceramic samples
LMG-Pr and LMG-Tm are also presented in Fig. 2. It is an image
sensitive to the contrast of the chemical composition. Objects
presented in the images also have an even shade of gray. Such
contrasts indicate that the components have reacted and only
one crystalline phase is formed. There are no other precipita-
tions, phases, or inclusions. The monophasic nature of the
created germanate ceramics is confirmed by the X-ray diffrac-
tion patterns shown in Fig. 1. Considering all the above argu-
ments, a conclusion can be drawn that designed ceramics have
been received.

The photoluminescence spectra of the germanate ceramics
Li,MgGeO,:Pr’" (LMG-Pr) and Li,MgGeO,:Tm** (LMG-Tm) have
been examined under different excitation wavelengths. The
emission spectra are shown in Fig. 3.

The systematic studies indicate that luminescence spectra
measured for LMG-Pr depend critically on the excitation wave-
lengths. The spectra excited between 370 and 433 nm range
consist of broad low-intensity emission band centered at about
500 nm. The intensity of band decreases in direction to longer
excitation wavelengths up to about 433 nm when broad emis-
sion of ceramic host is nearly quenched. When sample was
excited above 435 nm, narrow luminescence lines characteristic
for rare earth ions occur. The emission bands are related to
transitions originating from the *P, and "D, excited states to the
lower-lying states of trivalent praseodymium. The most intense
emission transitions of Pr** are observed under excitation of
450 nm line and correspond to bands located in the blue and
reddish-orange spectral ranges.

12388 | RSC Adv, 2023, 13, 12386-12393
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Fig.3 The photoluminescence spectra of ceramic phosphors LMG-Pr
(bottom) and LMG-Tm (top).

Completely different situation is observed for ceramics
doped with Tm**. The photoluminescence spectra measured
under excitation between 355 and 370 nm consist of narrow
band corresponding to the 'D, — *F, blue transition of Tm*"
ions (A, = 460 nm), which is well overlapped with broad emis-
sion of ceramic host. The luminescence band of Tm>" ions is
the most intense, when the ceramic sample was excited at
365 nm. The band assigned to the 'G; — °F, transition of Tm**
ions was also observed in the red spectral range, but its emis-
sion intensity is extremely low.

The obtained results were interpreted on the basis of the
excitation and emission spectra measurements for ceramic
samples un-doped and singly doped with Pr** and Tm*" under
selective excitation wavelengths. The excitation spectra were
measured under monitoring emission wavelengths at 610 nm
(LMG-Pr) and 460 nm (LMG-Tm). Fig. 4 shows the excitation
and emission spectra measured for samples LMG, LMG-Pr and
LMG-Tm, respectively.

Our previous spectroscopic investigations® revealed that
luminescence spectrum measured for un-doped LMG consists
of broad band located in the blue/green region with maximum
peak emission near 500 nm depending on the excitation

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The excitation and emission spectra of ceramic phosphors
undoped (LMG) and doped with Pr* (LMG-Pr) and Tm>* (LMG-Tm).

wavelength. Broad emission is associated to the occurrence of
magnesium in LMG ceramic host. Similar effects were also
observed earlier for MgO nanobelts®® and MgO films* where
blue/green emission was identified as defects and oxygen
vacancies in magnesium oxide assigned to F-type centers. Thus,
the excitation spectrum for un-doped LMG monitored under
emission wavelength A.,, = 500 nm shows broad band near
380 nm (Fig. 4).

Characteristic emission bands of Pr’" are well observed,
when ceramic sample LMG-Pr was excited by 450 nm line. In
this case, sample LMG-Pr was excited directly at *P, state of Pr**
and ceramic host LMG could be also pumped theoretically on
the edge of its broad excitation band. However, characteristic
broad band assigned to ceramic matrix is not evident in the
emission spectrum of LMG-Pr under 450 nm excitation.
Considering that fact we suggest that the ceramic host cannot
be excited efficiently and the interaction between LMG matrix
and Pr*" ions is rather difficult to obtain contrary to sample
LMG-Tm. When the excitation line 365 nm was used, ceramic
sample LMG-Tm is excited simultaneously at 'D, state of Tm>"
ions and ceramic matrix. In this case, the excitation band 'D,
(Tm®") is very close to the maximum of excitation band of
ceramic host LMG. Thus, the luminescence band due to the 'D,
— *Hg (Tm®") transition is well overlapped with broad emission
characteristic for ceramic host LMG. Therefore, we suggest that
the excitation energy may be also transferred from ceramic host
LMG to Tm>*. The excitation spectra measurements confirms
this hypothesis. The excitation spectrum measured under
monitoring emission wavelength 460 nm (D, — °*He lumi-
nescent transition of Tm**) consists of two overlapped broad
and narrow bands characteristic for ceramic host LMG and
electronic transition originating from the *Hg ground state to
the 'D, state of Tm®", respectively. These effects are not
observed for LMG-Pr.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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CIE 1931 Chromaticity Diagram

Excitation wavelength: (a) 370 nm
(b) 385 nm
(c) 400 nm
(d) 425 nm
(e) 430 nm
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(g) 435 nm
(h) 440 nm
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(j) 450 nm
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Fig. 5 The CIE chromaticity diagram of ceramic phosphors LMG-Pr.

In order to determine the color of emitting radiation for
studied ceramic phosphors, the Commission Internationale de
I'Eclairage (CIE 1931) chromaticity coordinates (x,y) were
calculated from the emission spectra registered in the visible
spectral range. The CIE diagrams for ceramic samples LMG-Pr
and LMG-Tm varying with the excitation wavelengths are pre-
sented in Fig. 5 and 6.

According to previous studies, different ceramic phosphors
containing praseodymium ions, such as BaNb,0g,** CaWO,,*"
and Y,Mo00g,** exhibit orange-red emission. However, results
obtained for Sry 5Ca, 55104, Ca3Y,Si301,,%* and CaSnO; (ref. 35)
show that chromaticity coordinates determined for system
doped with Pr** ions correspond to green and greenish-blue
region.

Our optical investigation indicates that the values of (x,y) for
ceramic phosphors containing praseodymium ions strongly
depend on the excitation wavelengths. They are changed from
green to orange region with increasing excitation wavelength

CIE 1931 Chromaticity Diagram

(a) 340 nm
(b) 355 nm
(c) 365 nm
(d) 370 nm
(e) 380 nm
(f) 390 nm
(g) 400 nm
(h) 410 nm

Excitation wavelength:

(i) 420 nm
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Fig. 6 The CIE chromaticity diagram of ceramic phosphors LMG-Tm.
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from 370 nm to 450 nm. The intensities of emission lines due to
characteristic transitions of Pr’" are the highest for sample
under 450 nm excitation. Thus, the chromaticity coordinates
are due to the orange region of the CIE diagram. The evaluated
chromaticity coordinates were similar to that of YAl;(BO;),.*

Similar situation is observed for ceramic phosphors doped
with thulium ions, where the values of (x,y) also depend criti-
cally on the excitation wavelengths. They are changed from blue
to green region, when the excitation wavelength increases from
340 nm to 430 nm. Previous studies for ceramic materials
containing Tm®" ions demonstrated well that phosphors like
LiLaSiO, (ref. 37) and BaMoO, (ref. 38) can be used in blue light
emitters. It was also confirmed by our optical results for ceramic
phosphor Li,MgGeO,:Tm>" excited at 365 nm, where the
intensity of emission band due to the 'D, — *H, transition of
thulium is the highest. Thus, the chromaticity coordinates
calculated for Li,MgGeO, doped with thulium ions correspond
to the blue region of the CIE diagram. The results suggests that
Li,MgGeO, host can be successfully used as ceramic phosphors
emitting orange (Pr’") or blue (Tm*") light under selective
excitation wavelengths.

Luminescence decays from the excited states of rare earths in
Li,MgGeO, have been also studied. They are shown in Fig. 7.

For ceramic sample LMG-Pr luminescence decay curves were
measured under excitation 450 nm and monitoring emission
wavelength 610 nm. For sample LMG-Tm, the parameters were
as follows: A = 365 nm, A.,, = 460 nm. Decay curves for
samples LMG-Pr and LMG-Tm are well-fitted to a mono-
exponential decay mode described by the equation I(¢) = I, x
exp(—t/t), where I(t) and I, are the luminescence intensities at
time ¢ and ¢ = 0, respectively, while 7 is the luminescence life-
time. Luminescence decay curve measured for ceramic host
LMG under direct excitation 381 nm and monitoring emission
wavelength 500 nm is also mono-exponential. Based on decay
curve measurements, luminescence lifetimes for the ceramic
host LMG and the excited states of rare earths were determined.

[& LMG-0.5Tm} O LMG-0.5Pr}
Luminescence lifetime - Luminescence lifetime
of 'D, state of 'D, state
1, =12.7ps T,=1242ps
g =460 Nm Ay =608 NM

Log(luminescence intensity [arb. units])

3 T
600 5 10 15 200
Time [us]

T T
125 250 375 500
Time [us]

— —

0 20 40
Time [us]

Fig.7 The CIE chromaticity diagram of ceramic phosphors LMG-Tm.
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For LMG and LMG-Tm ('D, state of Tm>"), the measured life-
times are close to 4.6 ps and 12.7 us, respectively. Similar to the
'D, (Tm*"), the experimental values of emission lifetimes for the
*P, state of Pr*" ions in numerous glasses and ceramics are very
short and difficult to determine with relatively good accuracy.
Here, the lifetime of Pr*" is significantly longer and its value is
equal to 124.2 ps. It suggests that luminescence is decayed from
the lower-lying state 'D, (Pr’") in Li,MgGeO,.

Our previous studies for high-phonon borate glasses doped
with Pr’* ions® indicate that the excitation energy is transferred
non-radiatively (multiphonon relaxation MPR) very fast from
the P, state to the lower-lying 'D, state due to high-phonon
energies and consequently reddish-orange luminescence cor-
responding to the 'D, — *H, transition of Pr** is observed, only.
For lower-phonon germanate glasses doped with Pr** ions® two
overlapped radiative transitions, i.e. short-lived *P, — *Hg and
long-lived 'D, — *H, luminescent transitions of Pr** are existed
in this spectral range. It could be attributed to the lower phonon
energies and the increased radiative transition from the excited
state *P, (Pr*"). This is a consequence of a substantial decrease
in nonradiative multiphonon relaxation from the *P, state to
the lower-lying 'D, state of Pr**. Further luminescent experi-
ments for LMG-Pr excited selectively at 450 nm (P, state) and
585 nm ('D, state) confirm coexistence of both emission bands
of Pr*" ions in Li,MgGeO, under blue pumping. Fig. 8 presents
luminescence spectra of Pr** ions in ceramic host LMG in the
orange-red range. The sample was pumped selectively by
450 nm and 585 nm excitation lines, respectively.

The spectrum measured for LMG-Pr under 585 nm excitation
shows emission band related to the 'D, — *H, transition of
Pr*". Completely different situation is observed for LMG-Pr
excited at higher-lying state *P, (Pr’") by 450 nm line, where
several emission bands are present. Compared to the results
obtained for sample excited at 585 nm, the emission spectrum

3Py~ Hs
'D,~°H,
3p,—%F, LMG-F’rI

)
= _
> — Xy = 450 nm
o =
= Aexc = 585 nm
2
‘»
=
L
=

T 1 T L]

550 600 650 700 750 800

Wavelength [nm]

Fig. 8 Luminescence spectra of ceramic phosphors LMG-Pr excited
at 450 nm (°Pg state) and 585 nm (*D state).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Near-IR emission spectra of ceramic phosphors LMG-Pr and
LMG-Tm.

consists of characteristic band due to the 'D, — *H, transition
as well as additional bands corresponding to transitions from
the P, state to the lower-lying states of Pr**. It proves that both
3p, and 'D, excited states of Pr** ions coexist in ceramic host
Li,MgGeO, under blue excitation.

Finally, germanate ceramics Li,MgGeO,:Ln*" (Ln = Pr, Tm)
have been examined for near infrared luminescence. From
literature data it is well known that some ceramic materials
synthesized in nano- or micrometric scale exhibit efficient
luminescence in the second near-infrared window (NIR-II),
which is important for numerous biomedical and optical
applications.**** Among rare earths, the Pr** (ref. 49) and Tm**
(ref. 50) ions belong to promising optical dopants emitting
radiation in the NIR-II region. However, inorganic phosphors
with Pr*" or Tm®" have been rarely investigated for NIR-II
luminescence. To the best of our knowledge, they are rather
less documented in literature. Our optical studies indicate that
both ceramic samples LMG-Pr and LMG-Tm show near-IR
emission in the 1350-1650 nm spectral range.

Fig. 9 presents near-infrared luminescence spectra for
samples LMG-Pr and LMG-Tm measured under excitation by
450 nm (Pr’*) and 808 nm (Tm®") line, respectively. Lumines-
cence spectrum for LMG-Tm consists of NIR band centered at
about 1.47 um, which corresponds to the *H, — *F, transition
of Tm*"5' In contrast to LMG-Tm, three NIR luminescence
bands are observed for sample LMG-Pr, which can be assigned
to the 'G, — *H;, 'D, — 'G, and °F;, °F, — >H, transitions of
Pr’**.*> Our preliminary investigations demonstrate that Li,-
MgGeO4:Ln** (Ln = Pr, Tm) can be also applied as ceramic
source emitting radiation in the NIR-II window. These
phenomena will be the subject of further investigation.

Conclusion

Rare earth doped germanate ceramics Li,MgGeO4:Ln*" (Ln =
Pr, Tm) referred here as LMG-Pr and LMG-Tm have been

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

prepared using solid-state reaction method and then studied
using luminescence spectroscopy. The ceramic compounds
Li,MgGeO, doped with Pr’* and Tm®" ions crystallize in
monoclinic crystal lattice, which was confirmed by X-ray
diffraction analysis. Luminescence properties of trivalent rare
earth ions have been analyzed under various excitation wave-
lengths. For sample LMG-Tm, the most intense blue emission
band is due to the 'D, — °3F, transition of Tm*" and well
overlapped with broad band centered at about 500 nm assigned
to F-type centers. These effects are not evident for LMG-Pr.
Based on measurements of the excitation/emission spectra
and their decays, the experimental results for germanate
ceramics Li,MgGeO4:Ln*" (where Ln = Pr or Tm) are presented
and discussed in details. It was suggested that germanate
ceramics Li,MgGeO, doped with trivalent rare earth ions can be
applied as inorganic phosphors emitting orange (Pr**) or blue
(Tm*") light. Further studies suggest that rare earth doped
germanate phosphors Li,MgGeO,:Ln** (Ln = Pr, Tm) can be
applied as ceramic sources emitting radiation in the second
near-infrared window.
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