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Sulfamic acid grafted to cross-linked chitosan by
dendritic units: a bio-based, highly efficient and
heterogeneous organocatalyst for green synthesis
of 2,3-dihydroquinazoline derivativest

Ehsan Valiey, i Mohammad G. Dekamin 2* and Shirin Bondarian

In this work, novel cross-linked chitosan by the G1 dendrimer from condensation of melamine and toluene-
2,4-diisocyante terminated by sulfamic acid groups (CS-TDI-Me-TDI-NHSOzH), as a bio-based and
heterogeneous acidic organocatalyst, was designed and prepared. Also, the structure of the prepared
organocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), field emission
scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction
(XRD) and thermogravimetric analysis/derivative thermogravimetry (TGA/DTA). Subsequently, the
catalytic performance of the biobased and dendritic CS-TDI-Me-TDI-NHSOzH, as a multifunctional solid
acid, was evaluated for the preparation of 2,3-dihydroquinazoline derivatives through a three-
component reaction by following green chemistry principles. Some of the advantages of this new
protocol include high to excellent yields and short reaction times as well as easy preparation and
remarkable catalyst stability of the introduced acidic organocatalyst. The CS-TDI-Me-TDI-SOzH catalyst
can be used for up to five cycles for the preparation of quinazoline derivatives with a slight decrease in

rsc.li/rsc-advances its catalytic activity.

Introduction

Polysaccharide-based scaffolds have been widely used in
different fields such as drug delivery, vaccines, wound dressing
materials, cosmetics, food additives and packaging, environ-
mental applications including water treatment, and heteroge-
neous organocatalysts due to their bioactivity, biodegradability
and biocompatibility in recent decades."™ Hence, the use of
renewable biopolymers such as cellulose, chitin, sodium algi-
nate, and especially chitosan for the design and preparation of
efficient biodegradable and heterogeneous organocatalytic
systems would be very desirable.*>**** Among these scaffolds,
chitosan (CS) is one of the most unique and widely used
biopolymers, a natural and active cationic amino poly-
saccharide obtained from the alkaline N-deacetylation of
chitin.®******" Indeed, chitosan has numerous applications in

various fields such as preparation of new bio-based
materials,**>> heterogeneous catalytic systems,****> water
purification, metal extraction,*>® electrolyte-based fuel

cells,**** sensors,** corrosion protection,* etc. However, many
research attempts are being made to provide functional
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chitosan derivatives with chemical modifications. Some of the
advantages of using chitosan in various applications include
low cost, chemical stability, desirable hydrophilicity, having
proper functional groups for chelation of metals, non-toxicity,
and environmental friendliness. Compared to homogeneous
catalytic systems, heterogeneous ones are much more efficient
for multiple and continous use in the chemical synthesis.®**’
Indeed, heterogeneous catalyst systems benefit from easy
removal, recovery and recycling of the catalyst compared to
homogeneous catalysts.®® Therefore, chitosan application as
a new support material for heterogeneous catalysis is
increasing.®>”® Also, the use of ligands containing multi-amine
groups in a chain or dendrimer increases the catalytic effi-
ciency by increasing the number of active sites.
Melamine-based dendrimer amines (MDAs) are ideal den-
drimer ligands, first reported in 2000 by Simanek and Zhang.
MDAs have received a great deal of attention due to the strong
binding of amine sites and increasing of the surface
hydrophilicity.”*”* On the other hand, sulfamic acid (H,NSO;H)
is a common sulfur-containing amino acid with mild acidity,
which has been used to replace conventional Lewis and
Bronsted acid catalysts.”*”® Noteworthy, sulfamic acid also
exists as H3;N'SO;~ zwitterionic units insoluble in non-polar
organic solvents. Hence, its catalytic properties arise from its
zwitterionic nature and shows excellent activity in acid-
catalyzed organic transformations. Thus, it has been widely

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 CS-TDI-Me-TDI-NHSOzH (1), as solid acid catalyst, for green synthesis of 2,3-dihydroquinazoline derivatives by using aldehyde
derivatives (2), isatoic anhydride (3) and ammonium acetate (4) in EtOH under reflux conditions.

used, as an acidic catalyst, in reactions such as Michael addition
reaction,” Pechmann reaction,”” Beckmann rearrangement
reaction,® imino Diels-Alder reaction,® and functional group
protection®* and deprotection®® reactions.
2,3-Dihydroquinazolines are a group of heterocyclic
compounds that have a pyrimidine nucleus in their
structure.®**® Also, they have received increased attention due
to their wide range of biological properties such as anesthetic,*
anti-cancer,”® muscle relaxant® and sedative properties.*
Therefore, synthesis of 2,3-dihydroquinazoline derivatives has
attracted the attention of organic and pharmaceutical chemists,
leading to various methods for the preparation of 2,3-dihy-
droquinazoline derivatives in order to achieve higher reaction
efficiency.””**'* Most of these reported methods have disad-
vantages such as multi-stage preparation methods, long reac-
tion time, low efficiency, hard reaction conditions, and the use

© 2023 The Author(s). Published by the Royal Society of Chemistry

of precious metals or toxic reagents. Thus, using new methods
for the synthesis of 2,3-dihydroquinazolines under desired
reaction conditions is important.

In the present work, sulfamic acid grafted to cross-linked
chitosan by dendritic units (CS-TDI-Me-TDI-NHSO;H, 1) orga-
nocatalyst was designed, prepared and characterized. The CS-
TDI-Me-TDI-NHSO;H was used as a heterogeneous and green
nanocatalyst for the synthesis of 2,3-dihydroquinazoline deriv-
atives (Scheme 1).

Results and discussion

The prepared CS-TDI-Me-TDI-HNSO;H organocatalyst (1) was
characterized using various suitable techniques including FT-
IR, FESEM, XRD, TGA and EDS.

RSC Adv, 2023, 13, 320-334 | 321
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Fig. 1 FTIR spectra of melamine—toluene 2,4-diisocyanate intermediate (I, a) and CS-TDI-Me-TDI-HNSOzH bio-based material (1, b).

Fig. 1 shows the FT-IR spectra of melamine-toluene 2,4-
diisocyanate intermediate (I, a) and CS-TDI-Me-TDI-
HNSO3H (1, b). According to Fig. 1a, the absorption bands at
3468-3334 cm ™' are attributed to the stretching vibration of
N-H bonds of amin groups. Also, absorption band at
2926 cm ' belongs to the stretching vibration of C-H
aliphatic bonds. In addition, the adsorption bands at
2276 cm ™' and 1652 cm™ ' correspond to the vibration of
N=C=0 and C=0 bonds of the amide. As shown in Fig. 1b,
the absorption bands at 3470-3336 cm™ ' are attributed to
the stretching vibration of N-H bonds of the amine groups.

Also, the absorption band at 2976 cm ' belongs to the
stretching vibration of C-H aliphatic bonds. Whereas, the
adsorption band at 1654 cm™ ' is related to the stretching
vibration of C=0 bond of amide groups. Also, the charac-
teristic bands at 1208 cm™ ' and 1026 cm ™' correspond to the
asymmetric and symmetric S=O stretching vibration in the
SO;H group, respectively.

Fig. 2 shows the XRD pattern of CS-TDI-Me-TDI-HNSO3H (1).
There are symmetrical reflections at 26 of 17.56°, 21.52°, 26.08°,
28.71°, and 29.72° which are characteristic of the CS-TDI-Me-
TDI-HNSO;H (1) structure according to the standard XRD
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Fig. 2 Wide-angle XRD pattern of CS-TDI-Me-TDI-HNSOzH nanomaterial (1).
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Fig. 3 EDS spectra of the CS-TDI-Me-TDI-HNSO3zH organocatalyst (1).

patterns of melamine (JCPDS card no. 00-039-1950), chitosan
(JCPDS card no. 00-040-1518), and H,NSO;H (JCPDS card no.
01-070-0060). As can be seen, the results obtained from the XRD
pattern of CS-TDI-Me-TDI-HNSO;H (1) confirm the successful
preparation of the desired nanomaterial.

Fig. 3 shows the EDS analysis related to the CS-TDI-Me-
TDI-HNSO;H organocatlyst (1), which confirms the presence
of C, O, N, and S elements in its structure. Therefore, the
presence of S element indicates the grafting of H,NSO;H on
the chitosan backbone. Also, EDS mapping analysis shows
uniform particle distribution of the structure.

FESEM images of CS-TDI-Me-TDI-HNSO;H (1) nano-
material (1) are shown in Fig. 4. FESEM images of structure of
CS-TDI-Me-TDI-HNSO;H shows that the morphology of chi-
tosan has changed from sheets to irregular particles, which
confirms the formation of the desired structure. Also, these
particles have a uniform dispersion and average particle size
of 25-44 nm.

Using thermogravimetric analysis (TGA), the thermal
stability of the prepared catalyst (1) was investigated in the
temperature range of 50-500 °C. As shown in Fig. 5, two weight
loss steps were observed between 270 and 400 °C, Since the
pristine chitosan is degraded at 200-220°,"° this degradation at
the temperature range of 270-400 °C indicates that the organic
units on the surface of chitosan have been linked by toluene
diisocyanate, which affects the thermal stability of chitosan and
degradation takes place at a higher temperature.

Optimization of conditions for the synthesis of 2,3-
dihydroquinazoline derivatives in the presence of CS-TDI-Me-
TDI-HNSO;H organocatalyst (1)

In this section, the efficacy of CS-TDI-Me-TDI-HNSO;H nano-
material (1) in the model reaction for the synthesis of 2, 3-

© 2023 The Author(s). Published by the Royal Society of Chemistry

dihydroquinazoline derivatives was investigated. Therefore,
different parameters including solvent, catalyst loading,
temperature, and reaction time were investigated to determine
the optimal reaction conditions (Table 1). The model reaction
was investigated in the presence of 4-chloroaldehyde (2a, 0.5
mmol), isatoic anhydride (3, 0.5 mmol) and ammonium acetate
(4, 1.5 mmol) for the synthesis of 2,3-dihydroquinazoline
derivatives in various conditions. First, the model reaction was
run without catalyst using various solvents at different
temperatures (Table 1, entries 1-4). As shown in Table 1,
without catalyst, the model reaction did not proceed to afford
the desired product after 1 h. However, in the presence of 15 mg
of CS-TDI-Me-TDI-HNSO;H organocatalyst (1), the desired
product 5a was prepared in medium to excellent yields (57 to
97%, Table 1, entries 5-8). The progress of the model reaction to
afford the desired product 5a in EtOH was investigated at
temperatures rather than reflux conditions (Table 1, entries 9
and 10). Based on the obtained results, EtOH under reflux
conditions can be considered as the desirable solvent. After-
ward, to determine the desirable amount of catalyst, the model
reaction was carried out in EtOH under reflux conditions in the
presence of 10, 15 and 20 mg of CS-TDI-Me-TDI-HNSO;H
organocatalyst (1) (Table 1, entries 10-12). Consequently, 15 mg
of CS-TDI-Me-TDI-HNSO;H organocatalyst (1) loading in EtOH
under reflux conditions were selected as the optimal reaction
conditions.

After that, in order to extend the catalytic application of CS-
TDI-Me-TDI-HNSO;H (1), three-component condensation of
aldehyde derivatives (2a-m, 0.5 mmol), isatoic anhydride (3, 0.5
mmol), and ammonium acetate (4, 1.5 mmol) was performed
under optimal conditions for the synthesis of 2,3-dihy-
droquinazoline derivatives (5a-m). The results are summarized
in Table 2.

RSC Adv, 2023,13, 320-334 | 323
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Fig. 4 FESEM images of CS-TDI-Me-TDI-HNSOzH nanomaterial (1).
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Fig. 5 TGA curves of CS-TDI-Me-TDI-HNSOzH organocatalyst (1).
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Table 2 Synthesis of 2,3-dihydroquinazoline derivatives (5a—m) through the three-component condensation of aldehyde derivatives (2a—m),
isatoic anhydride (3), and ammonium acetate (4) in the presence of CS-TDI-Me-TDI-HNSO3zH organocatalyst (1)¢

(0]

(0}
(0)
o) CS-TDI-Me-TDI-SOsH (1) NH
XN H - +  NH40Ac
| ngo ! N
= H EtOH, reflux H
R R
(2a-m) 3) () (5a-m)
M.p. (°C)
Entry Aldehyde Product Time (min) Yield (%) (Obs.) M.p. (°C) (Lit.)
(0) H (0}
oL
1 E 15 97 204-206 203-206 (ref. 107)
1
(2a)
(0) H (0}
Cl NH CI
2 N 15 95 207-209 206-208 (ref. 108)
H
(2b) (5b)
(0) H Q)
oL
3 E/K@ 25 87 198-201 200-202 (ref. 107)
N
NO, (5¢) 02
(20
(@) H (0)
I
4 N NO, 55 80 190-192 190-193 (ref. 107)
NO, H
@3d) (5d)
(0) H (0)
NH
5 N 25 87 194-195 193-197 (ref. 109)
H
F
4 (5e)
(2e)
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o) (0]
(0]
0) CS-TDI-Me-TDI-SOzH (1) NH
X H + + NH4OAc
| N/§O ! N
= H EtOH, reflux H
R R
(2a-m) 3) “@) (5a-m)
M.p. (°C)
Entry Aldehyde Product Time (min) Yield (%) (Obs.) M.p. (°C) (Lit.)
(0) H (0}
Cor
6 N 25 86 197-199 196-198 (ref. 109)
H
Br (Sf) Br
2n
O H (0)
Cl NH CI
7 INI 15 90 165-169 166-169 (ref. 107)
1
= (59) ¢
(2g)
(0) H (0}
NH
8 N 20 90 209-211 208-210 (ref. 109)
H
(2h) (Sh)
O H (0)
NH
9 }NI 30 89 199-202 198-201 (ref. 110)
H;
CH; (5i) CH;
(21)
(0) H (0}
NH
10 N 45 90 179-181 178-182 (ref. 87)
H
OCH; i) OCH,
(@)
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o) (0]
Q)
0) CS-TDI-Me-TDI-SOzH (1) NH
| X H + /& + NH4OAc N
[F IITJ] 0 EtOH, reflux H
R R
(2a-m) 3) “@) (5a-m)
M.p. (°C)
Entry Aldehyde Product Time (min) Yield (%) (Obs.) M.p. (°C) (Lit.)
(0) H O
NH
11 N 25 86 214-217 213-215 (ref. 109)
H
OH
OH 5k)
(2k)
(@) H (0)
NH
12 E 35 92 350-352 351-352 (ref. 87)
. CN
2D
(0}
0 H
OMe NH OMe
13 N 40 91 166-168 165-167 (ref. 111)
H
(2m) (5m)

“ Reaction conditions: aldehyde derivatives (2a-m, 0.5 mmol), isatoic anhydride (3, 0.5 mmol) and ammonium acetate (4, 1.5 mmol) in the presence

of CS-TDI-Me-TDI-HNSO;H (1, 15 mg) in EtOH under reflux conditions.

The possible mechanism for the synthesis of 2,3-
dihydroquinazoline derivatives in the presence of CS-TDI-Me-
TDI-HNSO;H (1)

Scheme 2 shows the proposed mechanism for the synthesis of
2,3-dihydroquinazoline derivatives. CS-TDI-Me-TDI-HNSO;H
organocatalyst (1) has Brensted acidic centers. Hence, it acti-
vates carbonyl groups in isotonic anhydride by forming
a hydrogen bond to facilitate the nucleophilic addition of
ammonium acetate (4) and forming the intermediate I. Next,
this intermediate reacts with aldehyde derivatives and forms
intermediate II. Finally, by removing H,O from intermediate I,
2,3-dihydroquinazoline derivatives 5 are synthesized as the
desired product.

328 | RSC Adv, 2023, 13, 320-334

Also, the reusability of CS-TDI-Me-TDI-HNSO;H solid acid
catalyst (1) was studied in the synthesis of 2,3-dihy-
droquinazoline derivative 5a. For this purpose, the CS-TDI-Me-
TDI-HNSO;H (1) was separated by filtration, washed with water
and acetone, and then dried at 70 °C for 24 h. The recycled
organocatalyst in each run was used after activation for the
preparation of 2,3-dihydroquinazoline derivative 5a in the next
run. This reaction was repeated up to five times and no signif-
icant reduction was observed in the CS-TDI-Me-TDI-HNSO;H
organocatalyst (1) efficiency (Fig. 6).

Table 3 compares the efficiency of dendritic CS-TDI-Me-TDI-
HNSO;H organocatalyst (1) with other catalysts for the synthesis
of desired 2,3-dihydroquinazoline derivative 5a. For this
comparison, several parameters, e.g., the reaction time,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 The proposed mechanism for the synthesis of 2,3-dihydroquinazoline derivatives 5 catalyzed by the biobased multifunctional CS-

TDI-Me-TDI-HNSOzH solid acid (1).

temperature, and the reaction yield, were taken into consider-
ation. It can be seen that CS-TDI-Me-TDI-HNSO;H heteroge-
neous catalyst (1) showed higher efficiency than previously
reported catalysts for the synthesis of 2,3-dihydroquinazoline
derivatives.

Experimental

Materials and methods

The CS-TDI-Me-TDI-HNSO3;H nanomaterial (1) was purely
prepared by modifing of known methods for similar materials
having the same functional groups. Chitosan (CS, MW = 100
000-300 000 Da) was obtained from Acros Organics. Mela-
mine (Me) and triethylamine (TEA) were provided by Sigma-
Aldrich. Tetrahydrofuran (THF), sulfamic acid (H,NSO;H),

© 2023 The Author(s). Published by the Royal Society of Chemistry

and toluene-2,4-diisocyanate (TDI) were purchased from
Merck-Millipore. Other chemical compounds were supplied
by Merck and Aldrich Chemical Co. Characterization of the
heterogeneous CS-TDI-Me-TDI-H,NSOz;H (1) organocatalyst
was performed using FESEM (TESCAN-MIRA III), EDS (TES-
CAN-MIRA II), TGA (STA 504, Bahr Co.), and XRD (Bour-
evestnik DRON-8) analyses. 'H NMR (500 MHz) spectra
recorded on a Bruker DRX-500 Avance spectrometers in
DMSO, as the solvent, at ambient temperature. FT-IR spectra
were recorded as KBr pellets on a Shimadzu FT-IR-8400S
spectrometer. Analytical thin-layer chromatography (TLC)
was performed using Merck 0.2 mm silica gel 60F-254 Al-
plates for reaction monitoring. Melting points were deter-
mined using an Electrothermal 9100 apparatus.
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Fig. 6 Reusability of the CS-TDI-Me-TDI-HNSO3zH organocatalyst (1) in the model reaction to afford 5a.

Table 3 Comparison of the catalytic efficiency of CS-TDI-Me-TDI-HNSOzH (1) with other heterogeneous catalysts for 4-cholorobenzaldhyde

Entry Catalyst Time (min) Solvent/temperature conditions Yield (%) Reference

1 CS-TDI-Me-TDI-HNSO;H (1) 15 EtOH/reflux 97 This work

2 Wang-OSO,H 40 H,0/100 °C 84 108

3 Titanium silicon oxide nanopowder 120 H,0/100 °C 94 112

4 Montmorillonite-KSF 150 Solvent-free/100 °C 93 113

5 Al(H,PO,)3 540 Solvent-free/100 °C 70 114

6 Co-aminobenzamid@AI-SBA-15 24 EtOH/reflux 96 115
General method for preparation of CS-TDI-Me-TDI-HNSO;H 2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (2a).

organocatalyst (1). To a round button flask, a mixture of
melamine (4 mmol, 0.5 g), TDI (12 mmol, 2 mL) and THF (15
mL) was added and stirred at room temperature under
nitrogen atmosphere for 24 h. The obtained white solid (I) was
filtered off and washed with THF, then dried in a vacuum oven
at 60 °C for 12 h (Scheme 3). Also, H;N"SO;~ (8 mmol, 0.776 g)
and TEA (10 mmol, 1.4 mL) were added to THF (5 mL) and
stirred for 2 h. Subsequently, the white solid (I) was added to
the mixture and stirred for another 24 h at room temperature.
Then, CS (0.5 g) was added and refluxed for 24 h under
nitrogen atmosphere. Finally, the obtained white powder was
filtered and washed with THF and EtOH and dried at 60 °C for
24 h (Scheme 3).

General procedure for the synthesis of 2,3-dihydroquinazo-
line derivatives. A mixture of aldehyde derivatives (2, 0.5 mmol),
isatoic anhydride (3, 0.5 mmol), ammonium acetate (4, 1.5
mmol), CS-TDI-Me-TDI- HNSO;H (1, 15 mg), and EtOH (5 mL)
was stirred at 80 °C. After completion of the reaction, the
organocatalyst was filtered and washed with acetone. The
products were purified by recrystallization from EtOH. The
products were identified by melting point measurement, FT-IR
and "HNMR spectroscopy.

Selected spectral data

330 | RSC Adv, 2023, 13, 320-334

Melting point: 212-214 °C; FTIR (KBr, cmfl): 3305, 3184, 3062,
1654, 1606, 1431, 1090, 749 cm *. "H NMR (500 MHz, DMSO-
de): 0y (ppm) = 5.77 (s, 1H, CH), 6.68 (t, 1H, Ar-H), 6.74 (d, 1H,
Ar-H), 7.10 (s, 1H, NH), 7.24 (t, 1H, Ar-H), 7.45 (d, 1H, Ar-H),
7.50 (d, 1H, Ar-H), 7.61 (d, 1H, Ar-H), 8.27 (s, 1H, CONH).
2-(2-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (5b).
Melting point: 207-209 °C; FTIR (cm™*): 3310, 3207, 3050, 1660,
1492, 1479; "H NMR (500 MHz, DMSO-de): 6y (ppm) 6.14 (s, 1H),
6.72 (t, 1H, J = 7.5 Hz), 6.77 (d, 1H, / = 8.1 Hz), 7.01 (s, 1H), 7.26
(t, 1H, J = 7.7 Hz), 7.40 (d, 2H, J = 4.1 Hz), 7.49 (d, 1H, ] = 4.1
Hz), 7.66 (d, 2H, J = 6.7, Hz), 8.21 (s, 1H).
2-(4-Methylphenyl)-2,3-dihydroquinazolin-4(1H)-one (51).
Melting point: 199-202 °C; FTIR (cm ™ '): 3300, 3170, 3032, 2931,
2827, 1510, 1249; "H NMR (500 MHz, DMSO-dq): 61 (ppm) 2.29
(s, 3H), 5.70 (s, 1H), 6.66 (t, 1H, J = 7.4 Hz), 6.73 (d, 1H,J = 8.1
Hz), 7.04 (s, 1H), 7.19 (d, ] = 7.6 Hz, 1H), 7.23 (t,/ = 8.1 Hz, 1H),
7.37 (d,J = 7.8 Hz, 2H), 7.61 (d, ] = 7.6 Hz, 1H), 8.22 (s, 1H); d¢
(ppm) *C NMR (125 MHz, DMSO-d,): 162.70, 152.90, 141.98,
134.99, 130.28, 129.65, 128.21, 127.64, 127.58, 126.88, 126.30,
121.23, 21.23.
2-(4-Methoxylphenyl)-2,3-dihydroquinazolin-4(1H)-one (5).
Melting point: 179-181 °C; FTIR (cm): 3301, 3170, 3029, 2930,
2825,1511, 1248; "H NMR (500 MHz, DMSO-dg): 0y (ppm) 3.74 (s,
3H), 5.70 (s, 1H), 6.67 (t, 1H, ] = 7.6 Hz), 6.74 (d, 1H, J = 8.1 Hz),

© 2023 The Author(s). Published by the Royal Society of Chemistry
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CS-TDI-Me-TDI-NHSO;H (1)

Scheme 3 Schematic representation of CS-TDI-Me-TDI-HNSOzH (1) preparation steps.

6.95 (d, 2H, J = 8.4), 7.00 (s, 1H), 7.23 (t,/ = 8.0 Hz, 1H), 7.42 (d, Conclusions

= 7.6 Hz, 2H), 7.61 (d,J = 7.6 Hz, 1H), 8.17 (s, 1H); >°C NMR (125

MHz, DMSO-ds): 6c (ppm) 162.62, 152.84, 135.49, 135.14, 130.07, In this paper, a new heterogeneous acidic catalyst based on the
126.94, 126.79, 126.37, 124.56, 120.92, 118.30, 114.36, 55.74. renewable and biodegradable chitosan polymer, i.e., CS-TDI-

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2023, 13, 320-334 | 331
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Me-TDI-HNSO;H, was prepared and characterized using various
spectral and analytical techniques. Subsequently, CS-TDI-Me-
TDI-HNSO;H was used, as a solid acid, for the synthesis of 2,3-
dihydroquinazoline derivatives under green conditions. The
desired 2,3-dihydroquinazoline derivatives were prepared in
high to excellent yields under optimal conditions. Low catalyst
loading, mild reaction conditions and very short reaction times
as well as reusability of the catalyst for at least four consecutive
catalytic cycles without significant loss of its activity are the
advantages of this new protocol.
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