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Engineering S-scheme Ag,CO3z/g-c3N4
heterojunctions sonochemically to eradicate
Rhodamine B dye under solar irradiation
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The use of natural solar radiation is a low-cost significant technology for water pollution remediation and
production of clean energy. In this work, S-scheme Ag,CO3z/g-C3N4 heterojunctions were engineered for
carefully eradicating Rhodamine B dye under natural sunlight irradiation. Solid thermal decomposition
reactions generate g-C3N,4 sheets by annealing urea at 520 °C. Ag,COsz nanoparticles are directed and
localized sonochemically to the active centers of g-C3sN,4 sheets. The physicochemical properties of the
solid specimen were determined by PL, DRS, XRD, HRTEM, mapping, EDX, N,-adsorption—desorption
isotherm and XPS analyses. As elucidated by HRTEM, PL and DRS analyses, 5 wt% of spherical Ag,COsx
nanoparticles deposited on the g-CzN,4 sheet surface and nearly equidistant from each other elevate the
electron—hole separation efficiency and broaden the absorption capacity of photocatalysts. Rhodamine
B dye was degraded at a rate of 0.0141 min~* by heterojunctions containing 5 wt% Ag,COs and 95 wt%
g-C3Ng4, which is three-fold higher than that on pristine g-CsN4 nanosheets. Free radical scrubber
experiments revealed the contribution of charge carriers and reactive oxygen species to the

decomposition of RhB dye with a preferential role of positive holes and superoxide species. PL
Received 10th January 2023

Accepted 11th March 2023 measurements of terephthalic acid and scrubber trapping experiments provide confirmatory evidence for

charge diffusion via the S-scheme mechanism that accounts for the production of electron—hole pairs
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1. Introduction

Water pollution is an environmental crisis that urgently needs
to be addressed to meet the increasing demand for fresh water.
Organic dyes are the major toxic pollutants discharged from
different industries causing serious problems to human health
and aquatic life.'™ Adsorption, reverse osmosis, electro-
chemical process, coagulation, enzymatic treatment and ion-
exchange processes are very expensive, complicated tech-
niques that produce a second generation of pollutant
materials.®*° Photocatalysis on the surface of semiconductors
is a green technology for the destruction of organic wastes into
eco-friendly species. The photocatalytic reaction requires two
factors to achieve optimization conditions. The first one is
a low-cost and broadband solar radiation source that is suffi-
cient to decompose millions of molecules of pollutants. The
second requirement is an appropriate semiconductor with
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with strong redox power. This novel research work is contributory to manipulate the S-scheme
heterojunction for efficient and low-cost wastewater treatment under natural solar irradiation.

tunable band gap energy and extremely high surface area that
generates huge amounts of reactive oxygen species, which can
destruct toxic pollutants in a short time under light irradiation.
Natural sunlight in our country is very abundant in all seasons,
particularly in summer days and acts as a low-cost radiation
source. The natural sunlight contains a minor amount of UV
radiation (5%), visible radiation (43%) and near infra-red (NIR)
radiation (50%). Most of the previous research studies have
focused on investigating the photocatalytic process under UV
and visible light irradiation. In recent years, NIR is very effec-
tive in decomposing organic pollutants via photocatalytic and
thermal routes. An appropriate semiconductor from the
perspective of thermodynamics and kinetics must have the
advantages of low cost, environmentally benign nature, high
separation rate and fast transfer of charge carriers. Efficient
semiconductors with wide bandgap structures as TiO,, SnO,,
ZnO and CeO, show high rate of organic pollutant
decomposition*® under UV irradiation that constitutes only
5% of the natural solar radiation. Narrow band gap energy
semiconductors absorb visible light radiation; however, the
ultra-fast electron-hole pair coulombic attraction decreased
the life time required to generate reactive oxygen species.””** In
conclusion, a single semiconductor cannot achieve the
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optimization properties for decomposing the organic pollut-
ants. To overcome the limitations of single photocatalysts,
heterojunctions composed of wide band gap energy with high
efficiency for charge carrier separation and narrow band gap
energy that harvests solar radiation are more favored. Recently,
graphitic carbon nitride (g-C3N,), has gained great interest in
photocatalytic reactions due to its good stability in basic and
acidic media, low synthesis costs, non-toxicity without side
effects, sufficient biocompatibility, thermal stability, and
a narrow band gab energy of about 2.7 eV and promote the
photocatalytic activity under visible light.>** Low specific
surface area (~50 m® g~ ') and ultra-fast attraction of electron—
hole pairs inhibit the prolonged time of charge carriers in the
photocatalytic process. The low valence band potential (Eyg =
+1.5 eV) of g-C3N, fails to generate hydroxyl radicals (-OH),
which are essential species for the destruction of organic
pollutants. The hybridization of wide and narrow band gap
energy semiconductors is a promising issue for successfully
generating heterojunctions with appropriate solar radiation
absorbability and high separation and transportation effi-
ciency of electron-hole pairs. Silver-based photocatalysts such
as AgCl, Ag;PO,, AglO,, AgVO; and Ag,CO; exhibit strong
photocatalytic reactivity in the decomposition of organic
pollutants.”*** Much attention is drawn towards Ag,CO;
nanoparticles due to their insolubility in water, low toxicity,
adjustable bandgap structures and simple synthesis routes.****
The successful construction of heterojunctions requires the
appropriate adjustment of the band energy structure of the two
semiconductors to generate charge carriers with an auspicious
redox power.**** Recent research studies have focused on
coupling Ag,CO; with g-C;N, to generate a successful hetero-
junction for removing organic containments from
wastewater.***' Konglin et al. reported the successful photo-
degradation of Rhodamine B and methylene blue dyes over g-
C;3N,4/Ag,CO; containing 3.5 wt% g-C;N,, which was ascribed to
the predominant role of g-C;N, in limiting the electron-hole
recombination.*® Lei et al. synthesised g-C3;N,/Ag,CO; con-
taining 25 wt% g-C3;N, via a sonochemical route for destructing
RhB dye under a 300 W xenon lamp, and the experimental
results manifested that g-C3N, increases the life time for
charge carriers, which is responsible for the degradation
process.* Shugang et al. prepared Ag,CO;/g-C3N, containing
40% Ag,CO; by a co-precipitation process for removing methyl
orange and methylene dyes. The remarkable reactivity of the
nanocomposite was ascribed to the influence of Ag,CO; in
enhancing the electron-hole transportation and separation.*®
Yun Feng et al. prepared Ag,CO;/g-C3N, containing 30%
Ag,CO; by a precipitation method for the removal of methyl
orange and methylene blue. The exceptional reactivity is
attributed to the role of Ag,CO; in enhancing the efficiency of
charge carrier separation. Previous research studies concen-
trated on doping silver carbonate as a major constituent with g-
C;N,4, which is considered a high-cost route for water treat-
ment. In this work, we made an attempt to construct S-scheme
Ag,CO;/g-C3N, with a minimum amount of silver carbonate.
The previous research explores the construction of Ag,CO;/g-
C3N, via type (II) heterojunctions and direct Z-scheme
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mechanism. The type (II) heterojunction fails from dynamic,
thermodynamic and energetic points of view to explain the
actual charge transportation. The electron transfer from high
to low conduction band is accompanied by repulsion force
between the existing and the transferring electrons. Concur-
rently, the electron diffusion from high to low energy level
dissipates electrons with a strong reducing power. Direct Z-
scheme fails to explain the precise analysis of charge migra-
tion between the two semiconductors. The construction of S-
scheme Ag,CO;/g-C;N, heterojunctions has not been
explored in previous research studies. Hybridizing Ag,CO; with
high positive oxidative potential and g-C;N, with high negative
reductive potential generate successful S-scheme hetero-
junctions. The Fermi level and conduction band of g-C3;N, is
higher than those of Ag,COj;; however, the work function of
Ag,CO; is greater than that of g-C3N,. Upon light illumination,
the Fermi levels of Ag,CO; and g-C3N, jump upward and
downward until the two Fermi levels are contacted at the
interface region. At this contact point, the electrons and holes
with low redox potential are attracted toward each other, and
vanished leaving a strong internal electric field. Concurrently,
the holes and electrons in the higher valence and conduction
bands with a strong redox power are consumed in the photo-
catalytic process. The production of S-scheme systems is more
favorably engineered via a solution-based approach to control
and tune the particle structure and pore matrix. The sono-
chemical route is a professional solution process for the
synthesis of Ag,CO;/g-C3;N, heterojunctions with the homoge-
neous location of Ag,CO; on g-C3;N, active centers. The as-
synthesized heterojunction was subjected to decomposition
of Rhodamine B under solar irradiation to utilize UV, visible
and near infra-red radiations. Exclusively, NIR light elevates
the reaction temperature through the photothermal effects,
which enhances the photocatalytic activity. In this work, we
aimed to synthesise g-C;N, from microcrystalline urea via
a thermal decomposition process. Ag,CO; nanoparticles were
hybridized with g-C;N, sheets in an ultrasonic bath of 300 W
intensity. The physicochemical properties of the solid speci-
mens were characterized by XRD, FTIR, HRTEM, EDX, XPS,
mapping, N, adsorption-desorption isotherm, DRS and PL
analyses. The photocatalytic activity of the heterojunctions was
explored by following the degradation of Rhodamine B dye
under natural sunlight radiation of 500 W intensity. The key
role of the oxygen radicals and charge carriers was elaborated
by carrying out various trapping scavenger experiments and
following the PL analysis of terephthalic acid as a probe radical
material. On the basis of DRS, PL and trapping scavenger
analyses, a proposed mechanism for the transportation of
charge carriers between Ag,CO; and g-C;N, semiconductors in
the circuit of the heterojunction is illustrated.

2. Materials and methods
2.1. Material

Isopropanol, urea, sodium carbonate, methanol, silver nitrate,
benzoquinone, ammonium oxalate, Rhodamine B dye and ter-
ephthalic acid were supplied by Sigma-Aldrich Company.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.2. Preparation of g-C;N, nanosheets stirring at 150 °C. The solution was allowed to stand at room
temperature to get rid of volatile methanol carefully. Then,

2-C3;N, sheets were synthesized from urea after purification via ; :
100 g of recrystallized urea was annealed in a reactor made of

recrystallization by 200 mL of methanol (99%) with continuous
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Fig. 1 Scheme for the synthesis of Ag,CO3z/g-C3sN4 nanocomposites.
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aluminum metal at 520 °C for 3 hours and the obtained solid
was washed with distilled water and dried at 80 °C. Finally,
a yellow solid specimen was obtained and ground in a porcelain
mortar to generate g-C3N, nanosheets.

2.3. Preparation of Ag,CO; nanoparticles

First, 6 g AgNO; dissolved in 100 mL distilled water was added
to a solution containing 2 g Na,CO; dissolved in 100 mL
distilled water with continuous stirring for 1 hour to ensure
homogenous distribution. The solution was sonicated for
30 min in an ultrasonic bath at 300 W intensity followed by
filtration, washing with distilled water and drying at 110 °C. A
dark yellow solid was obtained, ground and stored in a falcon
tube.

2.4. Preparation of Ag,CO;/g-C;N, nanocomposites

Fig. 1 illustrates the plausible scheme for the synthesis of S-
scheme Ag,CO;/g-C3N, heterojunctions via a sonochemical
route. Typically, a definite amount of silver carbonate nano-
particles dispersed in 20 mL of distilled water were sonicated
with g-C3N, nanoparticles for 30 min by certain ratio to obtain
(5, 10 and 20 w/w%) Ag,CO;/g-C3N,. After a while, each of the
solution mixture was stirred for 1 h, filtered, washed with
distilled water and dried at 80 °C. The photocatalysts are
denoted as g-C3N,, Ag,CO;, CNAg5, CNAg10 and CNAg20 for
pristine g-C;N,, pristine Ag,CO; and the heterojunctions con-
taining 5, 10 and 20 wt% Ag,COs3, respectively.

2.5. Material characterization

A PANalytical X’PERT MPD diffractometer with Cu [Ko/Koi,]
radiation was employed to investigate the crystalline properties
of the as-synthesized heterojunctions. FTIR spectroscopy
revealed the functional groups of the nanocomposite samples.
Adsorption isotherms of N, at 77 K precisely investigated the
surface parameters and pore structure of the solid specimens.
HRTEM (JEOL 6340) visualized the particle size distribution of
Ag,CO; on the sheets of g-C3N,;. A K-ALPHA (Themo Fisher
Scientific, USA) instrument with monochromatic X-ray Al Ka
radiation in the range of 10-1350 eV was used for XPS analysis.
JASCO spectroscopy (V-570) was performed to analyze the
diffuse spectrum of the photocatalyst and determine the band
energy structure. A lumina fluorescence spectrometer (Thermo
Fisher Scientific) was used to analyze the efficiency of photo-
generated electron-hole separation.

2.6. Photocatalytic degradation of RhB dye

Typically, 0.1 g of the photocatalyst is mixed with 100 mL of
10 mg L~ RhB dye in a solar reactor. The suspension was
continuously stirred for 1 hour in the darkness until
adsorption/desorption equilibrium was reached. After a while,
the mixture solution was exposed to natural sunlight (450 W) at
about 3 p.m. (Aug. 2021) for two hours. Then, 4 mL of the
mixture was collected at definite time intervals, and then the
photocatalyst was separated by centrifugation at 4000 rpm for
10 min. The photocatalytic degradation progress was followed
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by tracing of the reduction of dye color intensity using a UV-
visible spectrophotometer. The photocatalytic mechanism and
nature of reactive species were investigated using free radical
scrubbers such as AgNO;, isopropanol, ammonium oxalate and
benzoquinone for detecting conduction band electrons,
hydroxyl radicals, holes and superoxide radicals. The photo-
luminescence of terephthalic acid was investigated to monitor
the production of hydroxyl radicals at an excitation wavelength
of 325 nm.

3. Results and discussions

XRD spectrum explores the crystalline structure of pristine g-
C;3N,, Ag,CO3, CNAg5, CNAg10 and CNAg20 nanocomposites
[Fig. 2]. Prevailing diffraction peaks of g-C;N, were recorded at
13.2 and 27.59°, which were ascribed to the (100) and (002)
diffraction planes (JCPDS no. 87-1526). However, the diffrac-
tion peaks recorded at 17.8°, 20.1°, 31.9°, 32.7°, 36.5°, 38.8°,
41.1°, 43.7°, 46.5° and 50.9° were ascribed to Ag,CO; (JCPDS
No. 23-0339) in the monoclinic crystalline structure. The
Debye-Scherrer equation records that the crystalline size is
23.5, 30.7, 8.5, 7.3 and 6.5 nm for g-C3N,, Ag,CO3, CNAg5,
CNAg10 and CNAg20 nanoparticles, respectively. The XRD
pattern of the CNAg5 nanocomposite containing 5 wt%
Ag,CO; resembled the diffraction pattern of g-CzN, with
complete missing of the diffraction peaks assigned to Ag,COj3,
revealing the homogeneous dispersion of Ag,CO; between g-
C;3;N, sheets. The prevailing diffraction peaks assigned to
monoclinic Ag,CO; were vividly recorded in the nano-
composites containing 10 and 20 wt% Ag,CO;. The chemical
interaction between g-C;N, and Ag,CO; was investigated by
the FTIR spectrum. In Fig. 3a, the spectrum of g-C3;N, shows
various peaks in the range of 1100-1700 cm ™ assigned to the
stretching vibration of heterocyclic C-N and C=N bonds and

|
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Fig. 2 (a) XRD pattern of g-C3N4 Ag,COsz;, CNAg5, CNAgl0 and
CNAg20.
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the peak at 808 cm ™ is attributed to the triazine units, and the
broad peak in the range of 3000-3500 corresponds to N-H and
O-H bonds of physically adsorbed water. For the spectrum of
Ag,CO; four peaks were found at 720, 800, 1320, and
1430 cm™ ', indicating the presence of the CO;>~ group. Ny-
adsorption-desorption isotherms of pristine g-C;N, and
CNAg5 were classified as type (II) with a closed hysteresis loop,
which was ascribed to the non-porous structure [Fig. 4]. The
surface area of g-C;N, and CNAg5 is 55.5 and 44.3 m* g '
according to the BET equation in its normal range of appli-
cability. The existence of such open surface prohibits the
photocatalytic reaction with unrestricted accommodation of
pollutant molecules. However, porous systems restrict the
diffusion and transportation of RhB molecules due to the pore
constrictions. The HRTEM image of the CNAg5 heterojunction
is represented in Fig. 5, which records the generation of g-C;N,
sheets with laminar structure containing various wrinkle
points. On careful exploration of HRTEM images at different
magnifications, one can notice the successful deposition of
spherical Ag,CO; nanoparticles on the active sites of g-C;N,
sheets at equidistant positions in the homogeneous arrange-
ment, which reveals the strong chemical interaction between
Ag,CO; nanoparticles and g-C;N, sheets. The particle size
distribution was elucidated by constructing histograms that
reveal that major nanoparticles exhibit a size varying between
15 and 20 nm. HRTEM records the existence of lattice fringes
of spacing 0.315 nm, which were ascribed to the (100) plane of
Ag,CO;. SAED analysis manifests the existence of different
rings ascribed to the crystalline planes of g-C;N, and Ag,CO;
nanoparticles. Mapping and EDX elemental analysis results
are illustrated in Fig. 6, revealing the uniform distribution of
C, N, Ag and O in the CNAg5 heterojunction. The production of
porous graphitic carbon nitride sheets with spongy structure
was clearly observed with the homogeneous distribution of
Ag,CO; on the localized active sites on g-C;N, sheets. The
oxidation state and elemental distribution of the
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Fig. 5 HRTEM image and SAED pattern of CNAg5.

heterojunction constituent was investigated by XPS analysis
[Fig. 7]. The spectrum indicates the existence of Ag, O, Cand N
with a perspective binding energy, revealing the high purity of
the nanocomposite without the existence of any contaminant
from the preparation medium. At binding energies of 367 eV
and 373 eV, Ag (3d) was detected, which deconvoluted into Ag
3ds/, and Ag 3d3,,, respectively, having a spin-orbit separation
of ca. 6.0 eV as detected in the previous research studies. The C
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1s signal was resolved into three different peaks at 284.28 eV,
287.68 eV and 293.28 eV, corresponding to the C-C bonding
states of surface carbon, sp>-bonded C (N-C=N) groups and
carbonate (CO;*7) groups from Ag,COj;. The broad peak of
the N 1s spectra was resolved into four peaks at 398.6, 399.8,
400.4 and 403.9 eV, assigned to C-N-C, N—(C)3;, C-NH,, and =
excitation, respectively. Moreover, the characteristic peak of O
1s was deconvoluted into three peaks at 530.1 eV, 531.8 and

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Mapping and EDX spectrum of CNAg5.

532.8 eV which were ascribed to the C-O and C=0 bonds in
Ag,CO; and the surface of composite adsorbed -OH groups.
The color of the nanocomposite became darker upon the
incorporation of various contents of silver carbonate, revealing
the shifting in the solid specimen's response to the visible
light absorbability. Fig. 8 illustrates the DRS analysis of pris-
tine g-C;N,, Ag,CO; and Ag,CO;/g-C3N, heterojunctions. The
band gap energy was calculated according to the Tauc equa-
tion to determine the type of the electronic transition. The
shifting in light absorbability of g-C;N, from 420 to 470 nm is
sufficient to enhance the photocatalytic reactivity of the solid
specimen in the visible light region. The valence and
conduction band potentials were calculated on the basis of
band gap energy and the electronegativity of g-C3;N, and
Ag,CO;. The valence and conduction band potentials of g-C;N,
are +1.57 and —1.13 eV. However, the valence and conduction
band potentials of Ag,CO; are +2.55 and +0.45 eV. The

© 2023 The Author(s). Published by the Royal Society of Chemistry

electron-hole separation efficiency for single-phase g-C;N,
and the as-synthesized heterojunctions was explored by con-
structing the PL spectrum of solid specimens [Fig. 9]. A
fantastic emission signal at an intensity of 445 nm belongs to
the electron-hole coulombic attraction recorded in the PL
spectrum. About 40, 45, 68 and 73% reduction in the PL peak
intensity was detected with the introduction of 5, 10, 15 and
20 wt% Ag,CO; on the g-C3;N, surface. These results clearly
indicated the significant role of Ag,CO; in decreasing the
electron-hole coulombic attraction force as well as promoting
strong interactions between Ag,CO; and g-C;N,.

4. Photocatalytic degradation of
Rhodamine B dye

The ubiquitous existence of dyes and antibiotics in wastewater
is an alarming environmental issue that affects human health

RSC Adv, 2023, 13, 12229-12243 | 12235
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Fig. 7 XPS spectra of C, O, N and Ag in CNAg5.

and aquatic life. Among the industrial dyes, Rhodamine B is
one of the most employed dyes in industries. Rhodamine B dye
(RhB) is toxic, carcinogenic, and non-biodegradable that poses
a serious threat to human health. Various routes were devel-
oped for the safe destruction of RhB dye into eco-friendly
species without producing a secondary generation of pollut-
ants. Photocatalytic destruction of RhB under natural solar
irradiation into CO,, water and small molecules is an auspi-
cious route for expelling RhB dye from wastewater. The effi-
ciency of the as-synthesized heterojunctions in degrading RhB
was tested and compared under natural sunlight irradiation
[Fig. 10] to investigate the influence of change in silver
carbonate concentration on the efficiency of g-C;N, sheets. The
decomposition of Rhodamine B dye under natural sunlight
irradiation in the absence of photocatalysts is negligible due to
the strong chemical stability of the dye solution. Pristine g-
C;N, sheets exhibit poor efficiency in degrading RhB dye due to
the ultra-fast recombination rate of electron-hole pairs and
mild absorption responsibility under solar irradiation. On the
contrary, pristine Ag,CO; shows high efficiency in degrading
RhB dye, which results from the matching in band gap energy
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with sunlight absorbability. However, the high cost of the silver
precursor hampers the industrialization of Ag,CO; for waste-
water treatment. The incorporation of small amounts of
Ag,CO; on the surface of low-cost semiconductors is a prom-
ising route for the manipulation of efficient heterojunctions
with a strong redox power. Compared with pristine g-C3;Ny, the
heterojunctions containing 5, 10, and 20 wt% recorded a fast
rate of dye decomposition that reached 95% of the dye initial
concentration on the surface of heterojunctions containing
5 wt% Ag,CO; [Fig. 11a]. The decomposition of RhB dye passes
through several intermediates generated by the expelling of the
ethyl groups one by one. This process is trusted by observing
various absorption peaks at different wavelengths arranged in
descending order. The process of de-ethylation of the fully
N,N,N",N -tetra-ethylated Rhodamine molecule generates
different intermediates as N,N,N -tri-ethylated Rhodamine,
N,N -di-ethylated Rhodamine, and N-ethylated Rhodamine at
540, 522 and 502 nm, respectively. The rate of pseudo first
order of the dye degradation is 0.0012, 0.0434, 0.0141, 0.0123
and 0.0098 over g-C3N,, Ag,CO;, CNAg5, CNAg10 and CNAg20,
respectively [Fig. 11b]. The kinetic results indicated that the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 PL spectra of g-CzN4, Ag,COs, CNAg5, CNAg10, and CNAg20.

rate of dye degradation over CNAg5 is fourfold higher than that
on pristine g-C3N,. Scrubber trapping experiments using ben-
zoquinone, isopropanol, ammonium oxalate and silver nitrate

© 2023 The Author(s). Published by the Royal Society of Chemistry

were carried out to explore the role of superoxide and hydroxyl
radicals besides the positive hole and electron conduction
band on the destruction of RhB dye. The experimental result
recorded a preferential retardation in RhB dye mineralization
in the presence of benzoquinone, isopropanol and ammonium
oxalate, which directed the attention toward the positive role of
reactive oxygen species and positive hole in the photocatalytic
reaction [Fig. 11c]. The production of OH' groups under solar
irradiation on the CNAg5 surface was recorded by following the
intensity of PL emission signals of hydroxyl terephthalic acid at
424 nm [Fig. 11d]. The peak intensity elevates with the increase
in the irradiation time, which is taken as evidence for increase
in the production of OH" species.

The exceptional photocatalytic reactivity of the as-
synthesized samples was attributed to the construction of S-
scheme Ag,CO;/g-C;N, heterojunctions. This novel hetero-
junction harvests the full broad spectrum and enhances the
efficiency of electron-hole pair separation and transportation
under solar irradiation. The S-scheme heterojunction is
composed of a Ag,CO; oxidative photocatalyst and a g-C3N,
reductive photocatalyst. Upon light illumination, electrons are

RSC Adv, 2023, 13, 12229-12243 | 12237
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transferred from g-C;N, with a greater Fermi level and more C3;N, photocatalysts jump upward and downward until the two
negative conduction band potential to Ag,CO; with a low Fermi  Fermi levels are equalized. The fruitless holes and electrons of
level [Fig. 12]. Concurrently, the Fermi levels of Ag,CO; and g- g-C;N, and Ag,CO; respectively are attracted to each other by

12238 | RSC Adv,, 2023, 13, 12229-12243 © 2023 The Author(s). Published by the Royal Society of Chemistry
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wavelength over CNAg5 nanocomposites against the time of irradiation.

coulombic attraction force and vanished. On the contrary, the
hot holes of Ag,CO; and electrons of g-C;N, with a higher redox
potential were consumed in the photocatalytic process. This
mechanism is manifested from the scrubber experiments and
the emission PL analysis of hydroxyterephthalic acid. The holes
of the valence band of g-C;N, (Eyg = 1.5 eV) and electrons of the
conduction band of Ag,CO; (Ecg = +0.5 eV) are useless charge
carriers with a weak redox potential and are attracted toward
each other by coulombic attraction force and removed leaving
a strong built-in internal electric field. On the contrary, the
valence band holes of Ag,CO; (Eyp = +2.5 €V) and electrons in
the conduction band of g-C;N, (Ecg = —1.3 eV) were consumed

© 2023 The Author(s). Published by the Royal Society of Chemistry

readily in the photocatalytic process. Ag,CO; positive holes with
a potential of 2.55 eV generate hydroxyl radicals (Eop-jon = +
2.4 eV) and electrons in the CB of g-C3N, with a potential of
—1.13 eV generate superoxide radicals (Eo,/o, = —0.34). The
classical staggered type (II) heterojunction cannot give a true
pathway for charge diffusion between oxidative Ag,CO; and
reductive g-C3N, sheets. The electrons jumping from the
conduction band of g-C;N, to the conduction band of Ag,CO;
fail to produce superoxide radicals (Eo, o, = —0.34 eV) and the
transfer of holes from the Ag,CO; valence band to the valence
band of g-C;N, cannot oxidize water to produce hydroxyl radi-
cals (Eon- jon. = +2.4 eV). On the basis of the aforementioned

RSC Adv, 2023, 13, 12229-12243 | 12239
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results, the S-scheme heterojunction is the actual mechanism
for explaining the precise charge transportation in the Ag,CO;/
g-C3N, heterojunction. Table 1 provides the comparative study
of the decomposition of various organic dyes on the surface of
Ag,CO;/g-C3N, prepared via various approaches such as
hydrothermal, co-precipitation and sonochemical routes. The
results recorded in the previous research studies manifest the
requirement of a large proportion of Ag,CO; in the nano-
composite, which is a negative economic factor due to the large

12240 | RSC Adv, 2023, 13, 12229-12243

cost of silver precursors. The mechanism of charge trans-
portation is discussed through the type (II) heterojunction or
direct Z-scheme, which fail together in explaining the actual
charge migration on the heterojunction surface. On the
contrary, our research developed a low-cost and simple sono-
chemical route for developing Ag,CO;/g-C;N, with 5 wt%
Ag,CO; which is efficient to destruct 95% of RhB dye via S-
scheme heterojunctions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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5. Conclusions

In this research work, S-scheme Ag,CO;/g-C3;N, heterojunctions
have been generated by hybridizing different concentrations of
spherical Ag,CO; nanoparticles and g-C;N, sheets sonochemi-
cally for expelling RhB dye. The experimental analysis indicates
that the localized deposition of Ag,CO; on g-C3N, sheets, deep
absorption of solar radiation, better electron hole-electron
separation and transportation are the main parameters for
optimizing the photocatalytic efficiency of the heterojunction
composed of 5 wt% Ag,CO; and 95% g-C3N, sheets. The
destruction of Rhodamine B dye passes through a series of
intermediate organic compounds that finally decompose
completely into CO, and H,O. The charge transportation via the
S-scheme photocatalytic mechanism was manifested from
scrubber trapping experiments and PL analysis of terephthalic
acid. Superoxide radicals in addition to positive holes demon-
strate a predominant contribution role in degrading Rhoda-
mine B dye under natural sunlight of 500 W intensity.
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