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halogenation of 2-substituted indazoles†
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and Yuanyuan Xie *abc

An unprecedented metal-free regioselective halogenation of 2H-indazoles has been revealed, which not

only realized the highly selective synthesis of mono-halogenated products, but also completed poly-

halogenations by fine tuning the reaction conditions. Various mono-/poly-/hetero-halogenated

indazoles were obtained in moderate to excellent yields. Notably, this approach features environmentally

friendly solvents, mild reaction conditions, simple execution and short reaction time.
Halogens can signicantly alter the biological properties of
molecules, rendering the use of these compounds as drugs,
agrochemicals, biocides, etc.1 In addition, organic halides are
one of the most widely used precursors or intermediates for
numerous organic transformations.2 For example, hetero-
aromatic bromides and iodides play an important role in
Grignard reactions3 and cross-coupling.4 Therefore, the
construction of halogenated hetero-aromatic compounds
through direct C–H halogenation is highly desirable.

Indazole, a nitrogen-containing heterocycle, has attracted
much attention for its biological properties and a broad spec-
trum of medicinal values,5 such as anti-ovarian cancer drug
Niraparib,6 selective estrogen receptor degrading agents,7 liver X
receptor agonist,8 selective CRAF inhibitor,9 anticancer drugs
Pazopanib,10 MK-482714,9 and gamedazoleq11 (Fig. 1). Notably,
these drugs could be synthesized from halogenated indazole
intermediates.

Recognizing the importance of these molecules, chemists
have developed various methods to synthesize indazole halides.
However, C–H direct bromination of indazoles without metal
catalysts has been rarely reported. Clarisse declared the
bromination of 2-phenyl-2H-indazole employing Br2 as bromi-
nating reagent.12 Although 3-bromo-2H-indazole was formed in
high yield, a mixture of 3,5-dibromo- and 3,7-dibromo-2H-
indazole was obtained with poor selectivity and low yield. At the
same time, the use of Br2 was environmentally unfriendly and
troublesome. Herein, an efficient C–H direct halogenation of
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2H-indazoles employing NXS (X = Br, Cl) was reported, which
achieved the selective synthesis of mono-, poly- and hetero-
halogenated products in high yields by adjusting reaction
conditions.

In our initial study, 2-phenyl-2H-indazole (1a) and NBS (1.0
equiv.) were selected as model substrates to react at 25 °C. It was
delighted that 88% mono-brominated product 2a was obtained
aer 2.0 h (Table 1, entry 1). Preliminary investigation of the
reaction temperature demonstrated that the yield of target
product 2a increased to 98% with the increase of reaction
temperature (Table 1, entry 2). Similarly, the screening of
solvents was also within our consideration for the purpose of
corresponding green chemistry. Switching the MeCN to H2O or
CH3OH, led to the decreased yield of 2a (Table 1, entries 3 and
4). But gratifyingly, in green solvent EtOH, 1a could be cleanly
converted into mono-substituted product 2a with an excellent
yield of 97% (Table 1, entry 5). The reaction temperature and
equiv. of NBS were further investigated when H2O was used as
solvent. The result indicated that in the presence of 1.3 equiv.
NBS, it was suitable for mono-bromination and 2a was isolated
by simple ltration with high yield of 96% under 95 °C (Table 1,
entry 6). To our surprise, gradually increasing the equiv. of NBS
Fig. 1 Bioactive compounds containing 2H-indazole.
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Table 1 Screening of reaction parametersa

Entry Solvent NBS (equiv.)
T
(°C) Yieldb 2a : 3a : 4a

1 MeCN 1.0 25 88 : 0 : 0
2 MeCN 1.0 50 98 : 0 : 0
3 CH3OH 1.0 50 92 : 0 : 0
4 H2O 1.0 50 75 : 0 : 0
5 EtOH 1.0 50 97 : 0 : 0
6c H2O 1.3 95 96 : 0 : 0
7d H2O 2.0 50 80 : 5 : 0
8e EtOH 2.0 50 23 : 67 : trace
9e MeCN 2.0 50 35 : 59 : trace
10e EtOH 2.0 80 32 : 55 : 5
11d EtOH 3.0 80 10 : 25 : 56
12d EtOH 4.0 80 8 : 24 : 67
13f MeCN 4.0 80 3 : 20 : 71

a Reaction conditions: 1a (0.3 mmol), NBS (0.3 mmol) in 3.0 mL solvent,
T, 2 h. b Isolated yields. c 5 h. d 6 h. e Adding NBS in batches into 5.0 mL
solvent, 6 h. f Dropwising 4.0 mL NBS (aq.) to the solution of 1a (1.0 mL),
8 h.

Table 2 Substrate scope for mono-bromination of 2H-indazolesa,b

a Reaction conditions: (A) 1 (0.3 mmol), NBS (0.3 mmol), EtOH (3.0 mL),
50 °C, air, 2.0 h. (B) 1 (0.3 mmol), NBS (0.39 mmol), H2O (3.0 mL), 95 °C,
air, 5.0 h. b Isolated yield.

Table 3 Substrate scope for mono-chloramination of 2H-indazolesa,b

a Reaction conditions: (A) 1 (0.3 mmol), NCS (0.3 mmol), EtOH (3.0 mL),
50 °C, air, 2.0 h. (B) 1 (0.3 mmol), NCS (0.39 mmol), H2O (3.0 mL), 95 °C,
air, 5.0 h. b Isolated yield.
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produced disubstituted products 3,7-dibromo-2H-indazole 3a
(Table 1, entry 7). The yield of 3a was greatly improved, when
H2O was replaced by EtOH or MeCN, but higher temperature
seemed to have a detrimental effect (Table 1, entries 8–10). It
was worth to mention that no byproduct 3,5-dibromo-2H-inda-
zole was detected. This reaction was then carried out at 80 °C by
increasing the equiv. of NBS, suggesting that trisubstitution was
best performed at 4.0 equiv. of NBS in MeCN and the yield of
tribrominated product 4a could be increased to 71% (Table 1,
entry 13).

With the mentioned optimized reaction protocol in hand,
rst of all, the scopes of the mono-bromination were examined
(Table 2). The effects of different substituents on the N-phenyl
ring of 2H-indazoles were investigated, and the desired prod-
ucts could be obtained in the yield of 80–98% for both electron-
donating and electron-withdrawing groups (2a–2l). Steric
hindrance had effect on the yield, m-substituents on the phenyl
ring resulting in lower yields compared to p-substituents (2b
and 2g), and 3,4-disubstituents on the phenyl ring furnishing
the desired products in moderate yields (2m and 2n). However,
the situation changed when the substituents was on the inda-
zole skeleton. It was found that electron-withing groups such as
F or Cl were compatible with the optimized reaction conditions
and afforded the corresponding desired products in good to
excellent yields (2p vs. 2q). While the substituent was methoxy,
the raw material could not be completely converted giving
product in 31% yield (2o). Furthermore, this method could be
extended to the mono-bromination of N-pyridyl indazole with
81% yield (2r). In addition, applicability of aliphatic substituted
substrates was also explored. The yield decreased sharply to
36% when the substituent was tert-butyl (2s), while none
product was detected with n-butyl substituted indazole (2r).
© 2023 The Author(s). Published by the Royal Society of Chemistry
Inspired by the successful mono-bromination of 2H-inda-
zoles under environmentally friendly conditions, the mono-
chlorination was subsequently tested using NCS as chlori-
nating reagent (Table 3). The substrates with substituents on N-
phenyl ring or indazole skeleton exhibited good reactivity both
in H2O and EtOH (5a–5r). Interestingly, m-substituents on the
phenyl ring gave higher yields than p-substituents, as opposed
to mono-bromination (5b vs. 5h). 2-Pyridyl-2H-indazole and
2-(tert-butyl)-2H-indazole also worked giving the desired
products in 81% and 36% yield respectively (5s and 5t). It
was a pity that iodination of 2H-indazoles in EtOH with
N-iodo-succinimide (NIS) was not succeeded.

We then turned our attention to poly-halogenation of 2H-
indazoles (Table 4), affording the corresponding di-halogenated
products in 64–70% yields (3a–3d). Based on this, the conver-
sion of 2H-indazoles to hetero-halogenated indazoles was real-
ized by ‘one-pot, two step’ method. 3-Bromo-7-chloro-2H-
RSC Adv., 2023, 13, 4958–4962 | 4959
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Table 4 Substrate scope for poly-halogenation of 2H-indazolesa,b

a Reaction conditions: (3a–3d) 1 (0.3 mmol), NXS in batches (0.6 mmol),
EtOH (3.0 mL), 50 °C, air, 6.0 h. (3e–3f) step 1: 1 (0.3 mmol), NBS (0.3
mmol), EtOH (3.0 mL), 50 °C, air, 2.0 h; step 2: NCS (0.3 mmol), 50 °
C, air, 4.0 h. (3g–3j) step 1: 1 (0.3 mmol), NCS (0.3 mmol), EtOH (3.0
mL), 50 °C, air, 2.0 h; step 2: NBS (0.3 mmol), 50 °C, air, 4.0 h.
b Isolated yield. (4b) MeCN (5.0 mL), 50 °C, air, 8.0 h.

Fig. 2 Key COSY and HMBC correlations of compounds 3c and 3j.

Scheme 1 Gram-scale reaction.

Scheme 2 Control experiments.

Scheme 3 Proposed reaction mechanisms.
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indazoles were prepared by bromination followed by chlorina-
tion with moderate yield (3e and 3f). And 3-chloro-7-bromo-2H-
indazoles were produced in 65–74% yield through chlorination-
bromination process (3g–3j). It was found that the yield of 3-
bromo-7-chloro-2H-indazoles were higher than 3-chloro-7-
bromo-2H-indazoles (3e vs. 3h, 3f vs. 3i), which might be due to
the low reactivity of indazole C7 position and stronger activity of
NBS than NCS. By increasing the amount of NBS and prolonging
the reaction time, the tribrominated product 4b was obtained in
72% yield from 2-(m-tolyl)-2H-indazole.

To identify the structures, we took product 3c and 3j as
examples to measure DEPT135, 1H–1H COSY, 1H–13C HSQC and
1H–13C HMBC spectra (Fig. 2), the details are listed in the ESI.†

For purpose of demonstrating the suitability of this haloge-
nation method on a large scale, a gram-scale reaction was
investigated. The results showed that 6.0 mmol of 1a (1.164 g)
could be cleanly converted to 2a with either EtOH or H2O as
solvent (Scheme 1).

In order to gain more insights into the mechanism, a series
of control experiments were conducted. Firstly, using isolated
mono-brominated product 2a as substrate and 1.0 equiv. NBS as
brominating reagent, TLC monitoring showed that the dibro-
minated product 3a was generated, indicating that
4960 | RSC Adv., 2023, 13, 4958–4962
dihalogenation occurred aer mono-halogenation (Scheme 2a).
Second, when 3.0 equiv. 2,2,6,6-tetramethyl-piperidine-1-oxyl
(TEMPO) or 2,6-di-tert-butyl-4-methylphenol (BHT) was respec-
tively added under the standard reaction conditions, no desired
products were formed (Scheme 2b). In addition, bromine
radical was captured and 6 was detected by HRMS when ethene-
1,1-diyldibenzene was used (Scheme 2c).

We considered that a radical pathway mechanism could be
involved on the grounds of experimental results and previous
reports.13 At rst, NBS was pyrolyzed under heating conditions
to generate bromine radical and radical A. Then substrate 1a
reacted with bromine radical to generate intermediate I, which
would further oxidize by radical A to produce cationic inter-
mediate II and succinimide anionic B. The proton transfer
occurred between the above two ions, and nally succinimide C
and mono-brominated product 2a were generated. Similarly,
dibrominated product 3a could be obtained from 2a via the
above pathway (Scheme 3).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

In summary, we have successfully developed a simple and
universal metal-free method for the synthesis of mono- and
poly-halogenated 2H-indazoles. The mono-halogenation could
be carried out in water giving products with good yields.
Furthermore, hetero-halogenated 2H-indazole compounds were
also achieved via a one-pot reaction. In addition, the gram-scale
reaction also produced excellent yields. This new trans-
formation exhibits high selectivity, good functional group
tolerance, easy handing and eco-friendliness, rendering the
“green” methodology as potential applications in agrochemical
and pharmaceutical industries.
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