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r automated size and shape
analysis of nanoparticles in scanning electron
microscopy

Jonas Bals and Matthias Epple *

The automated analysis of nanoparticles, imaged by scanning electron microscopy, was implemented by

a deep-learning (artificial intelligence) procedure based on convolutional neural networks (CNNs). It is

possible to extract quantitative information on particle size distributions and particle shapes from

pseudo-three-dimensional secondary electron micrographs (SE) as well as from two-dimensional

scanning transmission electron micrographs (STEM). After separation of particles from the background

(segmentation), the particles were cut out from the image to be classified by their shape (e.g. sphere or

cube). The segmentation ability of STEM images was considerably enhanced by introducing distance-

and intensity-based pixel weight loss maps. This forced the neural network to put emphasis on areas

which separate adjacent particles. Partially covered particles were recognized by training and excluded

from the analysis. The separation of overlapping particles, quality control procedures to exclude

agglomerates, and the computation of quantitative particle size distribution data (equivalent particle

diameter, Feret diameter, circularity) were included into the routine.
Introduction

Many products contain micro- or nanoscale powder materials.
Such materials must be analysed with high precision for any
application with respect to particle size and particle shape distri-
bution. A commonmethod for the analysis of particles is scanning
electron microscopy (SEM).1 SEM can be operated in different
modes, i.e. secondary electron detection mode (SE) and scanning
transmission electronmode (STEM). SE images have a higheld of
depth and are especially well suited to show surface details,
including the surface topography in a pseudo-three-dimensional
representation. STEM images have a higher spatial resolution
and give a two-dimensional representation of particles. The images
generated by these two modes are fundamentally different in
terms of their pixel intensity distribution and overall appearance.
Therefore, an automated image analysis needs different
approaches to deal with SE and STEM images, respectively.

Usually, SEM images are analysed by experienced human
reviewers to count and measure the depicted particles, e.g. to
determine the particle size distribution of a given sample.2

Another particle property which is generally of interest is the
particle shape. If images show an assembly of particles with
different shapes, their classication into different categories
(e.g. sphere, cube, rod, or triangle) is usually done manually.
This is a time-consuming process which may be biased by
a human reviewer.3 To accomplish a fast and objective analysis,
tion Duisburg-Essen (CENIDE), University
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there is a strong need for non-biased, rapid methods to analyse
SEM images.4

Machine learning has been applied to detect and identify
objects of high variability in SEM images.5,6 In principle, this
permits a more objective and usually much faster analysis than
a human assessment.7–12 Semantic segmentation of images into
coherent areas of the same class (e.g. foreground and back-
ground) is possible by convolutional autoencoders (CNNs) like
the UNet architecture.13 UNet and its various developments
were highly successful in biomedical image processing, and
several attempts were made to apply it to nanoparticle analysis
as well.14 Further efforts to classify particles according to their
shape were carried out by dedicated classication networks.15,16

The workow presented here includes two steps performed
by convolutional neural networks (CNN) to accomplish a full
analysis of SEM images of nanoparticles. The rst step is to
label each pixel as either foreground or background (segmen-
tation). Coherent areas of foreground pixels (“particles”) are
then cut out and processed by a second neural network to
determine the shape of the individual particle (classication).
In this step, partially covered particles are identied and
removed from the classication. A subsequent analysis of
particle size, diameter, and circularity of all particles shown in
an image is nally performed.
Results and discussion

Training a neural network leads to a model which is adapted to
a given dataset aer training on a representative set of features
RSC Adv., 2023, 13, 2795–2802 | 2795
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Fig. 1 Representative SEM image from the training dataset for
segmentation containing ZnO nanorods (2048 × 1886 pixels; SE
mode). Orange boxes show typical cut-out patches used for training.
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from this dataset. This model, in our case a convolutional
neural network, recognizes features within the dataset and
learns to correlate these features with an associated class. The
associated class is denoted as label. In the segmentation, these
labels are given for each pixel and can be either foreground or
background. In the shape classication, a case label describes
the shape of a given particle (e.g. cube or sphere). In each
training step an image shown to the network generates an
output which is a probability distribution over all possible
cases. A segmentation network will calculate the probability for
each pixel to be either foreground or background. A classica-
tion network will calculate a probability for each particle to
belong to a shape class of the training dataset. This probability
distribution is then compared with the true output, i.e. the
ground truth.5,14,17,18

The loss function measures the difference between predic-
tion and true label. A small difference between prediction and
true label leads to a small loss and a better performance of the
network. Each presentation of all images of a given training
dataset to the network is called an epoch. The network param-
eters are changed several times during one epoch. The adap-
tation is performed aer a mini-batch (a part) of images has
been shown to the network. An optimizer algorithm uses the
loss function to gradually adjust the parameters of the network.
A high loss results in a strong adaptation of the network
parameters. Training ends when the network is no longer
improving its adaption to the training data, i.e. the loss function
does not further decrease. This can require several hundred
training epochs.19

Two different workows were generated here, one for SE
images and one for STEM images. This was necessary because
the image types represented by SE and STEM images are
strongly different. Both workows shared the UNET++ archi-
tecture for segmentation.20
Training procedure for segmentation

SEM images usually show two-dimensional representations of
particles having a three-dimensional shape. Of course,
geometric information is lost by such a projection. This is oen
tacitly ignored, e.g. circular particles are assumed to be spher-
ical, quadratic particles are assumed to be cubic, etc. In fact,
a circular particle may also be disc-like because particles are
usually settling on their largest face during sample preparation
for SEM. This will lead to images where most discs are sitting on
their circular face instead of their edge. This is a fundamental
problem which can only be addressed by recording SEM data
taken from different angles.

The segmentation training dataset consisted of 30 SE and 12
STEM images, respectively. We also used 32 SE images pub-
lished by Ruehle et al.21 Validation datasets contained 16 SE
images and 3 STEM images, respectively. These images had
typical sizes of 2000 × 1600 pixels. The particles in both image
types were typically separated by 1 to 3 pixels, i.e. the particle
density was high (as common in scanning electronmicroscopy).

Because the input of UNet++ was xed to 512 × 512 pixels,
we randomly cut out patches of the training images. For data
2796 | RSC Adv., 2023, 13, 2795–2802
augmentation, we articially altered each image by random
rotation, ipping, intensity variation, shearing, and zooming
(up to 15% each) before cutting out image patches. The number
of patches per image depended on the image size. Bigger
images resulted in more patches. Approximately 450 patches
were cut out of the 30 SE images. Approximately 180 patches
were cut out of the 12 STEM images. The random extraction of
patches from each image was performed in each epoch. An
epoch was nished aer each patch of each image was pro-
cessed once by the CNN. Fig. 1 illustrates this step.
Segmentation of SEM images by UNet++

Since its introduction by Ronneberger et al. in 2015, UNET has
demonstrated its usefulness for the segmentation of medical
images.13 We applied the improvement of UNet, i.e. UNet++,20,22

to a wide range of different SEM images. The major difference
between UNET and UNET++ is the link between encoder and
decoder via nested dense convolutional layers which enhances
semantic segmentation.23 The network weights were changed
aer each patch.

Several problems emerge when training a neural network
with SE and STEM images of nanoparticles.

First, in STEM images, the particles can touch or overlap and
even form continuous aggregates (agglomerates) with no sepa-
rating background between them. These aggregates cannot be
separated into individual particles. For a precise size analysis,
agglomerates must therefore be excluded.3 We achieved this by
explicitly training the classication network to identify
agglomerates.

Second, in SE images, the particles can also overlap but
borders of particles are usually well distinguishable. The
particles are separated by a thin line, sometimes as narrow as
one pixel.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Third, particles in SE images can be present in different
intensities ranging from dark (overshadowed particles) to
bright (particles close to the electron detector; see Fig. 1). The
neural network must adapt to these differences.

The problem extends to overlapping particles. Humans tend
to impose an expected geometry to a partially covered particle,
e.g. by assuming that a particle of which 80% are seen as sphere
is implicitly considered as a sphere. However, if there is no
information on the missing 20%, this assumption is based on
subjective expectations and not on experimental data. Of
course, no method can supplement pixels which are not visible
because they are behind another particle in the front. In that
case, the true particle shape (ground truth) is unknown.

The preparation of samples is therefore decisive to obtain
good segmentation and classication results. A low particle
density on the sample holder usually leads to well separated
particles. Nevertheless, the assessment of a large number of
particles (>1000) is necessary to ensure a reliable statistical
representation of a given sample. Unfortunately, images
showing many overlapping particles (oen by solvent evapora-
tion during sample preparation) are most common when
particles are depicted by SEM (see Fig. 1).

Ronneberger et al. introduced weight loss maps to overcome
the problem of a narrow separation of objects.13 Weight loss
maps are matrices of the same size as the image that give each
pixel an individual weight. In our case, the weight of each
background pixel is given by its distance to the next particle
edge (distance-based weight loss maps). These pixels are
particularly important to separate adjacent particles. By giving
these separating background pixels a higher weight, we forced
the neural network to focus on the immediate background
around each particle (Fig. 2). Weight loss maps were computed
for ground truth annotation masks which were manually
prepared before the network was trained. Due to the higher
weights for separating background pixels between particles, the
network predominantly learned to segment those areas. Thus,
in the application of networks to any new image, no weights
Fig. 2 SE image depicting SiO2 microspheres (A1) with corresponding
segmentation map (B1), and distance-based weight loss map calcu-
lated by eqn (1) (C1). STEM image of Au nanoparticles (A2) with
segmentation map (B2) and intensity-based weight loss map (C2).
Each background pixel (black) of the segmentation map was assigned
with an individual weight loss depending on the distance to the edges
of the two nearest particles. These weights varied between 1 and 11 for
SE images and 1 and 13 for STEM images. The general weight of
foreground pixels (white) was 1.

© 2023 The Author(s). Published by the Royal Society of Chemistry
were needed because the network was already sensibilized (i.e.
trained) to those areas. Notably, calculating weight maps
requires considerable computing time.

In STEM images, background pixels between two touching
particles can be very bright (see Fig. 2-A2). The model errone-
ously merges such particles because it cannot identify a sepa-
rating border between them. To train the model to distinguish
between bright background and particles we included the
image intensity into the training process. The combination of
distance-based weight loss maps and the pixel brightness led to
a model which successfully separated touching particles. We
denote this approach intensity-based weight loss maps in the
following. Eqn (1) shows the modied version of Ronneberger
et al.13 for the weight of each pixel w(x)

wðxÞ ¼ w0 � exp

 
� ðd1ðxÞ þ d2ðxÞÞ2

2s2

!
þ g� IcðxÞ þ 1 (1)

with d1(x) and d2(x) the distance of background pixel x to the
edge of the nearest two particles. w0 and s are adjustable
parameters, and g × Ic(x) is the normalised intensity of pixel x
multiplied by a factor gamma. The rst term in the equation
results in a distance-based weight loss map which was used for
SE images. The addition of the second part leads to intensity-
based weight loss maps which were used for STEM images.
We set the parameters to w0= 10, s= 7 and g= 2 where the best
results were obtained. In the case of SE images, the term g ×

Ic(x) was not used (g = 0) because the intensity variations did
not have the same strong effect on the segmentation as in the
STEM images.

Segmentation results

Segmentation results of the validation dataset are shown in
Table 1. As reference we used the default UNet architecture
trained on the same data. Experiments for both types of weight
loss maps were carried out for SE and STEM images. We used
intensity-based weight loss maps for STEM images and
distance-based weight loss maps for SE images, respectively. We
validated each model with different metrics. Abbreviations used
in eqn (2)–(7) refer to the following: TP – True Positive, FP –

False Positive, TN – True Negative, FN – False Negative. These
metrics can be used in segmentation and classication. In
terms of segmentation each pixel is counted, while in terms of
classication each image of a particle is counted.

Precision ¼ TP

TPþ FP
(2)

Recall ¼ TP

TPþ FN
(3)

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
(4)

Intersection over UnionðIoUÞ ¼ TP

TPþ FPþ FN
(5)

F1 ¼ 2� TP

2� TPþ FPþ FN
(6)
RSC Adv., 2023, 13, 2795–2802 | 2797
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Table 1 Segmentation results for SE and STEM images, respectively. The table includes two kinds of metrics. The regular segmentation metrics
uses the whole ground truth segmentation map and the model prediction, i.e. the full image. The “particles only” metrics ignores most of the
background. It compares only areas of the image which are part of the particle bounding boxes. Therefore, it compares how well the individual
particles and the directly enclosing background of particles are segmented.21 The given errors represent confidence intervals

CNN Type Precision Recall Accuracy IoU F1 Pixel error Rand error

Unet SE (distance-based weight loss maps) 97 � 1% 97 � 2% 97 � 2% 94 � 2% 97 � 1% 3 � 2% 2 � 1%
STEM (intensity-based weight loss maps) 96 � 4% 93 � 5% 99.5 � 0.5% 90 � 6% 94 � 3% 0.5 � 0.5% 1.0 � 0.9%

Unet++ SE (distance-based weight loss maps) 97 � 1% 96 � 5% 97 � 7% 93 � 2% 96 � 5% 3 � 3% 2 � 2%
SE (intensity-based weight loss maps) 98 � 2% 93 � 3% 96 � 2% 91 � 3% 95 � 1% 4 � 12% 3 � 16%
SE (particles only) 98 � 2% 95 � 3% 94 � 2% 93 � 3% 96 � 1% 13 � 12% 18 � 16%
STEM (distance-based weight loss maps) 96 � 4% 91 � 7% 99 � 1% 88 � 1% 93 � 7% 1 � 4% 1.1 � 0.6%
STEM (intensity-based weight loss maps) 96 � 6% 96 � 4% 99.7 � 0.4% 92 � 7% 96 � 4% 0.3 � 0.4% 1 � 1%
STEM (particles only) 99 � 1% 96 � 4% 96 � 3% 94 � 4% 97 � 2% 13 � 28% 8 � 12%
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Pixel error = 100 − accuracy (7)

In addition, we calculated the Rand error.24 The Rand error
measures the degree in which two segmentations (the true label
and the model prediction) disagree whether a given pixel
belongs to the same object in both segmentations. Therefore,
the Rand error measures how well particles are separated, with
0% indicating a good separation and 100% an unsuccessful
separation.

The introduction of intensity-based weight loss maps
signicantly improved the segmentation performance of
UNet++ for STEM images. However, SE images did not benet
from the application of intensity-based weight loss maps. SE
images usually have a wide distribution of grayscales. In SE
images, background and particles share the same range of pixel
intensity, whereas in STEM images background and particles
are strongly different (two distinct peaks of pixel intensities).
The background between touching particles in STEM can reach
the same intensity as the particles. This is not the case for SE
images where particles oen surrounded by a darker rim due to
lower electron excitation. The models UNet and UNet++ per-
formed almost equally on both types of images. UNet++ uses
only 7.7 million parameters compared to 31 million parameters
of UNet.25 Thus, it is much faster than UNet without compro-
mising the segmentation ability. Overall, the segmentation
procedure was very efficient. The introduction of intensity-
based weight maps led to a signicant improvement in the
IoU by 4% for STEM images. This is due to the better separation
of touching particles by segmentation of background pixels.
Fig. 3 The input SEM image (SE mode) is segmented by a UNet++
model. The dimensions of all foreground objects (white coherent
areas) were defined by their enclosing bounding box (red boxes) in the
segmentation map. The cut-out areas in the SEM image were slightly
larger than the bounding boxes to provide additional background
information around each object. The image patches were resized until
each side of the patch was 224 pixels long because the classification
network used only square images. The additional pixels were filled with
zero-pixel values (zero-padding; black). The classification model took
these square images and assigned each particle to a class (upper row:
a circle). If the image contained a particle which was partially covered,
this particle was assigned to the class “covered” and excluded from
further shape classification (bottom row).
Shape classication

Segmentation of images is only the rst step of analysis. Next,
parameters that describe particle size and shape are of interest.

The classication of single particles was performed by two
different CNNs: Alexnet for STEM images and ResNet34 for SE
images. We initialized both networks according to He et al.26 As
optimizing algorithm, we used ADAM27 with the default settings
of Tensorow.28 As loss function, we used the cross-entropy loss
function introduced by Fisher.29 Both networks were tested
against their validation dataset.
2798 | RSC Adv., 2023, 13, 2795–2802
Aer segmentation of raw particles from the background,
the particle bounding boxes were slightly enlarged and cut out
from the SEM image. For each particle, the cut-out area was
larger than the close-tting bounding box to provide
surrounding information for the following classication
network (Fig. 3). As classication networks, we used AlexNet for
STEM images because of the limited data (<1000 images per
class).19 Larger networks require a more variable dataset which
was not available for STEM images. A variation in terms of
particle orientation and colour distribution is not given in
STEM images which are just 2D representations with a very
limited distribution of either very dark (background) or very
bright (particle) grayscales. For SE images, the larger ResNet34
was the preferred option due to its performance in the ILSVRC
2015.30 For the even deeper variants like ResNet50, we observed
© 2023 The Author(s). Published by the Royal Society of Chemistry
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a lack of data variation. We were not able to train ResNet50 to
the same extent as it was possible with ResNet34.
Fig. 4 Confusion matrix for the shape classification of nanoparticles.
Left: results for STEM images; right: results for SE images.
Shape classication of particles from STEM images by AlexNet

For the shape classication of single particles from STEM
images, a modied AlexNet architecture was used. This network
was developed by Zeiler and Fergus31 and modied by us by
reducing the number of channels in the fully connected layers
by a factor of two. In total, 3000 manually classied single
images of gold and silver nanoparticles in the classes circle, rod,
triangle, square, pentagon, hexagon, agglomerate, and covered
were used for training (ground truth). The class “covered”
consisted of manually identied particles that were partially
covered by other particles in the foreground. The network was
specically trained to recognize these by suitable training
images of partially covered particles. Similarly, the class
“agglomerate” created and trained with suitable images. Images
of single particles were resized to 224 × 224 pixels, while
preserving the aspect ratio as depicted in Fig. 3. Data
augmentation similar to the segmentation training was applied
by random cropping, rotation, and ipping to increase the
training dataset. Gaussian noise was also applied for data
augmentation by adding a matrix of random values to the
image. Class weighing was applied to take different numbers of
images in the individual classes into account, using standard
procedures.
Shape classication of particles from SE images by ResNet34

The analysis of single particles from SE images was performed
by ResNet34.16 Altogether, 17 000 images of manually classied
SiO2, ZnO, Ag, Au, and TiO2 nanoparticles in the classes sphere,
sphere-like, cube, rod, and covered particles were used (80% for
training, 20% for validation; ground truth). Two different
classes for spherical objects were introduced. The class
“sphere” comprised round, ball-shaped objects, whereas the
class “sphere-like” comprised a range of deformed, elongated,
and indented particles. Data augmentation and class weighing
was performed as with AlexNet (see above).
Fig. 5 Representative classification of particles of different materials
recorded in SE and STEM modes. The images are illustrative cut-outs
from larger images subjected to segmentation and classification. They
show nanoparticles of (A): SiO2 (SE), (B): Au (STEM), (C): Ag (SE), and (D):
ZnO (SE). The full analysis involved the segmentation, followed by
classification. The coloured areas are foreground areas (i.e. particles)
identified by the segmentation and then assigned to a shape class.
Results of shape classication

The shape classication results are shown in Table 2 and Fig. 4.
We have labelled the categories corresponding to 3D shapes
(SE) or their corresponding 2D projections (STEM) according to
Munoz-Marmol et al.32 The mean accuracy (eqn (4)) of the
validation dataset for particles imaged by SE and classied by
ResNet34 was 93%, and for particles imaged by STEM and
classied by AlexNet 95%.
Table 2 Accuracy of the classification networks on their validation data

Accuracy per class Covered Circle/sphere Sphere-like Rod Tri

STEM (2D) 97% 96% — 95% 97%
SE (3D) 93% 86% 89% 99% —

© 2023 The Author(s). Published by the Royal Society of Chemistry
The classication networks were then applied to images
which were neither used in training nor in validation. Fig. 5
shows representative results. Because both training datasets
contained partially covered particles, both networks were
trained to identify and exclude partially covered particles. This
sets. Both networks showed an accuracy near or above 90%

angle Square/cube Pentagon Hexagon Agglomerate Average

94% 91% 95% 91% 95%
96% — — — 93%

RSC Adv., 2023, 13, 2795–2802 | 2799
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procedure assured that particles within one class were similar.
The shape classication by CNNs gave an overall high accuracy.
The application of the validated networks led to an unexpected
behaviour when classifying particles whose appearance differed
from the trained morphologies. Images of particles with shapes
unknown from the training like stars or octahedra showed
similar probabilities for many classes, i.e. the probability
distribution was almost evenly spread among a number of
classes. In that case, the classication would have beenmade by
the network based on small differences between the class
probabilities (e.g. 34% vs. 30% vs. 28%), i.e. decided by a few
percent of probability or less. Therefore, as an additional quality
control we introduced a condence limit of 75%. If the proba-
bility was below the condence limit, the particle would be
classied as “unknown”. As condence limit we used the typical
human certainty when classifying a given particle of about
75%.3 Note that the classes for particles identied as “covered”
and “agglomerate” (STEM only) were dened as individual
classes during training. This assignment was not perfect which
is not surprising because there are many different shapes for
partially covered or agglomerated particles. The incorporation
of partially covered particles into the classication and the
subsequent numerical particle analysis would have strongly
compromised the resulting data. As typical case, a partially
covered circle could appear as sickle-like object, leading to
a classication as rod and wrong numerical input data.

In general, SEM images without any covered particles are
difficult to acquire as most real images contain covered parti-
cles. Thus, some degree of covered particles must be tolerated
by any practically applicable classication model. The average
false classication rate was 5% for STEM images and 7% for SE
images (see Table 2). Thus, covered particles classied by the
segmentation model as foreground were classied by a 95%
chance for STEM and 93% for SE as background particles/
covered particles by the classication model. We consider this
as an acceptable error. Furthermore, we did not nd deviations
in the particle diameter size distributions by including mini-
mally covered particles.

Numerical data for particle sets

Particle dimensions can be expressed by several methods.
Typically, minimum and maximum Feret diameters are used to
dene particle dimensions. The maximum (or minimum) Feret
diameter is the maximum (or minimum) length of a straight
line from one end of the particle to another regardless of the
orientation. The classication of each particle into a specic
Table 3 Representative analysis of the SE image containing SiO2 microsp
2425 objects were identified. The particle classification identified 945 ob
in the analysis. The remaining 1480 particles were classified. 1360 of the

Perimeter/nm Area/nm2
Convex hull
area/nm2 C

Average 625 35 489 36 625 0
Std. dev. 160 4955 4630 0
Number of analysed particles 1480 1480 1480 1

2800 | RSC Adv., 2023, 13, 2795–2802
shape class and the exclusion of covered particles made it
possible to calculate particle edge lengths/radii directly from
their segmented area. We used standard equations to correlate
edge length and area for each geometric shape, e.g. by using the
area of a spherical particle to compute its diameter and its
perimeter. Rod lengths can be expressed by the maximum Feret
diameter. Together with the area of a rod, the average rod
thickness and the aspect ratio can be computed, assuming
a rectangular particle shape. Edge lengths for non-spherical
objects are useful, e.g., for nanoparticles with distinct aspect
ratio. We found a good agreement between human evaluators
and the segmentation/classication routine. Table 3 illustrates
this for spheres shown in Fig. 5A.

The approach presented here compares well with other
methods for image segmentation and classication.11 We have
shown previously that a more classical approach of machine
learning using random forest classier is not capable of nano-
particle segmentation in STEM images.3 Furthermore, a classi-
cation of shapes by principle component analysis of
morphological features is not sufficient to distinguish between
particles.33 In general, deep neural networks are superior to
shallow classication and regression algorithms like watershed
segmentation34 or custom-made feature detectors35 for image
segmentation or classication as summarized in ref. 36.
Experimental
Scanning electron microscopy

SEM micrographs were recorded with two scanning electron
microscopes, i.e. an Apreo S LoVac (Thermo Fisher Scientic)
instrument with a segmented STEM (transmission mode)
detector, and a FEI Quanta 400F instrument with a secondary
electron (SE) detector. Particle were drop-cast onto carbon-
coated copper grids and dried in air. Electrically insulating
materials were sputter-coated with AuPd (80 : 20) before SEM
analysis.
Computational hardware and soware

Neural network training was performed with an NVIDIA
GeForce GTX 1660 on a Lenovo IdeaCetre T540 – 15ICK G
Workstation. Images used in nal validation were not used in
any training. Anaconda 4.10.3 with Python 3.9.7 and
Tensorow/Keras 2.8.0 were used to implement the neural
networks. OpenCV Version 4.5.3 was used to calculate particle
properties.
heres (cut-out shown in Fig. 5A). After segmentation of the full image,
jects as partially covered. These covered particles were not considered
m fell into the class “sphere” (equivalent to “circle”)

ircularity/—
Minimum Feret
diameter/nm

Equivalent circle
diameter/nm

Circle diameter by
human evaluator/nm

.97 204 213 230

.03 19 14 17
480 1480 1360 100

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

The capability of an automated analysis to classify STEM and SE
images of nanoparticles was demonstrated. The workow used
the CNN UNet++ for segmentation and the CNNs AlexNet and
ResNet34 for shape classication. The segmentation of SEM
images of nanoparticles into coherent foreground areas (parti-
cles) and background is possible with high efficiency, and even
overlapping or touching particles were oen separable. Weight-
loss maps based on the distance of background pixels to the
particle borders together with the image intensity considerably
improved the segmentation of STEM images but did not
improve the segmentation of SE images. The intensity varia-
tions occurring in an SEM image are usually unavoidable but
may be improved by a good sample preparation, i.e. a low
particle density with few overlapping particles. The perfor-
mance of UNet++ was comparable to UNet. However, UNet++
was faster due to fewer parameters than in UNet, requiring less
computing time. The subsequent classication of individual
particles into different shapes gave reliable results. Each
coherent foreground area of the segmentation map was
assigned to one of the previously dened shape categories. The
introduction of a class of partially covered particles into the
training procedure considerably improved the classication
results. In conclusion, CNNs can be used to obtain statistical
information about particles of dened shapes. Tacitly, it is
assumed that particles which are excluded from the classica-
tion have the same size and shape distribution as those parti-
cles included in the analysis. This, however, it is a reasonable
assumption.

Author contributions

Conceptualization: both authors; methodology: both authors;
investigation: both authors; programming: J. B.; visualization: J.
B.; validation: both authors; writing—original dra prepara-
tion: both authors; writing—review: both authors. both authors
have read and agreed to the published version of the
manuscript.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

We thank Mrs Qianmin Chen, Mr Rui Guo, Dr Jens Helmlinger,
Mrs Aikaterini Karatzia, Dr Mateusz Olejnik, and Dr Kevin
Pappert for the synthesis of samples and provision of their
images and data. For SEM operation and sample preparation,
we are grateful to Tobias Bochmann, Ursula Giebel and Dr
Kateryna Loza.

Notes and references

1 H. Fissan, S. Ristig, H. Kaminski, C. Asbach and M. Epple,
Anal. Methods, 2014, 6, 7324–7334.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2 M. M. Modena, B. Ruehle, T. P. Burg and S. Wuttke, Adv.
Mater., 2019, 31, 1901556.

3 J. Bals, K. Loza, P. Epple, T. Kircher and M. Epple,
Materialwiss. Werkstoech., 2022, 53, 270–283.

4 M. H. Modarres, R. Aversa, S. Cozzini, R. Ciancio, A. Leto and
G. P. Brandino, Sci. Rep., 2017, 7, 13282.

5 E. A. Holm, R. Cohn, N. Gao, A. R. Kitahara, T. P. Matson,
B. Lei and S. R. Yarasi, Metall. Mater. Trans. A, 2020, 51,
5985–5999.

6 J. Schmidt, M. R. G. Marques, S. Botti and M. A. L. Marques,
npj Comput. Mater., 2019, 5, 83.

7 J. Timoshenko, C. J. Wrasman, M. Luneau, T. Shirman,
M. Cargnello, S. R. Bare, J. Aizenberg, C. M. Friend and
A. I. Frenkel, Nano Lett., 2018, 19, 520–529.

8 A. B. Oktay and A. Gurses, Micron, 2019, 120, 113–119.
9 J. M. Ede and R. Beanland, Sci. Rep., 2020, 10, 8332.
10 M. Ilett, J. Wills, P. Rees, S. Sharma, S. Micklethwaite,

A. Brown, R. Brydson and N. Hondow, J. Microsc., 2020,
279, 177–184.

11 H. Kim, J. Y. Han and T. Y. J. Han, Nanoscale, 2020, 12,
19461–19469.

12 B. Lee, S. Yoon, J. W. Lee, Y. Kim, J. Chang, J. Yun, J. C. Ro,
J. S. Lee and J. H. Lee, ACS Nano, 2020, 14, 17125–17133.

13 O. Ronneberger, P. Fischer and T. Brox, arXiv, preprint,
arXiv:1505.04597, DOI: 10.1007/978-3-319-24574-4_28.

14 K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza,
R. Cohn, C. W. Park, A. Choudhary, A. Agrawal,
S. J. L. Billinge, E. Holm, S. P. Ong and C. Wolverton, npj
Comput. Mater., 2022, 8, 59.

15 A. Krizhevsky, I. Sutskever and G. E. Hinton, Presented in part
at the Proceedings of the 25th International Conference on
Neural Information Processing Systems – Volume 1, Lake
Tahoe, Nevada, 2012.

16 K. He, X. Zhang, S. Ren and J. Sun, Presented in part at the
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 27–30 June 2016, 2016.

17 R. Jacobs, Comput. Mater. Sci., 2022, 211, 111527.
18 K. P. Treder, C. Huang, J. S. Kim and A. I. Kirkland,

Microscopy, 2022, 71, i100–i115.
19 I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT

Press, 2016.
20 Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh and

J. Liang, in Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, Springer,
2018, pp. 3–11, DOI: 10.1007/978-3-030-00889-5_1.

21 B. Ruehle, J. F. Krumrey and V. D. Hodoroaba, Sci. Rep.,
2021, 11, 4942.

22 Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, IEEE
Trans. Med. Imag., 2020, 39, 1856–1867.

23 G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger,
Presented in part at the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 21–26.

24 R. Unnikrishnan, C. Pantofaru and M. Hebert, IEEE Trans.
Pattern Anal. Mach. Intell., 2007, 29, 929–944.

25 K. M. Saaim, S. K. Afridi, M. Nisar and S. Islam,
Ultramicroscopy, 2022, 233, 113437.
RSC Adv., 2023, 13, 2795–2802 | 2801

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00889-5_1
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra07812k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
/1

9/
20

26
 7

:5
7:

46
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
26 K. He, X. Zhang, S. Ren and J. Sun, arXiv, 2015, preprint,
arXiv:1512.03385, DOI: 10.48550/arXiv.1512.03385.

27 D. P. Kingma and J. Ba, arXiv, 2015, preprint,
arXiv:1412.6980, DOI: 10.48550/arXiv.1412.6980.

28 M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and
X. Zheng, Presented in Part at the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, USA, 2016.

29 J. Aldrich, Stat. Sci., 1997, 12, 162–176.
30 K. He, X. Zhang, S. Ren and J. Sun, arXiv, 2015, preprint,

arXiv:1502.01852, DOI: 10.48550/arXiv.1502.01852.
2802 | RSC Adv., 2023, 13, 2795–2802
31 M. D. Zeiler and R. Fergus, Presented in Part at the Computer
Vision – ECCV 2014, Cham, 2014.

32 M. Munoz-Marmol, J. Crespo, M. J. Fritts and V. Maojo,
Nanomedicine, 2015, 11, 457–465.

33 A. Hughes, Z. Liu, M. Raari and M. E. Reeves, PeerJ, 2015, 2,
e671v671.

34 R. Baiyasi, M. J. Gallagher, L. A. McCarthy, E. K. Searles,
Q. Zhang, S. Link and C. F. Landes, J. Phys. Chem. A, 2020,
124, 5262–5270.

35 A. F. De Siqueira, F. C. Cabrera, A. Pagamisse and A. E. Job,
Microsc. Res. Tech., 2014, 77, 71–78.

36 Y. LeCun, Y. Bengio and G. Hinton, Nature, 2015, 521, 436–
444.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1502.01852
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra07812k

	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy

	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy

	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
	Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy


