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rization properties of sub-
nanosized magnesium clusters†

Stanislav K. Ignatov *a and Artëm E. Masunov *bcd

The isotropic electrostatic polarizability (IEP) of sub-nanosized magnesium clusters Mg2–Mg32 was studied

in an extensive set comprising 1237 structurally unique isomers. These isomers were found in the course of

the global search for the potential energy surface minima of the magnesium clusters at the BP86/6-31G(d)

level. The calculation of the polarizability at the same DFT level reveals an unexpected property of the IEP:

the linear correlation between the polarizability of the most favorable isomers (and only them) and the

cluster nuclearity n. Moreover, for each n, the most stable cluster isomer demonstrates nearly minimal

IEP value among all found isomers of a given nuclearity. Surprisingly, these observed features are

independent of the cluster structures which are quite different. We hypothesize that the energetic

favorability of a cluster structure is related to their low polarizability. Apparently, the atoms forming the

cluster tend to arrange themselves in such a way as to provide the most compact distribution of the

cluster electron density. A possible explanation of the observed trends, their significance for cluster

structure prediction, and the practical applications are discussed.
1 Introduction

Sub-nanosized metal clusters are polyatomic molecular systems
of variable nuclearity (the number n of atoms in a cluster),
lling the gap between atoms and nanoparticles. The clusters
differ from the nanoparticles by a lower degree of crystalline
ordering and greater structural diversity. The typical diameter
of nanoclusters is of 0.2–2 nm which corresponds to the
nuclearity up to 150–200 atoms. When the size increases, the
crystalline domains appear in a particle which makes them
similar to polycrystals, and the standard theoretical methods
for the description crystalline structures can be applied to
evaluation of various physical properties (see, e.g., ref. 1 where
adsorption energy on Pt clusters approached its limiting values
for crystal surface at n > 147). In contrast, the cluster structures
at lower n (typically n = 2–150) are poorly predictable, both at
the level of simple intuition, as well as using standard metallic
potentials, designed to describe the bulk metal properties or the
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properties of metal surface. Among quantum chemical
methods, only DFT approach is typically used for the efficient
search for favorable structures of the clusters sized in tens of
atoms. The same applies to the novel so-called “potentials of
quantum accuracy” (GAP,2 SNAP,3 MTP,4 ACE5), which are
usually calibrated by DFT results in a limited range of nucle-
arities. Thus, the most reliable method for the sub-nano cluster
structure prediction remains the direct DFT global optimiza-
tion. At the same time, the properties of sub-nanosized metallic
particles, both mono- and polyatomic ones, are of great interest
because they frequently manifest higher activity6,7 and selec-
tivity8 in catalysis,9–11 can serve as the base elements for the
modern and future nanoelectronic,12,13 or spintronic14,15 devices,
or as a base for the novel nanodevices manifesting e.g., neuro-
morphic properties.16 For many applications, a fundamentally
important issue is the possibility of size- and structure-selective
synthesis of clusters, which is largely determined by the number
and energy distribution of their structural isomers. Earlier,
using magnesium clusters as an example, we demonstrated that
the number of the cluster isomers for the given n, although is
high and quickly grows with n, nevertheless remains much less
than the number of mathematically predicted number of con-
nected graphs of the same number of vertices.17 This fact allows
one to explore the complete set of isomers at once (at least for
some n), trying to search for the individual representatives with
useful properties. In a recent study,18 we carried out such
a search in the extended set of isomers of clusters Mg2–Mg32
comprising 1237 isomeric structures located in the direct DFT
global optimization. The magnesium clusters are the conve-
nient object for such studies because they are simple for DFT
RSC Adv., 2023, 13, 4065–4076 | 4065
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calculations, their ground state is a singlet spin state, and many
of their properties have been published, both experimental19–23

and theoretical.24–27 In the study,18 we considered mostly ener-
getic and structural properties, which allowed us to locate the
most stable representatives, the energy distributions for
a complete set of isomers as well as the distributions for sepa-
rate nuclearities. The analysis of these distributions allowed to
predict that the size- and shape-selected cluster synthesis can be
feasible for some n, in particular, for n = 10 and 20. Also, some
new tubular structures and the new dependences between the
structural features of clusters were established. In the current
study, we continue the investigation of the extended set of
magnesium clusters, focusing now on their electric properties.
Among these properties, we nd that the extended set of
isomers demonstrates quite unexpected feature of their
isotropic electrostatic polarizability (IEP): IEP of the most
favorable structures (and of only them) is linearly dependent on
n. Even more surprising, these linearly dependent values are
close in their magnitude to the minimum IEP values for the set
of isomers with the given n. This property is rather unusual
because the most favorable isomers typically have quite
different geometries. Moreover, this property, if it will be
common for other metals, can be extremely useful since it gives
the estimate for how the random cluster structure is close to the
global minimum, and could be used in cluster structure
prediction. We also show that the connection between the
polarizability and the DFT binding energy of a cluster cannot be
simply derived from any known models of polarizability
although some models reproduce its linear dependence (but do
not “explain” it directly).

Despite long and extensive research on the cluster structure
and properties, the polarizability of sub-nanosized clusters in
its connection with the cluster structure has not been suffi-
ciently studied. For main group elements, most such studies
are mainly focused on alkali metals (see, e.g. ref. 28 for review),
silicon clusters,29–32 Ge2–Ge10 and GanAsm (n + m = 2–10),33

Cd2–Cd11 and CdnZnm (n + m = 4–6),34 Al3–Al31 (ref. 35 and 36)
(see also review37 for Al, B, C and mixed clusters). Jellium-
based models,28,38 DFT,29–32,35,36 high-level quantum chemistry
theories MPn, CCSD and CCSD(T)34,39,40 as well as the machine
learning methods41 have been applied to polarizability calcu-
lations. The relationship between polarizability and the size
and shape of clusters has been investigated in many of the
above studies.30,31,33,34,38 However, the conclusions drawn from
these studies usually relate to general shape properties (e.g.,
elongation, sphericity or their size) or are made for a limited
set of clusters located by global optimization29,31,35,36 or by
random choice. In the present paper, we consider a much
more extended set of magnesium cluster isomers for n = 2–32,
analyzing all their structures found by global DFT optimiza-
tion, and consider the DFT-calculated polarizability of each
isomer in its relation to the energy relative to the most favor-
able structure.

The paper is organized as follows. In Section 2, we briey
describe the methodology of cluster generation and evaluation
of their properties. In the beginning of Section 3, we describe
the calculated cluster polarizability and observe its
4066 | RSC Adv., 2023, 13, 4065–4076
dependence on different structural properties. We also discuss
here some principles and possible explanations of the found
dependencies including the applications of some known
models of molecular polarizability. The Section 4 contains
a discussion of possible implications of the found trends and
the directions that could be explored in order to rationalize the
patterns found.
2 Calculation details
2.1 Set of isomeric structures

Structures of magnesium clusters Mg2–Mg32 used in the
analysis were generated in the course of the direct DFT global
optimization combined with graph generation algorithm and
manual construction of the highly symmetric structures as was
described in detail in ref. 17 and 18. In brief, the initial
structures were generated from a complete set of connected
graphs with n vertices as well as using the evolutionary algo-
rithm combined with taboo-search to avoid the generation of
similar structures. The geometries of generated structures
were thoroughly optimized at the BP86/6-31G(d) DFT level
with higher optimization criteria (Tight stopping criteria and
UltraFine DFT grid implemented in Gaussian16 (ref. 42)
program) and unique nal structures were selected on the
basis of two different algorithms of similarity evaluation in
order to establish the unique isomers. Such a procedure
continued until new unique structures ceased to appear. The
Cartesian coordinates of 543 structures of Mg2–Mg13 located
by this method were reported earlier in ESI† for ref. 17. In
a course of this work, about 9000 optimizations were carried
out and about 820 000 points of potential energy surface (PES)
were explored in total. All the located unique structures are the
true local minima of PES as was proven by the frequency
calculations at the same theory level. The remaining 694
structures of Mg14–Mg32 were located by the similar method-
ology, although without achieving the limit of all possible
structures, with the DFT optimization using normal optimi-
zation criteria as described in ref. 18. Their Cartesian coordi-
nates were published as ESI† for ref. 18.
2.2 DFT calculations

All energies, polarizabilities and other electronic properties
were calculated at the BP86/6-31G(d) level of DFT theory, which
was proven to be the best level of theory describing the results of
combined CCSD//MP2/cc-pVTZ level of theory for Mg2–Mg7
clusters.43,44 Our previous evaluation of the performance of this
DFT level for Mg10 cluster shows that this theory level agrees
well with B3PW91/6-31G(d) results whereas PBE0/6-31G(d)
results are somewhat worse.17 Also, comparison of BP86
results with the results of CCSD(T)/cc-pVQZ and MP2/cc-pVQZ
shows that the bond lengths in small clusters Mg2–Mg4 are
remarkably underestimated at the DFT level but improve as
nuclearity increases. At the same time, this DFT level better
reproduces the cluster binding energies of CCSD(T) than in the
case of MP2. All calculations were carried out using the
Gaussian16 (ref. 42) program.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra08086a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
/2

3/
20

26
 4

:0
8:

27
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2.3 Calculation of electronic properties

For the complete set of 1237 structures of Mg2–Mg32 obtained as
described above, the additional single point calculation was
carried out at the BP86/6-31G(d) theory level with UltraFine DFT
grid in order to calculate the MO vectors of Kohn–Sham orbitals,
HOMO/LUMO energies, the electrostatic polarizabilities, and
other electronic properties. The obtained MO vectors were then
processed with ChargeMol program45,46 in order to calculate the
Density Derived Electrostatic and Chemical (DDEC6) charges,
bond orders, and the atom valences.46,47 Other electronic charac-
teristics (Coulson's, Mayer's, Wiberg's bond orders, charges and
valences) were extracted from the calculation log les or calcu-
lated on the basis of MO vectors. Additionally, the values of
coordination numbers, HOMO and LUMO energies, cluster
energies, and, in some cases, NBO parameters were extracted and
analyzed. DDEC6 method used here is the relatively new method
for the bond order evaluation46,47which has signicant advantages
compared to the “classical” bond order descriptions including the
Coulson's, Mayer's, Wiberg's, and NBO bond orders and charges.
Namely, we found that it gives much more clear description of
bonds between the Mg atoms. For example, the above-mentioned
classic bond order evaluation schemes nd the large number of
bonds inside the clusters (virtually for all pairs of atoms) with
close values of bond orders. At the same time, the DDEC6 bond
orders are much more differentiated between near-by and far
atoms which makes this method more convenient for analysis of
the chemical bonding inside the metal clusters.
Fig. 1 The DFT calculated IEP of magnesium clusters: (a) for 543
isomers of Mg2–Mg13; (b) for 1237 isomers of Mg2–Mg32. Black trian-
glesmark themost energetically favorable isomers, blue trianglesmark
the least favorable isomers. Color scale designates the cluster energy
relatively to the most favorable isomer of the given n. Red dashed line
represents the idealized polarizability of n non-interacting Mg atoms.
The data points within each individual n are slightly shifted in horizontal
direction to avoid overlapping.
2.4 Cluster energies

In the following, we use the per atom binding energy of cluster
(also termed as a reduced cluster energy) dened as

Eb(n,m) = Etot(n,m)/n − Etot(1,1)

Here, Etot(n,m) is the total energy of the optimized cluster
structure for the m-th isomer of cluster of n atoms, i.e. the
DFT-calculated sum of its electronic energy and the energy of
nuclear repulsion. Etot(1,1) is the total energy of a single Mg
atom (−200.0697059 hartree at the BP86/6-31G(d) with
UltraFine grid). With this denition, all Eb(n,m) values are
negative, and their dependence on n and m was reported in
Fig. 1 of ref. 18. For the given n, all M isomers are ordered in
an ascending order of their binding energies Eb(n,m) (m = 1,
., M). Thus, Eb(n,1) is the binding energy of the most
favorable isomer of Mgn with the lowest Eb value (maximum
in its absolute value) among M isomers of the given n. Note,
that, despite energy ordering within individual n, the binding
energies of clusters with different n can be greater or less
than each other. We also analyze the relative energy of cluster
within the given n dened as

Erel(n,m) = Eb(n,m) − Eb(n,1),

i.e. the binding energy difference between the m-th isomer and
the corresponding most favorable isomer of the same
nuclearity.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Electrostatic polarizability of an isolated atom is dened as
a scalar coefficient a between the induced dipole moment p of
an atom and the external weak electrostatic eld inducing this
moment: p = aE. This simplied nite eld formula differs
from the strict denition in terms of the eld derivatives since
we do not discuss here the nonlinear effects, which are not
relevant to the purposes of the present study. In the case of
polyatomic structure, the polarizability is a second rank tensor
a with components

a ¼

0
BB@

aXX aXY aXZ

aYX aYY aYZ

aZX aZY aZZ

1
CCA

To avoid the dependence on coordinate framework, two
quantities are usually introduced, isotropic polarizability aiso

and polarizability anisotropy aaniso:
RSC Adv., 2023, 13, 4065–4076 | 4067
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aiso ¼ 1

3
ðaXX þ aYY þ aZZÞ

Polarizability tensor can be directly calculated within the
DFT method for a molecular structure using many quantum-
chemical programs. In these calculations, only the purely elec-
tronic polarizability is considered, without any contributions of
orientational or ionic terms (no displacements of nuclei from
their initial positions due to an external eld were allowed).
3 Results and discussion
3.1 Dependence of cluster polarizability on n and m

Fig. 1a shows the dependence on n and m of the calculated
isotropic polarizability aiso for 543 isomers of Mg2–Mg13 which
is the complete set of isomers found for these clusters by the
method of the long-lasting structure generation and optimiza-
tion. The black triangles mark the most favorable isomers, blue
triangles – least favorable isomers of each nuclearity. Each point
shows the data for an individual isomer, and the color scale
indicates Erel in kcal mol−1.

Striking feature of the presented plot is the linear depen-
dence of aiso on n for the most favorable isomers. Moreover, the
polarizabilities of the most favorable isomers are always close to
Table 1 Statistical parameters of regression formula (1) describing the
estimates for aiso obtained in the induced dipole approximations

Model parametersa DFT results

Induced dipole

AM

Fitting results of aiso(n,m)X against aiso(n,m)DFT

Adjusted asmear — —
Final RMSD — 56 267
Negative aiso 0 263

Parameters of linear regression (1) for aiso(n,1) estimated with DFT and 

Slope of (1) 50.12 123.13
Intercept of (1) 134.74 210.46
Sa 0.83 24.52
Sb 15.85 471.09
R2 0.9922 0.4650
Adj. R2 0.9919 0.4466
SSE$10−4 4.90 4325.52
SE 41.10 1221.29

a Description: asmear is smearing parameter value adjusted for the best t
deviations between aiso(n,m)X and aiso(n,m)DFT aer tting for all 1237 isom
results) among all 1237 isomers; Sa, Sb are standard deviations for slope an
squared deviations of aiso(n,1) from (1); SE is standard deviation of regres

4068 | RSC Adv., 2023, 13, 4065–4076
the minimum value of aiso among all isomers for the given n.
Although aiso(n,1) is the exact minimum value of polarizability
not for all n, and some isomers with low Erel (red and orange
colored) have the slightly lower values in the case of n = 11–13,
the polarizability of the most favorable isomers has a clear
tendency to be close to a minimum value. The polarizability of
the most favorable isomers is perfectly described by the linear
function with high determination coefficient of 0.9897, the
equation is shown on the plot. Thus, we note two clear features
of the aiso on n and m: (1) linearity of aiso(n,1) on n; and (2)
minimality of aiso(n,1) among all m.

The same tendency is also clearly seen for the expanded set
of 1237 cluster isomers of Mg2–Mg32, see Fig. 1b. In this case,
the linearity is characterized by even higher determination
coefficient of 0.9919, although the deviations of some points
from linear function are remarkable. The minimality of aiso(n,1)
is also not so perfect as for Mg2–Mg13, and multiple deviations
from this trend is noticeable. Nevertheless, both trends above
are clearly manifested for the expanded set of isomers as well. It
should also be noted that both plots demonstrate the clear
(although not perfect) tendency of the isomers with m > 1 to
have the increased polarizability depending on their relative
energies (isomers with higher Erel tend to have higher polariz-
ability) as is seen on the base of datapoint color changes in
Fig. 1. The additional statistical parameters of the linear
DFT calculated values of aiso(n,1) (n = 2–32) and the fitted models

models X

TL TE RP GD

6.3517 1.6366 1.0910 1.0416
138.06 140.44 43.45 48.86
0 0 0 0

tted models
55.75 56.40 50.16 49.44
95.36 82.01 104.37 111.51
0.55 0.42 0.57 0.65
10.60 8.14 10.94 12.53
0.9972 0.9984 0.9963 0.9950
0.9971 0.9983 0.9962 0.9948
2.19 1.29 2.33 3.06
27.48 21.09 28.35 32.50

between DFT and models with smearing; RMSD is root means squared
ers of Mg2–Mg32; negative aiso is number of negative aiso (non-physical

d intercept in (1); R2, Adj. R2 are determination coefficients; SSE is sum of
sion model (SSE/(N − 2))1/2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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regression model describing the complete set of isomers are
given in Table 1, the column “DFT results”.

The red dashed line on Fig. 1b shows the “idealized” polar-
izability of non-interacting atoms, which is the simple sum of
the individual atomic polarizability, i.e. na, where a = aiso(1,1)
is the polarizability of single Mg atom (73.5 a.u. at BP86/6-
31G(d) level of DFT). One can see that this polarizability is
higher than aiso(n,1) for n > 6 and practically coincide with it for
n = 2–6.

Noting aiso(n,1) is linear relatively to the cluster nuclearity,

aiso(n,1) = an + b, (1)

it is interesting to investigate the similar trends for the
remaining isomers. Fig. 2a shows the dependence of the
“remaining part” of aiso(n,m) aer subtracting the linear func-
tion (1) from it, aiso(n,m) − (an + b), on relative energies for the
543 isomers of Mg2–Mg13. As one can see from the plot, the
remaining part of IEP demonstrates approximate linear
dependence on Erel although the linearity is not perfect
(regression expression and its determination coefficients are
Fig. 2 Dependence of the IEP deviation from linear function (1)
aiso(n,m) − (an + b) on relative energies of cluster isomers. (a) For 543
isomers of Mg2–Mg13; (b) for 1237 isomers of Mg2–Mg32. Black trian-
gles represent the most energetically favorable isomers, blue triangles
represent the least favorable isomers. Color scale designates the
cluster nuclearity n.

© 2023 The Author(s). Published by the Royal Society of Chemistry
shown on the plot). The plot also shows that there are no any
isomers having aiso lower than the linear function (1) except the
most favorable isomers themselves. The similar trends persist
in the case of the expanded set of studied isomers presented on
Fig. 2b. It is characterized by the similar linear function with
approximately the same determination coefficient of 0.84.
However, there are some isomers with IEP laying lower the
linear function (lower the dashed line in Fig. 2b). There are 144
of such values, about 11.6% of all 1237 isomers, and most of
them appears for n = 26 (18 of 37 structures), n = 31 (27 of 40
structures), and for n = 32 (25 of 35 structures). As one can see
from Fig. 2b, all these “improper” structures are located in
rather narrow region of the relative energies, typically within
0.5 kcal mol−1 above the most favorable structure. This
supports the above-mentioned tendency that the minimum IEP
correlates well with the low cluster energy.

Combining expressions on Fig. 1 and 2, one can derive the
more general dependence for the IEP as

aiso(n,m) = an + b + cErel(n,m), (2)

with a = 50.13 a.u., b = 134.74 a.u., and c = 94.43 a.u./(kcal
mol−1) for n in the range 2–32, although the condence level
for this regressionmodel is obviously lower than for the aiso(n,1)
in eqn (1).

It is also instructive to consider the deviation of the calcu-
lated IEP from the “ideal” IEP values for non-interacting atoms
na. In Fig. 3, the ratio f = aiso(n,m)/(na) (frequently referred as
an enhancement factor) on the relative energy of isomers Erel(-
n,m) is shown for n = 2–32, the color scale designates n. On this
plot, the lemost data points (with Erel = 0) correspond to the
most favorable isomers, the remaining points demonstrates the
dependence of polarizability on m. Although it is hard to carry
Fig. 3 Dependence of enhancement factor f on the isomer relative
energy for 1237 isomers of Mg2–Mg32. Color scale designates the
cluster nuclearity n.
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out the exact regression analysis for all points, it is seen that this
dependence is close to quadratic f ∼ Erel

2, with clear depen-
dence of f on n.

In contrast with IEP, no similar tendencies were found for
the polarizability anisotropy aaniso.
3.2 Principle of maximum tightness

Two established features of aiso(n,1) (linearity and minimality)
are rather surprising taking into account that the isomers
structures are quite different in their geometry. For example,
the most favorable isomers of Mg2–Mg32 are shown in Fig. 4,
and the isomersm= 1–48 of Mg10 are shown in Fig. 5. As is seen
from the gures, the cluster structures have quite different
structural elements including tetrahedral, bipyramidal, deca-
hedral, tubular motives, or highly amorphized fragments. They
are quite diverse both among isomers with different n and
different m. Thus, the observed features of polarizability unite
the clusters of different structure and energy. This allows
hypothesizing that some common principle controls the
formation of cluster structures. Namely, the structure of
a cluster is determined by such a mutual adjustment of the
electronic and nuclear subsystems that ensures the maximum
stability of the electron shell of the molecule with respect to
external polarization. In other words, in order to ensure the
most favorable nuclear conguration of the cluster, the nuclei
of atoms occupy such positions as to ensure the maximum
“rigidity” (“tightness” or “compactness”) of the electron shell.
Fig. 4 Structures of the most energetically favorable isomers Mg2–Mg32
designates the DDEC6 bond order (the values higher 0.1 are shown).

4070 | RSC Adv., 2023, 13, 4065–4076
The preceding allows us to formulate (at least for sub-
nanoscale magnesium clusters) a “principle of maximum tight-
ness of electronic shell” (PMT): the most energetically favorable
cluster structure has the electronic shell, polarizability of which
is close to the minimum and depends linearly on the number of
atoms.

This principle is not absolutely strict, as is seen from the
deviations of individual polarizability from the linear function,
and also from the non-perfect minimality of aiso(n,1) in the case
of some n. However, the repeatability of the observed trends for
broad range of n cannot be occasional. It is also interesting
question for further studies, whether these trends will take
place for other metals and how common this principle for
polyelemental clusters and molecules.

The formulated principle has very important implications.
First, it allows one to specify the most favorable isomers among
arbitrary structures without calculating the energy, only on the
basis of their polarizabilities. This is not so important for
quantum-chemical calculations, because the computational
costs for the energy calculation are lower than for the calcula-
tion of polarizability. However, if one has any simplied scheme
for the polarizability estimation, this can be important in
a practice. Now, such simplied approximate calculations of
polarizabilities are broadly used for the development of polar-
izable force elds for molecular dynamics (e.g. AMOEBA+,48,49

AMBER,50,51 GEM,52,53 X-Pol54 and others). Thus, if there is a way
to quickly estimate aiso, one can search for the global minimum
without a quantum calculation at all, at least obtaining the good
. Color scale designates the DDEC6 atomic charges. The bar thickness

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 48 low-lying isomers of Mg10. m increases from left to right, by rows from up to down, the most favorable isomer is the upper-left one.
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initial structures for the further DFT optimization. Second, it is
extremely useful that this principle allows us to specify whether
the given structure is close to the global minimum. The
problem of modern global optimization algorithms is that the
location of a new favorable structure does not guarantee that
the global minimum is located and there are no any rules
indicating that we should stop the explorations of structures.
On the basis of the formulated principle, we can feel certain that
if aiso of a cluster is close to the known linear dependence on n,
then this structure is close to the global minimum.
3.3 Predictive power of PMT

The assumptionsmade above on the possibility of using PMT can
be directly veried on the basis of test calculations. Here, we
present the preliminary results for only single example; the
thorough examination will be given elsewhere. To test the
predictive ability, we made a search for the global PES minima of
the Mg35 cluster using the method of effective interatomic
potential MTP4,55 trained on the cluster structures of Mg25–Mg32
(taken from previous DFT calculations). All calculations with
MTP potential were carried out with the MLIP-2 program,56 the
trained MTP potential parameters (le in the format of MLIP-2)
can be obtained from authors on request. The structure of
global minimum for the cluster Mg35 located with the trained
MTP potential is shown in Fig. S1 of ESI.† On the basis of eqn (1)
and the corresponding statistical parameters of regression from
Table 1, we predict that aiso(35,1) has the value of (1889± 41) a.u.
with the condence interval indicated as the regression standard
deviation of aiso(n,1) (SE in Table 1, column “DFT results”). Using
© 2023 The Author(s). Published by the Royal Society of Chemistry
the trained MTP potential, we optimized 10 000 random struc-
tures of Mg35, and carried out the DFT calculations of IEP for the
most favorable structure. Its aiso is equal to 1857 a.u., only 32 a.u.
lower than the predicted value, and within the above condence
interval. Although the test performed for only single nuclearity is
not reliable enough, and further analysis should be carried out in
further studies, the obtained results demonstrate that the pre-
dicted values is not restricted by the ranges of n studied here and
can be used for the extrapolation.
3.4 Possible explanations for established features

The above unusual features of IEP raise a question on the
possible origin and explanation of these regularities. It should
be noted that some dependences of electrostatic polarizabilities
of the nanoparticles (NPs) of increasing size is known in the
eld of nanoscience. Namely, Kim et al.57–59 reported a thorough
analysis of NPs polarizability (aNP) and the enhancement factor
f = aNP/(na) for model NPs of different shapes when their size
grows (typically up to 103–104 “atoms” or “molecules” forming
the NP). It was established that in some ranges of n, the f values
slowly grow and converges to a limiting value. In the region of
small n and for some simple shapes of NPs, this growth can be
considered as an approximate linear. It was also found that the
IEP for some symmetric NP shapes, namely, cubic and spherical
NPs has the f values linear in a broad range of n. This allows to
assume that the linearity of IEP in magnesium clusters can be
connected to the more spherical shape of the most favorable
structures. Indeed, it was established previously18 that the Erel
isomers of 1237 clusters of Mg2–Mg32 decreases linearly when
RSC Adv., 2023, 13, 4065–4076 | 4071
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Fig. 6 IEP of 1237 isomers of Mg2–Mg32 estimated in two models of
induced dipoles: (a) RP model; (b) GD model. Color designates the
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the deformation parameter DP= 2P3/(P1 + P2) (where P1 > P2 > P3
are the principal moments of inertia of the cluster) goes to 1
which means that the spherical structures are more energeti-
cally favorable. However, this tendency is quite fuzzy, with low
regression coefficient and large deviations from the linearity as
it is seen on Fig. 11 of ref. 18. The Fig. S2 of ESI† shows the plot
of aiso(n,m) values versa the DP of 1237 structures of Mg2–Mg32.
It is seen, that there is no any mutual dependence of these
parameters, not for most favorable isomers, nor for all clusters.
Thus, the sphericity of isomers has no visible inuence on IEP
and cannot explain their features described above.

The polarizability of NPs is frequently described in the well-
known induced dipole approximation pioneered by Apple-
quist.60 This approximation proposes that the external electric
eld E0 induces the dipoles pj (j = 1, 2, ., n) located on the
atomic centers of NP, and the induced atomic dipoles induce
the additional eld which modies the dipoles of other atoms.
The combined external and dipole eld on the center i (i = 1, 2,
., n) is described by the formula:

Ei ¼ E0 �
X
jsi

Tijpj (3)

Here, Tij is the 3 × 3 matrix describing the interaction of dipole
moments of each pair of atoms i and j with the Cartesian
coordinates x, y, z and separated by the distance rij:

Tij ¼ fe

rij3
I� 3ft

rij5

0
BB@

xixj xiyj xizj
yixj yiyj yizj
zixj ziyj zizj

1
CCA (4)

In the case of point dipoles (frequently referred to as point
dipole model of Applequist), the coefficients fe = ft = 1.
Combining the above formulas, the self-consistent induced
atomic dipoles can be expressed as

Bp ¼ E0; Bij ¼
(
a�1; i ¼ j

Tij; isj
; p ¼ B�1E0: (5)

The complete polarizability of a structure is P ¼ P
i
pi; and,

thus, the polarizability of the system of the atomic dipoles is
expressed with

P ¼ aE0; a ¼
X
i;j

�
B�1�

ij
: (6)

It was well-recognized61,62 that the description based on the
formulas (3)–(6) suffer on so-called “polarization catastrophe”
when the polarizability become innite at some atomic
arrangements. The solution of this problem was given for the
rst time by Thole61,62 who proposed to replace the point dipoles
by some charge distributions smeared around the atomic
centers. Following this idea, several distribution models were
proposed including the Thole's linear and exponential charge
distributions,61,62 Ren and Ponder (AMOEBA FF) model,63,64 or
Gaussian smearing.65–69 All these models can be described by
4072 | RSC Adv., 2023, 13, 4065–4076
the same expression (3) with different fe and ft. (see e.g. ref. 66
for details). In all these modied dipole models, two adjustable
parameters are used: the charge smearing parameter asmear

(coefficient present in the expressions for fe and ft, dependent
on the model in use), and the atomic polarizability a.

We applied ve above-mentioned models for the description
of cluster polarizability using the DFT-optimized structures and
energies of clusters. Namely, the Applequist model (AM), Thole
linear model (TL), Thole exponential model (TE), Ren and
Ponder model (RP), and Gaussian-distributed dipoles (GD) were
explored. In these models, instead of using the adjustable value
of a, we used the xedMg atom polarizability calculated by DFT.
Making adjustment of asmear during the tting of the aiso(n,m)
values calculated by formulas (3) against the corresponding DFT
values, we obtain rather good coincidence between the DFT
values of IEP, aiso(DFT), and approximate values aiso calculated
in the point dipole model, aiso(AM), Thole's linear and expo-
nential models aiso(TL) and aiso(TE), Ren and Ponder model
aiso(RP) and model of Gaussian dipoles aiso(GD).

The root-mean-square deviations (RMSD) between the tted
aiso and the DFT values, and the regression coefficients of
aiso(n,1) with corresponding statistics obtained with these
models are shown in Table 1 (columns “induced dipole
models”). As is evident from the table, the point dipole model of
relative energies of clusters calculated at the DFT level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Applequist only poorly describes the DFT values both due to the
large RMSD and poor linear dependence of aiso(n,1). They also
give the negative values of aiso in many cases which is a non-
physical result. At the same time, all the models of smeared
dipoles well reproduce the DFT results, with best results ach-
ieved for RP and GDmodels, without any negative values of IEP.
The dependence of aiso on n and m estimated in these models
are shown in Fig. 6.

Among these models, the best tted RMSD value for all 1237
IEP datapoints are achieved for the RP model. All models
reproduce well the linearity of aiso(n,1), as it can be concluded
from the corresponding values of R2, SSE and SE. It is inter-
esting that the linearity of aiso(n,1) is even better reproduced by
some models than it takes place at the DFT level. The highest
aiso(n,1) linearity is achieved by the TE model although both
Thole's models give rather poor RMSD values for the complete
set of isomers. From this point view, the RP and GDmodels give
better IEP estimates for the magnesium clusters. It is also
worthwhile to investigate how these models reproduce the
feature of minimality of aiso. This comparison is shown in Fig. 7
where two parameters are analyzed: the number of “improper”
values of aiso(n,m) (i.e. the values which are less than aiso(n,1))
and the Erel energy interval where the clusters with “improper”
aiso are situated. This interval shows how important the
Fig. 7 Deviations of the isotropic polarizability aiso of most favorable Mg
given nuclearity n. Left axis (red circles) represent the number of “improp
most favorable structure); right axis (blue bars) represent the relative ener
structures relatively to the most favorable one). Four panels show the
polarizability estimation.

© 2023 The Author(s). Published by the Royal Society of Chemistry
deviation from the minimality property in these models.
Analyzing the data on Fig. 7, we conclude that the GD model is
somewhat better reproduce these properties of DFT, because its
patterns of both analyzed values are more similar to DFT than it
takes place for RP and Tholes' models. It is also worthwhile to
mention that the GD model, like in the case of DFT, gives the
small range of Erel values (less than ∼1 kcal mol−1) for all
improper clusters except n= 6 which allows concluding that the
PMT principle is reproduces with a good accuracy.

The success of description of aiso with such simple models
encourages describing the PMT principle on this basis.
However, the strong obstacle on this way is that the Erel values
analyzed on Fig. 7 are the DFT calculated values. All the
attempts to reproduce the minimality feature of IEP using the
energies calculated on the basis of dipole models were unsuc-
cessful. Namely, Fig. S3 of ESI† demonstrates comparison
between the isomers' energies calculated by DFT and their
electrostatic energy components within the GD model for 1237
cluster isomers Mg2–Mg32. The gure shows the various
combinations of monopole–monopole U00, monopole–dipole
U01, dipole–dipole U11 energy contributions, and the self-energy
of induced dipoles Uss calculated by the formulas of GD model
as reported in ref. 68. Figure demonstrates the lack of correla-
tion between the isomers' relative energies Erel calculated by
2–Mg32 structures from the minimum aiso among the structures of the
er” structures (i.e. structures with aiso less than aiso of the energetically
gy range where the improper structures situated (energies of improper
results of direct DFT calculations along with three models for simple

RSC Adv., 2023, 13, 4065–4076 | 4073
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DFT and Erel estimated on the basis of any GD model energy
components or their combinations. In the case of perfect
correlation, we expect the linear dependence close to the
bisector of the rst quadrant. However, as is seen from the
plots, the calculated energy patterns are absolutely different
from the energy dependencies obtained in the DFT calculations.
We failed to nd any combinations of electrostatic energies
obtained within the induced dipole model as well as with
additional energy contributions of the interacting atomic point
charges (both nuclear and DDEC6 derived) which could repro-
duce the energy dependence similar to the DFT energies. Thus,
the dipole models, although reproduce the linearity property,
do not reproduce the property of minimality. Moreover, repro-
ducing the linearity of clusters IEP, these models have no direct
“explanation” of this feature. It is not clear why some structure
has such a linear dependence of aiso whereas other ones do not.
Obviously that these features are connected to any deeper
regularities in the Kohn–Sham (or Schrödinger) equations
describing this chemical system, and further studies are needed
to elucidate these regularities.

4 Concluding remarks

We calculated the electrostatic polarizability of large set of sub-
nanoscale magnesium clusters comprising 1237 structurally
unique isomers. The polarizability calculation reveals that the
IEP of the most favorable isomers on the cluster nuclearity n is
linear with a high correlation coefficient, and its value for each n
is close to the minimum value among all found isomers of
a given nuclearity. These features are quite unusual, given that
the cluster structures that exhibit these properties are very
different. This suggests that the favorability of the cluster struc-
ture is closely related to their polarizability and, possibly, the
atoms forming the cluster tend to arrange themselves in such
a way as to provide the most dense or compact packing of the
electron density. At present, it is not clear how general this
property is, and additional studies are required to establish
whether this property is fullled in clusters of other metals, as
well as in clusters of a more complex elemental composition. If it
turns out that these properties manifest themselves in a wide
range of systems, this will open up opportunities for developing
new methods for predicting the structure of polyatomic nano-
structures and searching for global minima of sub-nanoparticles,
an issue that currently causes considerable difficulty in solving.
Additional studies are also required to clarify the nature of the
observed patterns. It would be also instructive to explore the
frequency dependence of IEP which can be linked to the experi-
mental measurements at different wavelengths and described
within the models explicitly accounting the eld uctuation
frequency. We have shown that the property of linearity is
reproduced at the level of simple induced dipole approximation.
However, these facts do not allow us to reveal the true reason for
the property of energy minimality of the least polarizable
systems. We should also note that, at the moment, the dipole
approximation does not elucidate the origin of linearity directly,
it only reproduces it. Thus, the nature of the established features
remains intriguing question of modern chemical physics.
4074 | RSC Adv., 2023, 13, 4065–4076
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P. Pirro and B. Hillebrands, J. Magn. Magn. Mater., 2020, 509,
166711.

16 L. A. Savintseva, A. A. Avdoshin and S. K. Ignatov, Russ. J.
Phys. Chem. B, 2022, 16, 445–454.

17 S. K. Ignatov, S. N. Belyaev, S. V. Panteleev and
A. E. Masunov, J. Phys. Chem. A, 2021, 125, 6543–6555.

18 S. V. Panteleev, S. K. Ignatov, S. N. Belyaev, A. G. Razuvaev
and A. E. Masunov, J. Cluster Sci., 2022, DOI: 10.1007/
s10876-022-02291-w.

19 T. Diederich, T. Döppner, T. Fennel, J. Tiggesbäumker and
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