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ow tubular fibrous brucite-
templated carbons obtained by KOH activation for
supercapacitors†

Fangfang Liu, ab Xiuyun Chuan*a and Yupeng Zhaoa

Hierarchical hollow tubular porous carbons have been widely used in applications of supercapacitors,

batteries, CO2 capture and catalysis due to their hollow tubular morphology, large aspect ratio, abundant

pore structure and superior conductivity. Herein, hierarchical hollow tubular fibrous brucite-templated

carbons (AHTFBCs) were prepared using natural mineral fiber brucite as the template and KOH as the

chemical activator. The effects of different KOH additions on the pore structure and capacitive

performance of AHTFBCs were systematically studied. The specific surface area and micropore content

of AHTFBCs after KOH activation were higher than those of HTFBC. The specific surface area of the

HTFBC is 400 m2 g−1, while the activated AHTFBC5 has a specific surface area of up to 625 m2 g−1. In

particular, compared with HTFBC (6.1%), a series of AHTFBCs (22.1% for AHTFBC2, 23.9% for AHTFBC3,

26.8% for AHTFBC4 and 22.9% for AHTFBC5) with significantly increased micropore content were

prepared by controlling the amount of KOH added. The AHTFBC4 electrode displays a high capacitance

of 197 F g−1 at 1 A g−1 and the capacitance retention of 100% after 10 000 cycles at 5 A g−1 in the three-

electrode system. And an AHTFBC4//AHTFBC4 symmetric supercapacitor exhibits the capacitance of 109

F g−1 at 1 A g−1 in 6 M KOH and an energy density of 5.8 W h kg−1 at 199.0 W kg−1 in 1 M Na2SO4

electrolyte. In addition, the capacity retention of AHTFBC4 in the symmetric supercapacitor was

maintained at 92% after 5000 cycles in both 6 M KOH and 1 M Na2SO4 electrolytes.
1. Introduction

With the over-exploitation of fossil energy and the deterioration
of the ecological environment, the development of clean and
renewable energy has become an important trend in today's
society. Therefore, the effective development and utilization of
renewable and clean energy, including wind energy, solar
energy, etc., has attracted the extensive attention of many
scholars.1 Therefore, there is an increasing demand for envi-
ronmentally friendly, high-performance renewable energy
storage devices.2,3 As novel energy storage devices, super-
capacitors (SCs) have attracted much attention due to their high
specic capacitance, long cycle life, high power density, safety,
and no memory effect.4–6

Nanostructured carbon materials with high specic surface
area (SSA) are commonly used electrode materials, which can
provide high electrical conductivity, chemical stability, and
electrochemical stability at a low cost.7,8 Templated carbon is
al Evolution, School of Earth and Space

China. E-mail: xychuan@pku.edu.cn

versity of Mining and Technology, Xuzhou

tion (ESI) available. See DOI:

18
a widely used carbon-based material. At present, there are
mainly “hard” template, “so” template and the combination of
“so” and “hard” template used in the synthesis of template
carbon material. The synthesis and nal removal of hard
templates undoubtedly increase the preparation cycle and
preparation cost of template carbon, which restricts the large-
scale application of the template method;9 while so
templates cannot achieve the ne tuning of morphology and
pore structure.10 Therefore, based on the problems of so and
hard templates, natural minerals with unique nanopore struc-
ture, excellent thermal and mechanical stability, environmental
friendliness, abundant resources and low cost have been widely
concerned as templates. In recent years, a variety of natural
minerals including chrysotile,11 halloysite,12 attapulgite,13 sepi-
olite14 (the above one-dimensional structure minerals), mont-
morillonite15 (two-dimensional structure minerals), zeolite16

and diatomite17 (three-dimensional structure minerals) have
been widely used as templates for the preparation of templated
carbon materials.

Among various templated carbon materials, hollow tubular
templated carbon is widely used due to its unique morphology,
excellent chemical and mechanical stability and superior
conductivity.18,19 However, the limited accessible surface area of
the closed tips and inert hydrophobic surfaces of hollow tubular
templated carbon restricts its electrochemical performance.20
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Currently, in order to increase the specic capacitance and
energy density of hollow tubular templated carbon materials
without sacricing high power density, there are usually two
strategies, one is to design and build heteroatom-doped (such
as B,21 N,22,23 P,24 S25) structures, and the other is to build well-
developed hierarchical pore structures. The introduction of
heteroatoms into carbon materials not only improves the
conductivity and wettability, but also provides more active sites
and additional pseudocapacitance, thus signicantly
enhancing the electrochemical properties.26 In addition to the
doping of carbon materials with heteroatoms, the regulation of
the pore structure of carbon materials has also aroused great
interest in realizing the excellent properties of carbonmaterials.
Generally speaking, during charge storage, macropores (>50
nm) can store electrolyte ions and act as electrolyte ion pools.27

Mesopores (2–50 nm) are important bridges for the formation
of three-dimensional ion transport channels inside the porous
carbon material.28 The existence of mesopores is conducive to
the transport of electrolyte ions in the porous carbon material
and improves the rate capability of porous carbon materials.29,30

Micropores (size <2 nm) are the main contributor to the electric
double-layer capacitance.31,32 Therefore, the preparation of
hierarchical porous carbon electrode materials with micro-
pores, mesopores, and macropores is the key to ensuring the
excellent electrochemical properties of SCs.31,33

The activation method is currently one of the most common
methods for preparing hierarchical porous carbons and can be
divided into physical activation and chemical activation
according to the pore-forming mechanism.34 Compared with
physical activation methods, chemical activation can achieve
the preparation of hierarchical porous carbons at lower
temperatures and higher yields, which has attracted much
attention. Common chemical activators include strong bases
such as KOH and NaOH, alkali metal compounds such as
Na2CO3 and K2CO3, and Lewis acids such as AlCl3, ZnCl2, and
H3PO3.27 A literature survey shows that KOH is one of the most
widely used active agents, and its product has a high SSA, so we
choose KOH for chemical activation.35

Fibrous brucite (Mg(OH)2) is the important non-metallic
mineral resources, which presents one-dimensional brous,
due to its ber reinforcing properties and composition is widely
used in re retardant, paper making, extraction of magnesium
oxide and magnesium chloride and environmental protection.
However, the application of its nano-properties is less studied,
therefore, in this paper, we choose brous brucite as a template
to explore its application in the eld of energy storage. In this
work, we used the natural mineral brous brucite as the
template and glucose as the carbon source to obtain hollow
tubular template carbon material (HTFBC) through high
temperature carbonization. Then, the activated brous brucite
template carbon (AHTFBC) was prepared by controlling
different KOH/carbon ratios at 800 °C for 2 h. AHTFBCs well
inherit the one-dimensional structure of brous brucite,
showing a hollow tubular structure. Secondly, compared with
HTFBC, AHTFBCs have higher micropore content and excellent
capacitance performance. AHTFBC4 has a high specic capaci-
tance of 197 F g−1 at 1 A g−1 in the three-electrode system.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2. Experiment
2.1 Materials

Fibrous brucite (FB) was provided by Shaanxi Tianbao Mining
Co., Ltd. (Shanxi provinces, China); Dioctyl sulfosuccinate
sodium salt (OT, $73.8%) and glucose ($99%) were purchased
from Sinopharm Chemical Reagent Co., Ltd.; hydrochloric acid
(HCl, 36%), potassium hydroxide (KOH, $85%) and N-
Methylpyrrolidone (NMP, 99.89%) were purchased from
Xilong Science Co., Ltd.; anhydrous ethanol was purchased
from Modern Oriental (Beijing) Technology Development Co.,
Ltd; Sodium sulfate (Na2SO4, 99%) was purchased from Beijing
Tong Guang ne chemicals company; polyvinylidene uoride
(PVDF, 99.95%), conductive agent (acetylene black, 99.95%) and
polytetrauoroethylene emulsion (PTFE, 60 wt%) were
purchased from cyber electrochemical materials network.

2.2 Fibrous brucite

FB was gray-white powder to the naked eye (Fig. S1a†), and it
showed a ber bundle of multiple bers gathered together
under an optical microscope (Fig. S1b†). Before the experiment,
the raw ore was dispersed by a combination of chemical
dispersion (dioctyl sulfosuccinate sodium salt (OT) as disper-
sant) and mechanical dispersion (stirring and ultrasonic), so
that the ber bundles were opened and divided into single ber.
The microscopic morphology of the dispersed FB was shown in
Fig. S1c–d.† From the SEM and TEM image, it can be seen that
the FB is in the form of one-dimensional bers and the bers
are stacked and interlaced in a network structure. And the
diameter of FB is about 50 nm. In order to further characterize
the pore structure of FB, nitrogen adsorption–desorption tests
were performed to characterize the specic surface area and
pore size distribution. Fig. S1e† shows the nitrogen adsorption–
desorption isotherm and the corresponding DFT pore size
distribution of FB (Fig. S1f†). The nitrogen adsorption–desorp-
tion isotherm belongs to type IV adsorption isotherm, which
indicates that it contains more mesopores. At low relative
pressure, the adsorption volume is small and the adsorption
isotherm rises slowly, indicating the presence of a small
number of micropores. The pore structure information such as
specic surface area and pore volume is shown in Table S1.† It
can be seen that specic surface area (33 m2 g−1) and the
percentage of micropores (around 1%) is very small.

2.3 Synthesis of hollow tubular brous brucite-templated
carbons

First, brous brucite (2 g) and glucose (4 g) were added to
100 mL of deionized water, and a homogeneous mixture was
obtained aer stirring (6 h) and ultrasonic dispersion (1 h). The
mixture was stirred in an oil bath at 110 °C for 8 h, and then the
mixture was placed in an oven at 110 °C for 10 h to obtain the
precursor. The dried samples were placed in a tube furnace and
kept at 800 °C for 4 h in an Ar (5 °C min−1).36 Aer the
temperature dropped to room temperature, 1 mol L−1 HCl
solution was added to the sample, stirred for 24 h to remove the
template, then washed with deionized water and ethanol
RSC Adv., 2023, 13, 6606–6618 | 6607
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Fig. 1 Schematic illustration of the synthesis of the hollow tubular fibrous brucite-template carbon (HTFBC) using fibrous brucite as template.
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View Article Online
successively, and dried at 110 °C to obtain the template carbon
(HTFBC) (Fig. 1).
2.4 Synthesis of activated hollow tubular brous brucite-
templated carbons

0.2 g KOH and 0.15 g of the brous brucite template carbon
obtained in the previous step were ultrasonically dispersed in
20 mL deionized water and then dried in an oven at 110 °C
overnight. The obtained mixture was placed in a tube furnace in
an Ar and activated at 800 °C for 2 h (5 °C min−1).37–39 Aer the
temperature dropped to room temperature, 1 mol L−1 HCl
solution was added to the activated sample, stirred for 12 h to
remove remaining KOH and by-products generated during the
Fig. 2 Schematic representation of (a) KOH activated hollow tubular fibro
of a single template carbon.

6608 | RSC Adv., 2023, 13, 6606–6618
activation process, then washed with deionized water and
ethanol until the solution became neutral, and nally dried at
110 °C to obtain activated brous brucite template carbon
(AHTFBC2) (Fig. 2). According to the mass ratio of KOH and
template carbon of 0.3 : 0.15, 0.4 : 0.15 and 0.5 : 0.15, the ob-
tained samples were labeled as AHTFBC3, AHTFBC4, and
AHTFBC5, respectively.
2.5 Characterizations

Optical mineralogy analysis of brous brucite was carried out
using polarizing microscope (Nikon ECLIPSE LV100POL, Japan).
The microscopic morphologies of brous brucite and template
carbon materials were characterized by Nova Nano SEM 430
us brucite-template carbon materials (AHTFBCs) and (b) enlarged view

© 2023 The Author(s). Published by the Royal Society of Chemistry
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scanning electron microscope (FEI, USA, 15 kV, 176 mA) and
TALOS F200X transmission electron microscope (FEI, USA, 200
kV, >150 mA). X-ray diffraction (XRD) was tested by X-ray
diffractometer (Rigaku D/MAX-2400 PC, Japan) using Cu Ka (l
= 0.154 nm), with a scanning range of 5° to 75° and a scanning
speed of 6°/min. The pore structure of template carbonmaterials
was carried out with ASAP2010 nitrogen adsorption–desorption
tester (Micrometer, USA), degassed at 120 °C for 12 h before the
test, and the test temperature was −196 °C. Laser Raman anal-
ysis was performed using a Raman spectrometer (Micro-Raman-
1000 high-resolution, Renishaw, UK) at a wavelength of 154 nm.
2.6 Electrode preparation and electrochemical
measurements

In the three-electrode system, the Pt sheet and Hg/HgO were
used as the counter electrode and reference electrode, respec-
tively. Cyclic voltammograms (CV) (−0.8–0 V), galvanostatic
charge–discharge (GCD) (−0.8–0 V), and electrochemical
impedance spectroscopy (EIS) (0.1–105 Hz) tests were carried
out on the working electrode in 6 mol L−1 KOH aqueous solu-
tion by CHI660E electrochemical workstation.

Preparation of working electrode: the prepared sample,
conductive agent, and PTFE weremixed in amass ratio of 8 : 1 : 1,
and an appropriate amount of ethanol was added to the grind to
obtain a viscous slurry. The slurry was uniformly coated on the
foamed nickel current collector. Aer vacuum drying at 100 °C
for 2 h, the working electrode was obtained by pressing with
a hydraulic press (pressure 10 MPa). Put the pressed electrode
sheet into 6 mol L−1 KOH solution, vacuum and inltrate it in
a vacuum dish for 0.5 h, and discharge the gas in the template
carbon pores to obtain the nal working electrode. According to
the GCD curve, the single-electrode mass specic capacitance (C,
F g−1) of the active material is calculated by eqn (1):

C = I$Dt/m$DU (1)

where I (A) and Dt (s) are the discharge current and discharge
time, respectively. m (g) is the mass of the active material of the
Fig. 3 (a) XRD patterns and (b) Raman spectra of HTFBC and AHTFBCs.

© 2023 The Author(s). Published by the Royal Society of Chemistry
working electrode, and DU (V) is the potential window during
the discharge process.

In a two-electrode system, a 2032-type coin-type symmetrical
capacitor was assembled with the prepared samples as the
positive and negative electrodes, using 6 M KOH and 1 M
Na2SO4 as the electrolytes, and glass ber as the separator. GCD
and CV measurements were performed on the CHI660E elec-
trochemical workstation. The preparation method of symmet-
rical electrodes is similar to the above-mentioned three
electrodes. The prepared materials, acetylene black and PVDF
(mass ratio = 8 : 1 : 1) are uniformly dispersed in NMP and
grinded to obtain a viscous slurry. It was coated on graphite
paper, vacuum-dried at 100 °C for 2 h, and sliced to obtain the
nal electrode. According to the GCD curve, the specic
capacitance (Cs, F g−1) of a single electrode is calculated by the
following eqn (2):

Cs = 4IDt/m$DU (2)

where I (A) and Dt (s) are the same as in the three-electrode
system, m (g) is the total mass of the active material of the
two electrodes, and DU (V) is the potential change excluding the
IR drop. The energy density (Et, W h kg−1) and power density
(Pt, W kg−1) of the symmetrical supercapacitor were calculated
by eqn (3) and (4), respectively:

Et = Ct(DU)2/2 × 3.6 (3)

Pt = Et × 3600/Dt (4)

where Ct (F g−1) is the specic capacitance of the total
symmetrical supercapacitor, DU (V) is the cell voltage excluding
the IR drop, and Dt (s) is the discharge time.
3. Results and discussion
3.1 Structure analysis

There are two broad peaks around 21° and 43°, corresponding
to the (002) and (100) plane of the amorphous carbon in the
XRD patterns of HTFBC and AHTFBCs (Fig. 3a), respectively.8
RSC Adv., 2023, 13, 6606–6618 | 6609
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Except for the diffraction peaks of amorphous carbon, there are
no other diffraction peaks in the XRD patterns. It shows that the
by-products generated during the activation process are
completely removed. As can be seen from the Fig. 3a, the
diffraction peak corresponding to the (002) crystalline plane of
the activated AHTFBCs is signicantly shied to the le, indi-
cating that the crystalline plane spacing of AHTFBCs has
increased. Fig. 3b displays the Raman spectra of HTFBC and
AHTFBCs, and the peaks near 1336 cm−1 and 1583 cm−1 cor-
responding to the D band (disordered carbon or defective
graphitic structures) and the G band (graphitic nature of
Fig. 4 Morphology of HTFBC and AHTFBCs. SEM images of (a) HTFBC; (b
AHTFBC4.

6610 | RSC Adv., 2023, 13, 6606–6618
carbon) respectively.40 In addition, the intensity ratio of the D-
band and G-band (ID/IG) were used to evaluate the graphitiza-
tion degree of HTFBC and AHTFBCs.41,42 The ID/IG of HTFBC was
1.01, which was higher than those of the activated AHTFBCs,
indicating that defects of the HTFBC were removed aer high
temperature KOH activation.
3.2 Morphology analysis

In order to compare the effect of KOH activation on the
morphology of porous carbon materials, we also observed the
) AHTFBC2; (c) AHTFBC3; (d) AHTFBC4; (e) AHTFBC5; (f) TEM images of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) N2 adsorption–desorption isotherms; (b) DFT pore size distribution; (c) percentage of the specific surface area of the three types of
pore structure and (d) total and micropore specific surface area of HTFBC and AHTFBCs.
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morphology of unactivated template carbon (HTFBC), and the
SEM image is shown in Fig. 4a. HTFBC displays carbon nano-
tubes that are heavily cross-linked and stacked together. Almost
all the pores in the carbon material are contributed by hollow
tubes, and there are basically no pores between the tubes, which
may be formed by the direct carbonization of the excess carbon
source in the voids between the templates.43 Fig. 4b–e are SEM
images of AHTFBCs. It can be seen that compared to HTFBC,
there are more pores inside AHTFBCs aer KOH activation and
etching. The appearance of a large number of pores facilitates
the rapid transport of electrolyte ions and further improves the
electrochemical performance of carbon materials.44 The mass
ratios of KOH and template carbon are controlled to be 0.2 :
0.15, 0.3 : 0.15, 0.4 : 0.15 and 0.5 : 0.15. Fig. 4b–e is the obtained
SEM images of AHTFBC2, AHTFBC3, AHTFBC4 and AHTFBC5,
respectively. With the increase of the KOH/carbon ratio, the
pores inside AHTFBCs gradually increase, which is also
consistent with the regularity of the SSA. The TEM image of
AHTFBC4 is shown in Fig. 4f. The inner diameter of the regular
hollow tubular structure is about 50 nm, which is similar to the
outer diameter of the FB template, indicating that the hollow
template carbon inherits the one-dimensional structure of the
template. It can be found in the TEM image of AHTFBC4 that it
is the hollow tubular structure, which is conducive to the rapid
transport of electrolyte ions, thus enhancing the electro-
chemical performance.
© 2023 The Author(s). Published by the Royal Society of Chemistry
3.3 Pore structure analysis

The pore structure of brous brucite template carbons before
and aer KOH activation was tested by nitrogen adsorption and
desorption. As shown in Fig. 5a, both HTFBC and AHTFBCs

adsorption and desorption isotherms belong to type IV curves.45

The existence of hysteresis loops indicates that carbon mate-
rials have abundant mesopores.46 In addition, at lower relative
pressures (P/P0 < 0.1), there were still adsorption amounts of
HTFBC and AHTFBCs, indicating that the samples contained
micropores.43 Fig. 5b shows that the pore size distribution of
HTFBC and AHTFBCs is concentrated in mesopores (2–50 nm),
and macropores (>50 nm), with a small amount of micropores.
HTFBC and AHTFBCs exhibit a hierarchical porous structure,
which facilitates the rapid transport of electrolyte ions.46 The
relative contents of SSA of the micropore, mesopore and mac-
ropore structures of HTFBC and AHTFBCs are shown in Fig. 5c.
The micropore SSA of HTFBC accounted for 6.1% of the total
SSA, while the AHTFBCs micropore SSA accounted for 22.1%,
23.9%, 26.8% and 22.9% of the total SSA, respectively. The
micropore content increased signicantly aer activation, both
increased by more than 2 times, and when the KOH: carbon
mass ratio was 0.4 : 0.15, the obtained AHTFBC4 had the highest
micropore content. As the amount of KOH continued to
increase, the content of micropores decreases, which is due to
the excessive etching caused by excessive KOH, which causes
the micropores collapse and connect into mesopores. From
Fig. 5d and Table 1, it can be found that the SSA of AHTFBCs
RSC Adv., 2023, 13, 6606–6618 | 6611

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra07454k


Table 1 Pore structures of HTFBC and AHTFBCs

Samples
Stotal
(m2 g−1)

Smicro

(m2 g−1)
Smeso

(m2 g−1)
Smacro

(m2 g−1)
Vtotal
(cm3 g−1)

Vmicro

(cm3 g−1)
Vmeso

(cm3 g−1)
Vmacro

(cm3 g−1)
Dap

(nm)

HTFBC 400 24 365 11 0.91 0.01 0.63 0.27 4.5
AHTFBC2 474 105 359 10 0.87 0.05 0.58 0.24 5.6
AHTFBC3 520 124 386 10 0.94 0.06 0.64 0.24 4.8
AHTFBC4 583 156 415 12 0.92 0.07 0.58 0.27 4.2
AHTFBC5 625 143 472 10 1.02 0.07 0.70 0.25 3.6
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aer KOH activation is signicantly increased compared with
that of the HTFBC. The SSA of HTFBC was 400 m2 g−1, and the
SSA of activated AHTFBC2, AHTFBC3, AHTFBC4, and AHTFBC5

were 474, 520, 583 and 625 m2 g−1, respectively. With the
increase of KOH addition, the SSA of AHTFBCs shows a gradual
increase, which is because the activator KOH will etch the
internal pores of the template carbon, resulting in the increase
in the micropore volume, which greatly increases the SSA of
porous carbon. The micropore SSA of AHTFBC2, AHTFBC3,
AHTFBC4, and AHTFBC5 were 105, 124, 156, and 143 m2 g−1,
respectively, which were signicantly higher than that of the
HTFBC (24 m2 g−1). In addition, with the increase of KOH, the
micropore SSA of AHTFBCs rst increased and then decreased
(Fig. 5d), of which AHTFBC4 had the largest micropore SSA at
156m2 g−1. This is mainly because since with the increase of the
amount of KOH added, a large number of micropores are
generated by activation and etching in the pores of the template
carbon material. However, when the amount of KOH is exces-
sively added, the transitional etching will lead to the formation
of micropores that are connected to form mesopores and even
macropores. The reduction of micropores and micropore SSA
will decrease the effective active sites inside the carbon mate-
rials, thereby affecting the electrochemical performance.
Therefore, in the process of chemical activation, an appropriate
KOH/carbon ratio should be selected so that the KOH-activated
carbon material has hierarchical pore structure (suitable
proportion of micropores, mesopores, and macropores).
3.4 Electrochemical properties analysis

The electrochemical properties of HTFBC and AHTFBCs were
characterized by CV, GCD, and EIS in a three-electrode system,
and the electrolyte was 6 M KOH solution. The voltammograms
of HTFBC and AHTFBCs (Fig. 6a) display quasi-rectangular
shapes at 100 mV s−1, demonstrating good electric double-
layer capacitance characteristics. Furthermore, the integral area
of the CV curve of the AHTFBCs is larger than that of the HTFBC
and AHTFBC4 has the largest CV curve integral area. The CV
curves of AHTFBC4 (Fig. 6b) and other samples (Fig. S2†) present
relatively regular rectangles at 5–100 mV s−1, showing excellent
rate performance and charge–discharge reversibility.47,48 Fig. 6c
compares the GCD curves of HTFBC and AHTFBCs at 1 A g−1, and
AHTFBC4 exhibits the longest charge–discharge time. The GCD
curves of HTFBC and AHTFBCs at 0.5–10 A g−1 (Fig. 6d and S3†)
show good symmetry and linearity, indicating that they have
excellent charge–discharge reversibility.49 According to eqn (1)
6612 | RSC Adv., 2023, 13, 6606–6618
(Cs = It/mDU), the specic capacitances of HTFBC and AHTFBCs

before and aer activation at 0.5–10 A g−1 are calculated as
shown in Fig. 6e. At 1 A g−1, the specic capacitance of HTFBC is
117 F g−1, with the increase of KOH addition, the specic
capacitance of AHTFBCs is 144, 158, 197 and 152 F g−1, respec-
tively, which are signicantly larger than of HTFBC, indicating
that the KOH activation can signicantly improve the electro-
chemical properties of porous carbon. In addition, with the
increase of the amount of KOH, the specic capacitance showed
a trend of increasing rst and then decreasing, which is due to
the increased micropore content in the AHTFBCs aer KOH
activation and etching, which can increase more active sites for
electrolyte ions, and therefore, the electrochemical properties are
signicantly improved. With the excess of KOH, the formed
micropores will be further etched and connected into meso-
pores, which further affects its electrochemical performance.
Among different KOH/carbon ratios, AHTFBC4 has a maximum
specic capacitance of 209 F g−1 at 0.5 A g−1, the specic area of
which are not the highest among the four AHTFBCs sample,
indicating that the microporosity has the greatest inuence on
the electrochemical performance (Fig. S4†). The detailed
comparison with the previous reported carbon nanotubes and
hollow tubular carbonsmaterials is listed in Table 2. The specic
capacitance of AHTFBC4 is higher than that reported commer-
cially and laboratory prepared CNT, however, lower than that of
the previously reported heteroatom-doped hollow tubular porous
carbon. Therefore, the selection of suitable dopants for doping
hollow tubular porous carbon is an effective strategy to improve
its electrochemical properties.

Fig. S5† shows the cycling stability of HTFBC and AHTFBC4

before and aer activation. The capacity retention rate of both
HTFBC and AHTFBC4 samples aer 10 000 charge–discharge
cycles is 100%, exhibiting excellent cycling stability. Fig. 6f
shows the Nyquist plots of HTFBC and AHTFBCs before and
aer activation. The Nyquist plots of HTFBC and four AHTFBCs

samples show similar trends, which are all represented by the
semicircle and straight lines. In the low-frequency region,
HTFBC and AHTFBCs display an almost vertical-line charac-
teristic, indicating that it has ideal electric double-layer capac-
itance behavior.50 In the high-frequency region, the diameter of
the semicircle represents the charge transfer resistance (Rct).51

The inset is the enlarged view of the high-frequency region and
the tted equivalent circuit diagram model. The Rct value ob-
tained by tting HTFBC and AHTFBCs is 0.23, 0.24, 0.14, 0.15,
and 0.31 U, respectively. The intercept of the Nyquist plots and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Electrochemical properties of HTFBC and AHTFBCs in a three-electrode system. (a) CV curves at 100mV s−1; (b) CV curves of AHTFBC4 at
various scan rate; (c) GCD curves at 1 A g−1; (d) GCD curves of AHTFBC4 at 0.5–10 A g−1; (e) specific capacitances; (f) Nyquist plots.
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the Z′-axis corresponds to the equivalent series resistance (Rs),52

represents the sum of the transport resistance of electrolyte ions
in the electrolyte, the transport resistance of electrolyte ions in
the electrode, and the interface resistance between the electrode
and the electrolyte,52,53 and the smaller the Rs of the porous
carbon material, the better the conductivity.51 The tted Rs

values of HTFBC and AHTFBCs are 0.31, 0.40, 0.36, 0.46, and
0.39 U, respectively. Aer activation, the Rs values of AHTFBCs

are signicantly greater than that of HTFBC, which may be due
to the reduction of meso-porosity due to more micropores
© 2023 The Author(s). Published by the Royal Society of Chemistry
generated by KOH activation, thus affecting the transport of
electrolyte ions in the pore structure.

A symmetrical two-electrode capacitor was assembled to
further characterize the capacitive behavior of HTFBC and
AHTFBCs in 6 M KOH. All the CV curves (Fig. 7a) at 100 mV s−1

for HTFBC, AHTFBC2, AHTFBC3, AHTFBC4, and AHTFBC5

samples display quasi-rectangular shapes, indicating their good
double-layer capacitance characteristics. Furthermore, sample
AHTFBC4 has the largest integrated area of the CV curve. The CV
curves of HTFBC and AHTFBCs with scan rates from 5 to 100mV
s−1 were shown in Fig. S6,† and it can be found that the shape of
RSC Adv., 2023, 13, 6606–6618 | 6613
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Table 2 The comparison of electrochemical performance in this work with previous papers

Electrode material Electrolyte
Heteroatom
doping type Activator

Specic surface
area (m2 g−1) Cs (F g−1) Ref.

AHTFBC4 6 M KOH C KOH 583 197 at 1 A g−1 This work
N—CNTs 1 M KOH N — 150 at 0.5 A g−1 54
NCNT-1 6 M KOH N 80.2 205 at 20 mV s−1 55
CNT 6 M KOH — — 271 45 at 1 A g−1 56
CNT 6 M KOH — — 201 47 at 1 A g−1 57
CNT 1 M LiClO4 — — 42.8 7 at 0.2 A g−1 (two) 58
MCNTs 6 M KOH — — 126 64 at 0.5 A g−1 (two) 59
CF-HPC-2 6 M KOH N, O, S NaHCO3 516.7 349 F cm−3 at 1 A g−1 60
B/N-PCTB 6 M KOH B, N KOH 1420 355 at 1 A g−1 61
HT-PC 6 M KOH O KOH 637.1 315 at 1 A g−1 62
HCMT-650 1 M TEABF4/PC N, P (NH4)2HPO4 1600 140.7 at 1 A g−1 (two) 63
HTPC 6 M KOH O, P KOH–KNO3 1508 278 at 1 A g−1 64
NMCT-2-800 6 M KOH N, O, F — 1071 269 at 0.5 A g−1 65
N-MCT 6 M KOH N, O, F — 1334 349 at 0.5 A g−1 66

Fig. 7 Electrochemical properties of HTFBC//HTFBC and AHTFBCs//AHTFBCs symmetric supercapacitors in the 6M KOH electrolyte. (a) CV curves
at 100 mV s−1; (b) GCD curves at 1 A g−1; (c) specific capacitances at 0.5–10 A g−1; (d) Ragone plot; (e) cycling stability of AHTFBC4 at 5 A g−1.

6614 | RSC Adv., 2023, 13, 6606–6618 © 2023 The Author(s). Published by the Royal Society of Chemistry
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the CV curves was hardly deformed as the scan rate increases,
indicating the excellent rate performance of the samples. The
GCD curves at 1 A g−1 (Fig. 7b) of HTFBC, AHTFBC2, AHTFBC3,
AHTFBC4, and AHTFBC5 samples show approximately an isos-
celes triangle, indicating good charge–discharge reversibility.
And sample AHTFBC4 has the longest charge–discharge time.
The GCD curves at 0.5–10 A g−1 display good linearity and
exhibit a small IR drop, demonstrating good electrochemical
performance (Fig. S7†). The capacitance is 47, 60, 66, 109, and
65 F g−1 at 1 A g−1 for HTFBC, AHTFBC2, AHTFBC3, AHTFBC4,
and AHTFBC5, respectively (Fig. 7c). The Ragone plot showing
the energy-power density correlation is shown in Fig. 7d. At
0.5 A g−1, AHTFBC4 represents a high energy density of
2.4 W h kg−1 at the power density of 98.5 W kg−1, superior to
Fig. 8 Electrochemical properties of HTFBC//HTFBC and AHTFBCs//AH
curves at 100 mV s−1; (b) GCD curves at 1 A g−1; (c) specific capacitanc
5 A g−1.

© 2023 The Author(s). Published by the Royal Society of Chemistry
HTFBC, AHTFBC2, AHTFBC3 and AHTFBC5 with the energy
density of 1.1 W h kg−1 at the power density of 99.7 W kg−1,
1.3 W h kg−1 at 99.3 W kg−1, 1.5 W h kg−1 at 99.7 W kg−1 and
1.5W h kg−1 at 99.5W kg−1, respectively. In addition, the energy
density of AHTFBC4 maintains at 1.6 W h kg−1, and when the
power density increases to 849.6 W kg−1 at 5 A g−1. The capacity
retention of AHTFBC4 remains at 92% aer 5000 cycles at
5 A g−1 (Fig. 7e), suggesting good cycle performance.

Because the Na2SO4 electrolyte has a higher working voltage
than the KOH electrolyte, Na2SO4 is also used as the electrolyte
to assemble a symmetrical capacitor. Fig. 8a and S8† are the CV
curves of HTFBC and AHTFBCs. The GCD curves of HTFBC and
AHTFBCs are shown in Fig. 8b and S9.† Both CV and GCD curves
show that HTFBC and AHTFBCs electrodes have good electric
TFBCs symmetric supercapacitors in the 1 M Na2SO4 electrolyte. (a) CV
es at 0.5–10 A g−1; (d) Ragone plot; (e) cycling stability of AHTFBC4 at

RSC Adv., 2023, 13, 6606–6618 | 6615
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double layer capacitive behavior. The specic capacitance value
for AHTFBCs is signicantly higher than that for HTFBC
(Fig. 8c). At 1 A g−1, the specic capacitance of HTFBC,
AHTFBC2, AHTFBC3, AHTFBC4, and AHTFBC5 is 19, 50, 57, 65
and 54 F g−1, respectively. In addition, the energy density of
AHTFBCs is also signicantly larger than that of HTFBC under
the same power density (Fig. 8d). AHTFBC2, AHTFBC3,
AHTFBC4, and AHTFBC5 show the energy density of
4.6 W h kg−1 at 199.5 W kg−1, 5.2 W h kg−1 at 199.3 W kg−1,
5.8 W h kg−1 at 199.0 W kg−1 and 4.8 W h kg−1 at 199.3 W kg−1,
which are more than twice that in the KOH electrolyte at similar
power density (1.3 W h kg−1 at 99.3 W kg−1, 1.5 W h kg−1 at
99.7 W kg−1, 2.4 W h kg−1 at 98.5 W kg−1 and 1.5 W h kg−1 at
99.5 W kg−1). Cycling stability was evaluated by GCD at 5 A g−1

up to 5000 cycles (Fig. 8e). The capacity retention of AHTFBC4

remains at 92% aer 5000 cycles.

4. Conclusions

In summary, as a one-dimensional brous structure, brous
brucite is an ideal template for the preparation of hollow
tubular porous carbon, and KOH activation has a great inu-
ence on the pore structure of porous carbon. In particular, the
micropores generated during the activation process are impor-
tant for improving the capacitive performance of porous
carbons. In the three-electrode system, the AHTFBC4 electrode
displays a high specic capacitance of 197 F g−1 at 1 A g−1,
which is much higher than that of the HTFBC electrode of 117 F
g−1, resulting in more microporous channels due to KOH acti-
vation and etching. In addition, the symmetric two-electrode
capacitor fabricated by AHTFBC4 achieves an energy density
of 5.8 W h kg−1 at 199.0 W kg−1 in 1MNa2SO4 electrolyte, which
is signicantly higher than that of HTFBC of 1.8 W h kg−1 at
199 W kg−1.
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