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Catechol is a pollutant that can lead to serious health issues. Identification in aquatic environments is
difficult. A highly specific, selective, and sensitive electrochemical biosensor based on a copper-
polypyrrole composite and a glassy carbon electrode has been created for catechol detection. The
novelty of this newly developed biosensor was tested using electrochemical techniques. The charge and
mass transfer functions and partially reversible oxidation kinetics of catechol on the redesigned electrode
surface were examined using electrochemical impedance spectroscopy and cyclic voltammetry scan
rates. Using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry, the
characteristics of sensitivity (8.5699 pA cm™2), LOD (1.52 x 1077 pM), LOQ (3.52 x 107> uM), linear range
(0.02-2500 uM), and real sample detection were investigated. The
morphological, structural, and bonding characteristics were investigated using XRD, Raman, FTIR, and
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1 Introduction

Catechol (C¢H¢O,) and its isomers are used in producing
a variety of products. They include colors, anti-aging
cosmetics, medication, plastics, insecticides, and photo-
graphic materials. The misuse of the material on a massive
scale results in the generation of waste material.”® The release
of catechol and any of its compounds into the environment
presents a risk.® Catechol can cause mutations and ruptures in
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presence of interfering compounds, it was shown that it was selective for catechol, like an enzyme.

DNA strands.” It can cause serious illnesses ranging from
rashes on the skin to severe forms of cancer. Although cate-
chol has high pK, values,® pK,; = 9.25 and pK,, = 13.0, it is
found to be un-dissociated under physiological conditions.
The introduction of catechol into aquatic systems can origi-
nate from natural or artificial sources.® Primary sources
include the large-scale decomposition of natural material,
industrial wastewater, the degradation of lignin in wood
pulp,*® and oil processing units." Because molecular catechol
has the propensity to interact with H,N- and HS-proteins, it is
more vulnerable to being absorbed by animals and plants.*
Under strongly acidic conditions, pure catechol can combine
with transition metals like copper and iron to produce
complexes.”

At an appropriate potential, catechol can go through
a reversible redox progression, a two-step oxidation process,
that leads to semi-quinone and benzoquinone.** Methods like
high-performance liquid chromatography,”” mass spectros-
copy,'® enzymes,"” chemiluminescence,' electrophoresis, and
electrochemical methods* have all been used to find catechol
and its isomers. Every method has pros and cons. To determine
an analyte, many parameters could be involved, particularly
catechol and its isomers, both of which have similar redox
potentials.”® Detection using nanomaterials, such as transition
metals, metal polymers, and conducting polymer composites,
has several advantages over all other approaches. The greater
density of active sites on the surface of the metal or metal-
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conducting polymer composite surface eases the reversibility of
catechol oxidation/reduction at the surface.” These conducting
polymers have excellent chemical and thermal stability, and
reproducibility as electrochemical sensor materials. Incorpo-
rating metal NP particles in conducting polymers makes the
flow of electrons more efficient.*

A copper-polypyrrole (Cu-PPy) composite was utilized in this
investigation to detect the presence of catechol in real samples
and a standard aqueous catechol solution. In the electro-
chemical oxidation of catechol at pH 7.0-7.4, the composite
material (Cu-PPy) is an efficient, stable, and effective catalyst.
After testing, the working electrode GCE@Cu-PPy was shown to
be an electrochemical biosensor for detecting catechol in real
samples. As the isomers of catechol, hydroquinone, and resor-
cinol have very close oxidation potentials in the range of 200-
650 mV, in this work, a broader potential range of —200 to
800 mV was applied for the possible presence of isomeric
phenolic compounds. The high specificity of the proposed
sensor was observed for catechol, as only a single oxidative peak
was recorded in the DPV scan in the range 263.4 to 273.1 mV.
This shows the enzyme-like (tyrosinase a copper-based protein)
specificity of the material for catechol. As tyrosinase is a copper-
containing protein, its parts (H389, H390, h363, h367, H180,
H202, H211) which interact with Cu-a and Cu-b ions resemble
pyrrole in terms of structure.*® Interaction between copper NPs
and polypyrrole is also evident in Raman and FTIR spectra. In
this work, a GCE@Cu-PPy-modified electrode was used to make
an electrochemical biosensor that can detect catechol. The Cu-
PPy composite was fabricated by a simple redox reaction in an
ethanolic environment. Earlier, this composite was reported by
Aravindan et al. and that research group synthesized this
composite by electrochemical deposition.** Whereas, in this
study a simple chemical oxidation and reduction process was
used to synthesize Cu-PPy. Better results in this study make this
work distinctive. SEM, XRD, FTIR, and Raman spectroscopy
were all used to confirm the material produced. The
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electrochemical performance was evaluated for catechol detec-
tion, which was carried out by differential pulse voltammetry
(DPV). The detection process was optimized by evaluating the
effect of pH and scan rate. It is possible to assert that GCE@Cu-
PPy is an electrochemical biosensor for catechol detection that
is exclusive to catechol detection. The obtained data from CV,
DPV, EIS, and chronoamperometry were utilized to create
regression graphs.

2 Experimental
2.1 Reagents and chemicals

This investigation prioritized the utilization of pure substances
of analytical grade. Every chemical was utilized in its purchased
form. The purity percentages of all compounds across the board
fell between 98 and 99.99%. Copper nitrate (Sigma-Aldrich;
98.5%), sodium borotetrahydride (Sigma-Aldrich; 99.99%),
polyvinylpyrrolidone (PVP 40) (Merk), pyrrole (Sigma-Aldrich;
98%), ammonium persulfate (Sigma-Aldrich), hydrochloric
acid (Sigma-Aldrich), and Nafion 117 (C,HF;305S-CyF,; 5%
Merck).

2.2 Synthesis of Cu NPs, PPy, and Cu-PPy nanoparticles

Chemical reduction produces copper nanoparticles with
appropriate modifications in the reported process.”® First,
25 mL of 0.0315 M solution of Cu®" (aq) were mixed with poly-
vinylpyrrolidone (PVP 40) as a capping agent (1:6) in a 250 mL
beaker and sonicated for 1 hour in an ice-chilled bath. Copper
ions were reduced by pouring sodium borotetrahydride (SBH;
0.264 M) dropwise in the presence of PVP 40. After adding
50 mL of SBH at a rate of 0.05 mL/10 s from a burette, the dark
brown particles that formed were separated after centrifugation
(4000 rpm) for 2 hours. After filtration and washing with
distilled water and acetone, particles were dried for 24 hours at
60 °C in an oven and annealed for 6 hours at 550 °C in a muffle
furnace. Polypyrrole (PPy) and copper-polypyrrole (Cu-PPy) were
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Scheme 1

(@) Formation of polypyrrole (PPy) in the presence of an oxidizing agent (ammonium persulfate). (b) Formation of polypyrrole

incorporated around Cu NPs dispersed in pyrrole. Dotted lines show the interaction between m electrons, N—H, and copper NPs.
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simultaneously produced through chemical oxidation in ice-
chilled baths. After setting up an ice bath, a 100 mL mixture
of double deionized water (DDIW) and absolute ethanol (1:1)
was added; then 10 mL of HCI (37%) and 1 mL of pyrrole (98%)
were added in 250 mL beakers. After 1 hour of sonication,
0.01 mg of Cu NPs were transferred to one beaker and subse-
quently sonicated for an additional 30 minutes. Then, 50 mL of
0.02 M ammonium persulfate were simultaneously poured into
both beakers containing pyrrole and Cu NPs-pyrrole. After 24
hours, the blue-black particles were spun in a centrifuge (4000
rpm), and the particles that settled to the bottom were sepa-
rated from the solvent by careful decanting. The composite
obtained was washed rigorously with DDIW and acetone fol-
lowed by drying of the produced particles for 36 hours in an
oven at 60 °C. The reported approach was successfully modi-
fied* to finish this synthesis process, as shown in Scheme 1.

2.3 Material characterization

Structural analysis was undertaken using a monochromatic Cu-
K radiation (1.5418 nm) source on a PANalytical powder X-ray
diffractometer. The crystallite sizes of Cu NPs, PPy, and Cu-
PPy were computed with Scherrer's equation (D = «A/8 cos 6),
where D is the average size of the crystalline domains, « is the
shape factor (0.9), g is the full-width at half maximum, 6 is the
Bragg angle, and A is the X-ray wavelength in nanometers
(0.15418 nm). The surface morphologies of Cu-PPy, PPy, and Cu
NPs were determined using a Zeiss scanning electron micro-
scope operating at 20 kV, with signal A = C2DS. The average
particle size was measured with Image] software version 1.53.
For the elemental analysis of the samples, energy dispersive
spectroscopy (EDX) was performed. A Thermo-Nicolet 6700 P
FTIR spectrometer (United States) was utilized for a functional
group confirmation Fourier transform infrared spectroscopy
investigation in the region of 4000 to 600 cm ‘. A Gamry
potentiostat (Ref. 3000, Model No. 43120) was used for elec-
trochemical studies under ambient laboratory conditions. A
three-electrode configuration consisting of a glassy carbon
electrode (GCE) modified with Cu NPs, PPy, and Cu-PPy nano-
structures as the working electrodes, Ag/AgCl (3 M KCl) as the
reference electrode, and platinum wire as the counter electrode
was utilized for electrochemical investigation. Cyclic voltam-
metry (CV), chronoamperometry, differential pulse voltammetry
(DPV), and electrochemical impedance spectroscopy (EIS) were
utilized to measure electrochemical activity. A Raman shift
study was performed using a Renishaw UK InVia Raman
microscope. Laser used for excitation: 514 nm laser; 10 s 1800 I/
mm grating exposure time. Objective: 100% laser power for
X 50LL.

2.4 Fabrication of catechol-sensing modified electrodes

A modified version of a method described in the literature® was
used to polish four Gamry glassy carbon electrodes (active face
area = 0.37714 cm®). First, 0.1 mg of Cu NPs, PPy, and Cu-PPy
were separately added to 10 pL of acetone containing 1 uL of
diluted Nafion (5% Nafion in 5 mL of acetone) and sonicated for
10 minutes. Separately, 1 pL of each dispersed slurry was

© 2023 The Author(s). Published by the Royal Society of Chemistry
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applied to the active polished faces of three GCEs by drop
casting with a micropipette. To ensure equal drying of the
coating, the cast faces of three GCEs were placed 8 cm beneath
a 60 watt tungsten light bulb (60 °C to 70 °C) for 30 minutes. The
modified electrodes were labeled as bare GCE, GCE@Cu,
GCE@PPy, and GCE@Cu-PPy. In a 0.1 M phosphate buffer
solution (PBS) with 1.0 M KCl as the supporting electrolyte, the
electrochemical responses of all modified working electrodes
were evaluated in the presence of 100 uL of catechol ([CAT] = 5
mM), with platinum wire serving as the counter electrode (CE)
and Ag/AgCl serving as the reference electrode (RE). Fig. 1a
shows the cyclic voltammetry (CV) responses of four electrodes
with a scan rate of 50 mV s~ ' and a potential range of —0.15 to
0.7 V (—150 mV to 700 mV). The GCE@Cu-PPy (WE) electrode
response was superior (I,, = 83.75 pA, Ep,, = 583 mV) to all
others. GCE@Cu-PPy was used as the biosensor material, and
a study of the electrochemical biosensor response for catechol
detection was accomplished.

2.5 Real sample preparation

The viability of the proposed sensor was confirmed using a real
catechol sample solution. A commercial physiological solution
(sodium chloride 0.9% w/v) was purchased from Otsuka, Paki-
stan Ltd.; and a 5 mM catechol solution was prepared in
a physiological solvent. A catechol solution with a known
concentration (5 mM) was injected into an electrochemical cell.
A separate plot with a higher oxidative current peak accompa-
nied each addition. A set of amperograms were measured in the
range 100-1000 pL (stock 5 mM) range.

2.6 Effect of pH

The pH of the electrolyte has a significant effect on the oxida-
tion peak current and peak potential of the analyte during
oxidation. The anodic peak potential of CAT, as shown in Fig. 1c
was found when the pH rose from 1 to 13, and a positive shift
occurred. The value of the slope of the line-plotted pH levels and
peak potentials, as illustrated in Fig. 1d, shows that the linearity
is good. The value of the slope for CAT is 0.02799 V pH ',
indicating that the number of electrons and protons is equal to
the process of oxidation. The maximum anodic current of CAT
oxidation in the pH range of 7.0-7.4 expands as the concen-
tration of acidic substances rises. Secondly, a decrease in the
current peak was seen between pH 8 and 13 (basic pH). At pH
7.0-7.4, the electrode passed full current. According to this
outcome, it is clear that the oxidation potential and anodic peak
current for CAT are significantly affected by the pH. For
construction we chose the most efficient sensor for biological
samples. pH 7.0-7.4 and potential range —0.15 to 0.7 V were
chosen for further electrochemical studies. As shown in Fig. 1c
and 7c the effect of pH was not linear; the maximum current
response was recorded between pH 7.0 and 7.4, but decreased
as the pH increased beyond 7.4.

2.7 Effect of scan rate

To estimate the electron-transfer kinetics of CAT oxidation at
GCE®@Cu-PPy, the effect of the scan rate was investigated.

RSC Adv, 2023, 13, 13443-13455 | 13445
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Fig. 1 Electrochemical responses of bare GCE and modified electrodes in 0.1 M PBS/1.0 M KCL: (a) comparative voltammograms of bare GCE,
GCE@Cu, GCE@PPy, and GCE@Cu-PPy; (b) scan rate voltammograms from 5mV s~ to 100 mV s~*; (c) pH study showing CV plots at various pH

values (pH 5 to 13) against current (uA).

Fig. 1b shows the cyclic voltammogram data of 100 pL of CAT
acquired in 0.1 M PBS/1 M KCI at various scan rates ranging
from 5 mV s™* to 100 mV s~ . Fig. 1b shows that the I, value
increases as the scan rate increases, while the Ep, value
increases on the positive side. This trend is likely because the
kinetic energy of the reaction between the CAT molecules and
the active sites of the GCE@Cu-PPy electrode are restricted. This
is in agreement with the research that has been conducted. As
shown in Fig. 1b, the fact that the I, value of CAT oxidation
varies linearly in response to variation in the scan rate is proof
that the electrode process is surface-controlled. Despite this, the
plot of I, versus the square root of scan rate (v'/) (Fig. 7b) was
linear, with the linearity most likely attributable to the
diffusion-controlled CAT oxidation process.

Eqn (1) and (2) describe the anodic portion of the oxidation
reaction. Depending on scan rates, it can be concluded that the
electrochemical oxidation of CAT involves a combination of
diffusion and adsorption-regulated mechanisms. Therefore, the
oxidation process of catechol at the surface of GCE@Cu-PPy was
quasi-reversible.

1)
(2)

Lo (MA) = 5.049747p"2 (mV'? s71%) + 5.6541 (nA)
Lpe (A) = —2.1577v"2 (mV'? s72) — 0.80928 (uA)

(R* = 0.97858), where » (mV s~ ") represents the scan rate.

13446 | RSC Adv, 2023, 13, 13443-13455

2.8 Optimization of electrochemical investigation
conditions

As pH and scan rate studies with GCE@Cu-PPy against the
reference electrode Ag/AgCl have proven that the oxidation of
catechol at the surface of the working electrode is a diffusion
phenomenon and is pH dependent, a further study was carried
out at pH 7.0-7.4 at a scan rate of 50 mV s~ ". Regression plots,
as shown in Fig. 7b, Ip, vs. v"* and I vs. v'?, show that the
redox process at the surface of the electrode is diffusion-based.*
The kinetics of the reaction are equal to one proton against one
electron.** Whereas Fig. 7c shows the change in redox current
against variable pH, the data suggested a pH of 7.0-7.4 for
further studies to detect catechol. The correlation equations,
eqn (1) and (2), are derived from the regression plots.

3 Results and discussion
3.1 X-ray diffraction (XRD) analysis

The phase and crystallinity of the synthesized particles were
determined based on the XRD results. The significant peak
positions of Cu-PPy are as follows: 24.138°, 33.153°, 35.612°,
39.277°, 40.855°, 43.519°, 49.480°, 54.091°, 56.152°, 57.429°,
57.590°, 62.451°, 62.744°, with corresponding index values of (0
12),(104),(110),(006),(113),(202),(024),(116),(211),(1
12),(018),(214),(300),(220). Data were used to calculate the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Data plots of Cu NPs, PPy, and Cu-PPy: (a) XRD spectra of Cu NPs, PPy, and Cu-PPy; (b) Raman shift spectra of Cu NPs, PPy, and Cu-PPy;

(c) FTIR absorbance spectra of (a) Cu NPs, (b) PPy, and (c) Cu-PPy.

crystallinity and strain % of Cu NPs, PPy, and Cu-PPy,***” which
computed crystallite sizes of 510, 349.5, 106.3636 A and strain
percentages of 0.495857%, 0.3348%, and 0.495857%, respec-
tively. The database matched the JCPDS cards 96-222-4614 and
96-222-4614, space group R3¢, and space group number 167. As
can be seen in Fig. 2a, the position of the intense peak at 26 =
33.15 in the PPy plot migrated to 35.87 in the Cu-PPy composite
plot. The same pattern (right shift) was observed for the
remaining peaks. As expected, the Cu NPs were disseminated
within the polymer and interacted with the polar ends (-NH) or
7 electrons of the polymer chain.”® The pattern of peaks in PPy
and Cu-PPy indicated that a composite material was success-
fully formed. Cu NPs, PPy, and the Cu-PPy composite had
average particle sizes of 179 nm, 286 nm, and 402 nm, with
standard deviations of 16.35533, 17.09714, and 17.09714,
respectively. By comparing the peaks with JCPDS cards (00-035-
0816, 01-073-1667), the anorthic shape of Cu NPs and the
rhombohedral nature of PPy and Cu-PPy were confirmed.
Scherrer's formula, D = k4/6 cos #, was used to calculate the
crystallite sizes.*® Fig. 2a reveals a 2.3° right shift in the peaks of
Cu-PPy compared to neat PPy, which shows that the polar ends
(C=N-H, or C=C) of PPy were incorporated with the copper NP
particles and enabled smooth charge transfer at lower resis-
tance (R.,) at the electrode surface.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Scanning electron microscopy (SEM) analysis provides
information about surface morphology. The nanostructures of
Cu NPs, PPy, and Cu-PPy comprise anorthic and rhombohedral
shapes, as shown in Fig. 3a-c. The phases and crystallinity of
the substance are distinctively anorthic and rhombohedral,
respectively, as per the XRD results, evaluated and simulated by
X'pert HighScore Plus and matching the peak data with JCPDS
cards. Using Image] 153 software, the SEM results were evalu-
ated to determine the sizes of the synthesized particles. The
average particle sizes were found to be 179 nm, 286 nm, and
402 nm, respectively, as shown in Fig. 3a-c which are in
agreement with the results calculated by the Scherrer calculator
tool of X'pert HighScore Plus software.

3.2 EDX analysis

EDX analysis provides information about a composite's
elemental composition. Fig. 3a—c illustrate the EDX spectra of
Cu NPs, PPy, and Cu-PPy, respectively. The existence of Cu, N, C,
and O indicates that the intended composite has formed. The
values of cps/eV at 1.35 and 88.1 eV (Fig. 3d) suggest that Cu NPs
were successfully embedded in polypyrrole. SEM analysis was
performed on the used composite particles after testing; no
morphological changes were found, as shown in Fig. 8b. The
elemental composition of the composite is presented in Table 1.

RSC Adv, 2023, 13, 13443-13455 | 13447
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Fig. 3 Surface morphology of PPy, Cu NPs, and Cu-PPy; SEM micrographs: (a) PPy, (b) Cu NPs, (c) Cu-PPy composite. (d) EDX: energy dispersive

spectra of Cu NPs.

Table 1 EDX elemental composition in the Cu-PPy composite

Element Atomic no. Mass (%) Atomic (%)
Carbon 6 61.86 68.21
Oxygen 8 27.47 22.74
Copper 29 1.47 0.35
Nitrogen 7 9.20 8.70

3.3 Raman shift analysis

Utilizing Raman spectroscopy, the structural compositions of
the new Cu NPs, PPy, and Cu-PPy nanocomposite were further
investigated. The Raman spectra of Cu NPs, PPy, and Cu-PPy are
depicted in Fig. 2b. For Cu-PPy, characteristic peaks consistent
with the symmetric stretching of monomers present in the

1

OH GCE@Cu-PPy o]
+ @« +2H" +2¢”
— * e
OH «— (o]
pH=7.0-7.4
Catechol Quinone

Intermediate

Scheme 2 Oxidation of catechol at the surface of GCE@QCu-PPy.

13448 | RSC Adv, 2023, 13, 13443-13455

polymers appeared at 637, 966, 1050.74 cm ™", with a small shift
(12 em™") from PPy, most likely as a result of the interaction (as
shown in Scheme 2) between Cu NPs and PPy electron-enriched
centers (C=NH, or C=C) that is also evident in the XRD data.
The Raman spectrum of pure PPy has well-defined peaks at 630,
961, 1055, and 1336 cm ™. The peak in Fig. 2b at 219 cm ' can
be correlated to the Raman active mode of moving copper
cations along the crystallographic X-axis, whereas the peaks at
281 and 390 cm ™' mark the Raman active E, mode, and that at
600 cm ™" may originate from the symmetric breathing mode of
O atoms associated with individual Cu cations in the plane
perpendicular to the X-axis. Peaks at 1396 and 963 cm ™" were
caused by the second harmonic vibrational mode. No peaks
originated from the PPy polymer; however, typical carbon bands
D and G were observed at 1333 and 1586 cm™ ", respectively.
While a decrease in the peak intensity of PPy defines the
development of a new composite with the incorporation of Cu-
doped PPy polymer (Cu-PPy). Also, the results of the Raman
analysis match those of the XRD analysis, which shows that the
nanocomposite used for targeting has grown.

3.4 Fourier transform infrared spectroscopy (FTIR) analysis

FTIR spectra were obtained to confirm that PPy and the Cu-PPy
nanocomposite exhibit distinct interatomic bonding. The FTIR
spectra in Fig. 2c revealed a unique band at 568 cm™" that can

© 2023 The Author(s). Published by the Royal Society of Chemistry
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be attributed to the vibration in the anorthic and rhombohedral
sites of Cu NPs, PPy, and Cu-PPy, providing additional evidence
for the creation of Cu-PPy that is consistent with XRD and
Raman data.

3.5 The electrochemical response of GCE@Cu-PPy

As depicted in Fig. la, the GCE@Cu-PPy sensor was more
advantageous; hence, GCE@Cu-PPy was utilized in the
following electrochemical study. Considering the influence of
PH, CV scans were performed in the presence of 100 pL CAT in
0.1 M PBS/1 M KCl, with solution pH ranging from 5.0 to 13. As
depicted in Fig. 1c, I,, increased and E;,, moved to the right. At
pH 13, there are two oxidative peaks at 0.03 V and 0.34 V, which
may lead to the dissociation of water molecules. At pH 7.4, the
I, value was extraordinarily high, but the E, value shifted to
the right; this could also result in water splitting. I,,, vs. pH and
E,, vs. pH regression curves were constructed to optimize pH for
further electrochemical study (R> = 0.9875).

The LOD, LOQ, linearity, and sensitivity of the GCE@Cu-PPy
electrode as an electrochemical biosensor for catechol were
determined by measuring CV responses over a broad range of
blanks and a varying amount of catechol (CAT) in the presence
of 0.1 M PBS/0.1 MKCI at a scan rate of 50 m Vs~ . By using eqn
(3) and S/N (signal to noise ratio), LOD, LOQ, and sensitivity
were calculated as: 1.52 x 10~ uM, 3.52 x 10> uM, and 8.5699
LA em 2, respectively.

The correlation equation was derived as:

Lo (0A) = 1 x 107 [CAT] (RA pM 1) + 2.5707 (A)  (3)
where [CAT] represents the concentration of catechol (stock; 5
mM) solution injected.

E = E° + [(RTkynF) + In(v)] (4)

Epy = 0.01808 In v + 0.54011 (5)

By using the Laviron equations, eqn (4) and (5), a value of n =
1 was calculated, as the reaction is dependent on diffusion.*
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Here n is the number of electrons involved in the redox process
at the surface, E° = standard potential, ks = rate constant, T =
298 K, F = 96 500 cm ™', R = gas constant, ¢ = diffusion factor,
and E = reaction potential.**

CAT < quinone +1 x 10~ (6)

Diffusion and reaction kinetics were also determined by the
electrochemical impedance (EIS) technique, to validate the
method. Initially, four modified electrodes were tested, as
shown in Fig. 5a. In 25 mL of 0.1 M PBS/1.0 M KCl and 5 mL of
5 mM ferro/ferri solution, bare GCE, GCE@Cu, GCE@PPy, and
GCE@Cu-PPy were scanned in the presence of 100 uL of CAT
solution. The GCE@Cu-PPy results were far better than those
for the rest of the electrodes. GCE@Cu-PPy lowers the real (Z,ea)
and imaginary (Zy,g) impedance many-fold compared to the
other electrodes demonstrated in Fig. 5a.*

In Fig. 5b, the EIS results also support the claim of charge
transfer and diffusion at the electrode surface. The resistance to
charge transfer (R.) increases, and the radius of the circular
part of the plot representing transfer resistance also increases,
as the concentration of analyte CAT increases.

The uniform increase in R, and the diffusion factor corre-
sponding to the increase in analyte confirm the diffusion
phenomena at the surface of the working electrode. The EIS was
used to determine the charge transfer and diffusion processes,
where the angular frequency indicates the charge transfer and
the 45°-inclined line represents the Warburg diffusion factor
(0). The data in Fig. 5a was acquired by employing EIS so that
200 pL of 1.0 M KCI was mixed into 25 mL of PBS and a fixed AC
potential of 5 mV and a DC potential of 0.5 V were set at
a frequency range of 0.1 to 100 000 Hz. The results over a wide
range (100-1300 pL) of [CAT] were promising, as a modest
change in charge transfer (R.) was detected, although the
diffusion factor remained constant at 45° against an equal
induction of [CAT]. The overall changes in Z., were 1.011, 405
(84, 72, 348 Q pL~"). With the acquired plots, an equivalent
circuit (CPE with diffusion) was precisely matched (inset). With
increasing [CAT], the charge transfer resistance (R,) increased
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Fig. 4 Electrochemical responses of GCE@Cu-PPy as a CAT sensor: (a) CV voltammograms of GCE@Cu-PPy at different concentrations of CAT
(100-1100 pL), (b) DPV plots at different concentrations of CAT (100-2500 pl).
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(a) EIS (Nyquist plot) comparison of CAT with bare GCE and modified GCE@Cu-PPY working electrode in the blank solution and in the

presence of 100 puL of CAT. (b) Nyquist plots with varying [CAT], GCE@Cu-PPy as working electrode at different concentrations of CAT (100-
1300 pl); inset: equivalent circuit (CPE; constant phase element with diffusion).

steadily (2.215 x 10® Q). The diffusion factor (¢) was constant
for equal additions of [CAT]. The EIS results are shown in
Fig. 5b.

3.6 Electrochemical biosensor performance of GCE@Cu-PPy

Due to the favorable electrochemical response of the synthe-
sized catalyst/biosensor GCE@Cu-PPy, it was assessed as an
enzyme-free biosensor for catechol detection. The CV responses
were measured for a broad range of CAT concentrations (100-
1100 pL) in 25 mL of 0.1 M PBS containing 1.0 M KCl as a sup-
porting electrolyte, as shown in Fig. 4a. To identify trace
impurities in the CAT standard solution, as depicted in Fig. 4a,
a broad potential window (—0.2 to 0.8 V, at a scan rate of 50
mV ') was set up. 0.615 V against 1100 pL [CAT] produced the
greatest rise in I, (738.45 pA). The suggested biosensor is linear
over a wide concentration range. High catalytic effects and
smooth conductivity were observed in the synthesized sensor,
which remained stable and effective. Oxidative peak potential
moved to the right by only 0.016 mV, but the reductive peak

potential shifted to the left. The increase in I,, (738.45 pA) was
more than the change in I,. (—342.62 pA), which shows that
partial oxidation at the electrode surface could be reversed.

3.7 Differential pulse voltammetry (DPV) response of
GCE@Cu-PPy

The DPV method is more sensitive than the cyclic voltammetry
(CV) method, as shown in Fig. 4b, and the DPV technique was
used to scan a wide range of catechol concentrations, from 100
pL to 2500 pL, in batches that consistently increased in
concentration. In all of the different concentrations of catechol,
I,, peaks at an almost fixed Ep, (261-270 mV) were observed. At
a potential of 270 mV, the rise against a 2500 pL CAT injection
was noted to be at its greatest. A broad potential window
spanning —0.2 to 0.7 V was chosen to identify any other
potentially disruptive species. A sharp peak that is persistent in
the range 261-270 mV indicates the specificity of the proposed
stable catalyst/sensor for catechol as no other peak was
observed.
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(a) Chronoamperometry plot of a standard solution of CAT (5 mM) with injection at 100 pL/50 s, (b) chronoamperometry of CAT in a real
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Table 2 Comparison of LOD, linear range, and sensitivity of the materials with the literature

Sr. No. Sensor Linear range The detection limit (LOD) Sensitivity Reference
1 COF 4.0 to 450450 pM 0.36 UM 33
2 Co-AIMWCNTSs 0.5-150 uM 0.074 uM 34
3 Nano-flake graphite 1-100 pM 0.2 pM 35
4 PANI/HSI,Nb;0,,/GCE 0.025-4.97 mM 0.02 pM 36
5 FePP 50.0-1600.0 uM 0.09 uM 37
6 PtNiCu@FTO —3000 uM 0.29 uM 1485 yA mM ' cm? 38
7 Nitrogen-doped hollow carbon spheres 0.5 and 300 uM 0.14 pM 39
8 Cu-PPy/GCE 0.05-1000 uM 0.010 pM 41
8 GCE@Cu-PPy 0.02-2500 pM 1.52 x 1077 pM 8.5699 pA pM cm 2 This work

3.8 Chronoamperometry response of GCE@Cu-PPy

Chronoamperometry was utilized to determine the sensitivity,
selectivity, specificity, and stability of the proposed sensor
(GCE@Cu-PPy) for catechol detection in a real sample. The
working electrode GCE@Cu-PPy was used to record chro-
noamperometry responses against a wide range of catechol
concentrations (0 to 2000 pL), as shown in Fig. 6a. The
maximum allowable potential was set at 0.5 V. The initial 50
seconds of the current sweep were performed in a solution
containing no analyte (blank) (1.0 M KCl/0.1 M PBS). Every 50
seconds up to 1000 seconds, 100 uL of catechol was injected

with a micropipette. A steady increase in current was detected
with each 100 pL CAT injection. An increase in current
proportional to catechol concentration demonstrates that
GCE®@Cu-PPy is an efficient, stable, and sensitive enzyme-free
CAT biosensor. The average current increased by 55.5248 pA
against every addition of 100 pL of CAT.

3.9 Chronoamperometry study of GCE@Cu-PPy: real water
sample

To demonstrate the efficacy of the GCE@Cu-PPy catalyst as an
enzyme-free biosensor for CAT detection, chronoamperometry
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current (I,3) vs. square root of scan rate (')
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(a) DPV plots after four weeks in the presence of 500 uL (5 mM) of CAT with four electrodes stored at room temperature. (b) Oxidative

1/2)

vs. square root of scan rate (v'<) plots. (c) /o, vs. pH. (d) Amperogram

interference study with GCE@QCu-PPy biosensor in the presence of interfering species injected at a rate of 100 uL/100 s CAT solution.
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was performed on a real water sample under the same condi-
tions as described above. For the catechol standard solution (5
mM) represented in Fig. 6b, the identical technique was fol-
lowed. The analyte injection rate was 100 pL/100 s. As described
in the section on reagents and chemicals, a real sample was
prepared by dissolving catechol in a physiological water sample
(0.9% NaCl) acquired from a pharmaceutical source. It was
injected at 100 puL per 100 seconds into 25 mL of buffer (0.1 M
PBS/1.0 M KCl) solution. The recorded responses are depicted
in Fig. 6b. The results were linear and practical, proving the use
of the catalyst as a biosensor for catechol. A current increase of
55.83425 pA was recorded, which is the same as that of a stan-
dard solution of catechol in DDIDW (Fig. 6a). R” in this instance
was 0.9995. The performance of GCE@Cu-PPy was compared
with similar work from the literature, as presented in Table 2.

From the data in Table 2 it is evident that the synthesized
material Cu-PPy is more efficient and specific for the detection
of catechol compared to the competing work of Arsalan et al.,*®
as mentioned in Table 2.

3.10 Specificity of catalyst: interference/instantaneous
behavior of biosensor GCE@Cu-PPy

To assess the influence of interfering species, a somewhat
different strategy was employed. The analyte CAT (5 mM) and
50 mM interfering species solutions were prepared using
physiological water acquired from a medical supply company.
The analyte (CAT) solutions were prepared with the same
concentration that was formerly utilized for CV analysis and
chronoamperometry in the presence of interfering species. As
interference species, selected resorcinol (R.s), hydroquinone
(Hg), glucose, 2-nitrophenol, ascorbic acid, benzoic acid, gallic
acid, 4-amino phenol, 8-hydroquinone, dopamine, ascorbic
acid, K*, Na*, Cl~, SO,>7, NO;~, Mg>*, CO;>", 1", and Br™. The
solutions of catechol, (catechol + resorcinol), (catechol +
hydroquinone), and interfering species were injected separately
in identical quantities, whereas the solution containing the
interfering species was produced by dissolving all of the afore-
mentioned chemicals in proportional amounts. The scanning
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technique (chronoamperometry) was performed for the actual
sample, and the analyte addition sequence is displayed in
Fig. 7d. There was little suppression in oxidative current when
hydroquinone and resorcinol were injected along with CAT after
450 s. Whereas, when a solution of interfering species alone was
injected, only a wavy line was recorded from 550 s to 950 s. A
similar rise in current was recorded when a mixture of all
isomers of catechol (catechol + hydroquinone + resorcinol) was
injected.

Based on correlation graphs, all the chronoamperometry
scans indicated linearity. The repeatability and specificity of
GCE@Cu-PPy were examined utilizing DPV (Fig. 4b), which was
scanned between 100 pL and 2500 pL of [CAT]. The results
revealed a consistent increase in I,, at a single Ep, value of
0.270 V; the regression plot of I,,, versus [CAT] demonstrated the
highest level of confidence; R?* = 9997. As isomers of catechol,
resorcinol, and hydroquinone have similar redox potentials;
however, the DPV and CV scans did not reveal any additional
peaks of I /I,c.

3.11 Determination of the stability and reproducibility of
the proposed sensor

To determine the reproducibility and storage stability of the
GCE®@Cu-PPy sensor, four similar GCEs were modified with Cu-
PPy slurry from the same source. Electrodes were labeled with
the designations GCE@C1, GCE@C2, GCE@C3, and GCE@C4.
The electrodes were dried for ten minutes at 60 °C Celsius in an
oven. The dried electrodes were stored for four weeks in an air-
tight plastic container at room temperature. On the 31%" day,
a DPV scan was conducted through 0.1 M PBS/1.0 M KCl in the
presence of 500 pL (5 mM) of CAT solution. The procedure was
repeated under the same working potential and concentration
settings. All electrode responses were recorded as shown in
Fig. 7a, and regression data were obtained, at a recovery rate of
93.68% of the prepared electrodes. All the stored electrodes
exhibited a high degree of stability, while the standard deviation
of the data was 6.33%, a difference from the original. GCE@Cu-
PPy from four electrodes indicated a better degree of
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Fig. 8 (a) Comparison regression (R?) vs. techniques used in the electrochemical study of GCEQCu-PPy. (b) SEM image of the Cu-PPy

composite after testing.
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reproducibility. In addition, 50 CV scans were run in the same
analyte and an average change of 2.15 pA (4.1% of the original)
in oxidative peak responses was recorded for all electrodes.
Regression values obtained from different techniques used in
this study were compared (Fig. 8a) to obtain an average statis-
tical confidence value 0.969306, which is quite high. The SEM
result for Cu-PPy was obtained after the detection study of
catechol, as shown in Fig. 8b. No significant change in surface
morphology was observed.

4 Conclusion

Using a glassy carbon electrode (GCE) modified with a copper-
polypyrrole (Cu-PPy) composite, we synthesized an enzyme-
free, highly selective biosensor for catechol detection. As
copper nanoparticles occupied the voids within or on the
surface of polypyrrole, shifts in peaks were recorded, as evi-
denced by XRD, SEM, FTIR, and Raman spectroscopic analysis.
GCE@Cu-PPy showed superior sensing qualities for the detec-
tion of CAT, including a low detection limit (1.52 x 10~7 uM),
high linear range (0.02-2500 pM), excellent selectivity, and
greater storage stability at a recovery rate of 93.68%. The
GCE@Cu-PPy application was successfully implemented by
detecting catechol in a real sample in the presence of its
isomers and interfering species in high concentrations. Based
on the statistical analysis of all the methods used in this study,
the regression coefficient (R*) was found to be 0.969306. A
higher statistical confidence value (R®) provides proof that the
Cu-PPy composite can be used as a catechol biosensor.
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